/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include /** \file Dynamically compute IP feature subgraph ordering by performing a topological sort across a set of "feature A before feature B" and "feature C after feature B" constraints. Use the topological sort result to set up vnet_config_main_t's for use at runtime. Feature subgraph arcs are simple enough. They start at specific fixed nodes, and end at specific fixed nodes. In between, a per-interface current feature configuration dictates which additional nodes each packet visits. Each so-called feature node can [of course] drop any specific packet. See ip4_forward.c, ip6_forward.c in this directory to see the current rx-unicast, rx-multicast, and tx feature subgraph arc definitions. Let's say that we wish to add a new feature to the ip4 unicast feature subgraph arc, which needs to run before @c ip4-lookup. In either base code or a plugin,
    \#include 
    
and add the new feature as shown:
    VNET_IP4_UNICAST_FEATURE_INIT (ip4_lookup, static) =
    {
      .node_name = "my-ip4-unicast-feature",
      .runs_before = ORDER_CONSTRAINTS {"ip4-lookup", 0}
      .feature_index = &my_feature_index,
    };
    
Here's the standard coding pattern to enable / disable @c my-ip4-unicast-feature on an interface:
    ip4_main_t *im = \&ip4_main;
    ip_lookup_main_t *lm = &im->lookup_main;
    ip_config_main_t *rx_cm =
        &lm->feature_config_mains[VNET_IP_RX_UNICAST_FEAT];

    sw_if_index = 
    ci = rx_cm->config_index_by_sw_if_index[sw_if_index];
    ci = (is_add
          ? vnet_config_add_feature
          : vnet_config_del_feature)
      (vm, &rx_cm->config_main,
       ci,
       my_feature_index,
       0 / * &config struct if feature uses private config data * /,
       0 / * sizeof config struct if feature uses private config data * /);
    rx_cm->config_index_by_sw_if_index[sw_if_index] = ci;
    
For tx features, add this line after setting
    tx_cm->config_index_by_sw_if_index = ci.
    
This maintains a per-interface "at least one TX feature enabled" bitmap:
    vnet_config_update_tx_feature_count (lm, tx_cm, sw_if_index, is_add);
    
Here's how to obtain the correct next node index in packet processing code, aka in the implementation of @c my-ip4-unicast-feature:
    ip_lookup_main_t * lm = sm->ip4_lookup_main;
    ip_config_main_t * cm = &lm->feature_config_mains[VNET_IP_RX_UNICAST_FEAT];

    Call @c vnet_get_config_data to set next0, and to advance
    @c b0->current_config_index:

    config_data0 = vnet_get_config_data (&cm->config_main,
                                         &b0->current_config_index,
                                         &next0,
                                         0 / * sizeof config data * /);
    
Nodes are free to drop or otherwise redirect packets. Packets which "pass" should be enqueued via the next0 arc computed by vnet_get_config_data. */ static int comma_split (u8 * s, u8 ** a, u8 ** b) { *a = s; while (*s && *s != ',') s++; if (*s == ',') *s = 0; else return 1; *b = (u8 *) (s + 1); return 0; } clib_error_t * ip_feature_init_cast (vlib_main_t * vm, ip_config_main_t * cm, vnet_config_main_t * vcm, char **feature_start_nodes, int num_feature_start_nodes, vnet_cast_t cast, int is_ip4) { uword *index_by_name; uword *reg_by_index; u8 **node_names = 0; u8 *node_name; char **these_constraints; char *this_constraint_c; u8 **constraints = 0; u8 *constraint_tuple; u8 *this_constraint; u8 **orig, **closure; uword *p; int i, j, k; u8 *a_name, *b_name; int a_index, b_index; int n_features; u32 *result = 0; vnet_ip_feature_registration_t *this_reg, *first_reg = 0; char **feature_nodes = 0; hash_pair_t *hp; u8 **keys_to_delete = 0; ip4_main_t *im4 = &ip4_main; ip6_main_t *im6 = &ip6_main; index_by_name = hash_create_string (0, sizeof (uword)); reg_by_index = hash_create (0, sizeof (uword)); if (cast == VNET_IP_RX_UNICAST_FEAT) { if (is_ip4) first_reg = im4->next_uc_feature; else first_reg = im6->next_uc_feature; } else if (cast == VNET_IP_RX_MULTICAST_FEAT) { if (is_ip4) first_reg = im4->next_mc_feature; else first_reg = im6->next_mc_feature; } else if (cast == VNET_IP_TX_FEAT) { if (is_ip4) first_reg = im4->next_tx_feature; else first_reg = im6->next_tx_feature; } this_reg = first_reg; /* pass 1, collect feature node names, construct a before b pairs */ while (this_reg) { node_name = format (0, "%s%c", this_reg->node_name, 0); hash_set (reg_by_index, vec_len (node_names), (uword) this_reg); hash_set_mem (index_by_name, node_name, vec_len (node_names)); vec_add1 (node_names, node_name); these_constraints = this_reg->runs_before; while (these_constraints && these_constraints[0]) { this_constraint_c = these_constraints[0]; constraint_tuple = format (0, "%s,%s%c", node_name, this_constraint_c, 0); vec_add1 (constraints, constraint_tuple); these_constraints++; } these_constraints = this_reg->runs_after; while (these_constraints && these_constraints[0]) { this_constraint_c = these_constraints[0]; constraint_tuple = format (0, "%s,%s%c", this_constraint_c, node_name, 0); vec_add1 (constraints, constraint_tuple); these_constraints++; } this_reg = this_reg->next; } n_features = vec_len (node_names); orig = clib_ptclosure_alloc (n_features); for (i = 0; i < vec_len (constraints); i++) { this_constraint = constraints[i]; if (comma_split (this_constraint, &a_name, &b_name)) return clib_error_return (0, "comma_split failed!"); p = hash_get_mem (index_by_name, a_name); /* * Note: the next two errors mean that the xxx_FEATURE_INIT macros are * b0rked. As in: if you code "A depends on B," and you forget * to define a FEATURE_INIT macro for B, you lose. * Nonexistent graph nodes are tolerated. */ if (p == 0) return clib_error_return (0, "feature node '%s' not found", a_name); a_index = p[0]; p = hash_get_mem (index_by_name, b_name); if (p == 0) return clib_error_return (0, "feature node '%s' not found", b_name); b_index = p[0]; /* add a before b to the original set of constraints */ orig[a_index][b_index] = 1; vec_free (this_constraint); } /* Compute the positive transitive closure of the original constraints */ closure = clib_ptclosure (orig); /* Compute a partial order across feature nodes, if one exists. */ again: for (i = 0; i < n_features; i++) { for (j = 0; j < n_features; j++) { if (closure[i][j]) goto item_constrained; } /* Item i can be output */ vec_add1 (result, i); { for (k = 0; k < n_features; k++) closure[k][i] = 0; /* * Add a "Magic" a before a constraint. * This means we'll never output it again */ closure[i][i] = 1; goto again; } item_constrained: ; } /* see if we got a partial order... */ if (vec_len (result) != n_features) return clib_error_return (0, "ip%s_feature_init_cast (cast=%d), no partial order!", is_ip4 ? "4" : "6", cast); /* * We win. * Bind the index variables, and output the feature node name vector * using the partial order we just computed. Result is in stack * order, because the entry with the fewest constraints (e.g. none) * is output first, etc. */ for (i = n_features - 1; i >= 0; i--) { p = hash_get (reg_by_index, result[i]); ASSERT (p != 0); this_reg = (vnet_ip_feature_registration_t *) p[0]; *this_reg->feature_index = n_features - (i + 1); vec_add1 (feature_nodes, this_reg->node_name); } /* Set up the config infrastructure */ vnet_config_init (vm, vcm, feature_start_nodes, num_feature_start_nodes, feature_nodes, vec_len (feature_nodes)); /* Save a copy for show command */ if (is_ip4) im4->feature_nodes[cast] = feature_nodes; else im6->feature_nodes[cast] = feature_nodes; /* Finally, clean up all the shit we allocated */ /* *INDENT-OFF* */ hash_foreach_pair (hp, index_by_name, ({ vec_add1 (keys_to_delete, (u8 *)hp->key); })); /* *INDENT-ON* */ hash_free (index_by_name); for (i = 0; i < vec_len (keys_to_delete); i++) vec_free (keys_to_delete[i]); vec_free (keys_to_delete); hash_free (reg_by_index); vec_free (result); clib_ptclosure_free (orig); clib_ptclosure_free (closure); return 0; } #define foreach_af_cast \ _(4, VNET_IP_RX_UNICAST_FEAT, "ip4 unicast") \ _(4, VNET_IP_RX_MULTICAST_FEAT, "ip4 multicast") \ _(4, VNET_IP_TX_FEAT, "ip4 output") \ _(6, VNET_IP_RX_UNICAST_FEAT, "ip6 unicast") \ _(6, VNET_IP_RX_MULTICAST_FEAT, "ip6 multicast") \ _(6, VNET_IP_TX_FEAT, "ip6 output") /** Display the set of available ip features. Useful for verifying that expected features are present */ static clib_error_t * show_ip_features_command_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { ip4_main_t *im4 = &ip4_main; ip6_main_t *im6 = &ip6_main; int i; char **features; vlib_cli_output (vm, "Available IP feature nodes"); #define _(a,c,s) \ do { \ features = im##a->feature_nodes[c]; \ vlib_cli_output (vm, "%s:", s); \ for (i = 0; i < vec_len(features); i++) \ vlib_cli_output (vm, " %s\n", features[i]); \ } while(0); foreach_af_cast; #undef _ return 0; } /* *INDENT-OFF* */ VLIB_CLI_COMMAND (show_ip_features_command, static) = { .path = "show ip features", .short_help = "show ip features", .function = show_ip_features_command_fn, }; /* *INDENT-ON* */ /** Display the set of IP features configured on a specific interface */ static clib_error_t * show_ip_interface_features_command_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { vnet_main_t *vnm = vnet_get_main (); ip4_main_t *im4 = &ip4_main; ip_lookup_main_t *lm4 = &im4->lookup_main; ip6_main_t *im6 = &ip6_main; ip_lookup_main_t *lm6 = &im6->lookup_main; ip_lookup_main_t *lm; ip_config_main_t *cm; vnet_config_main_t *vcm; vnet_config_t *cfg; u32 cfg_index; vnet_config_feature_t *feat; vlib_node_t *n; u32 sw_if_index; u32 node_index; u32 current_config_index; int i, af; u32 cast; if (!unformat (input, "%U", unformat_vnet_sw_interface, vnm, &sw_if_index)) return clib_error_return (0, "Interface not specified..."); vlib_cli_output (vm, "IP feature paths configured on %U...", format_vnet_sw_if_index_name, vnm, sw_if_index); for (af = 0; af < 2; af++) { if (af == 0) lm = lm4; else lm = lm6; for (cast = VNET_IP_RX_UNICAST_FEAT; cast < VNET_N_IP_FEAT; cast++) { cm = lm->feature_config_mains + cast; vcm = &cm->config_main; vlib_cli_output (vm, "\nipv%s %scast:", (af == 0) ? "4" : "6", cast == VNET_IP_RX_UNICAST_FEAT ? "uni" : "multi"); current_config_index = vec_elt (cm->config_index_by_sw_if_index, sw_if_index); ASSERT (current_config_index < vec_len (vcm->config_pool_index_by_user_index)); cfg_index = vcm->config_pool_index_by_user_index[current_config_index]; cfg = pool_elt_at_index (vcm->config_pool, cfg_index); for (i = 0; i < vec_len (cfg->features); i++) { feat = cfg->features + i; node_index = feat->node_index; n = vlib_get_node (vm, node_index); vlib_cli_output (vm, " %v", n->name); } } } return 0; } /* *INDENT-OFF* */ VLIB_CLI_COMMAND (show_ip_interface_features_command, static) = { .path = "show ip interface features", .short_help = "show ip interface features ", .function = show_ip_interface_features_command_fn, }; /* *INDENT-ON* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */