/*- * BSD LICENSE * * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. * Copyright(c) 2016, Linaro Limited * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "base/i40e_prototype.h" #include "base/i40e_type.h" #include "i40e_ethdev.h" #include "i40e_rxtx.h" #include "i40e_rxtx_vec_common.h" #include #pragma GCC diagnostic ignored "-Wcast-qual" static inline void i40e_rxq_rearm(struct i40e_rx_queue *rxq) { int i; uint16_t rx_id; volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; struct rte_mbuf *mb0, *mb1; uint64x2_t dma_addr0, dma_addr1; uint64x2_t zero = vdupq_n_u64(0); uint64_t paddr; uint8x8_t p; rxdp = rxq->rx_ring + rxq->rxrearm_start; /* Pull 'n' more MBUFs into the software ring */ if (unlikely(rte_mempool_get_bulk(rxq->mp, (void *)rxep, RTE_I40E_RXQ_REARM_THRESH) < 0)) { if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >= rxq->nb_rx_desc) { for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) { rxep[i].mbuf = &rxq->fake_mbuf; vst1q_u64((uint64_t *)&rxdp[i].read, zero); } } rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += RTE_I40E_RXQ_REARM_THRESH; return; } p = vld1_u8((uint8_t *)&rxq->mbuf_initializer); /* Initialize the mbufs in vector, process 2 mbufs in one loop */ for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) { mb0 = rxep[0].mbuf; mb1 = rxep[1].mbuf; /* Flush mbuf with pkt template. * Data to be rearmed is 6 bytes long. * Though, RX will overwrite ol_flags that are coming next * anyway. So overwrite whole 8 bytes with one load: * 6 bytes of rearm_data plus first 2 bytes of ol_flags. */ vst1_u8((uint8_t *)&mb0->rearm_data, p); paddr = mb0->buf_physaddr + RTE_PKTMBUF_HEADROOM; dma_addr0 = vdupq_n_u64(paddr); /* flush desc with pa dma_addr */ vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0); vst1_u8((uint8_t *)&mb1->rearm_data, p); paddr = mb1->buf_physaddr + RTE_PKTMBUF_HEADROOM; dma_addr1 = vdupq_n_u64(paddr); vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1); } rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH; if (rxq->rxrearm_start >= rxq->nb_rx_desc) rxq->rxrearm_start = 0; rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH; rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id); } /* Handling the offload flags (olflags) field takes computation * time when receiving packets. Therefore we provide a flag to disable * the processing of the olflags field when they are not needed. This * gives improved performance, at the cost of losing the offload info * in the received packet */ #ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE static inline void desc_to_olflags_v(uint64x2_t descs[4], struct rte_mbuf **rx_pkts) { uint32x4_t vlan0, vlan1, rss, l3_l4e; /* mask everything except RSS, flow director and VLAN flags * bit2 is for VLAN tag, bit11 for flow director indication * bit13:12 for RSS indication. */ const uint32x4_t rss_vlan_msk = { 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804}; /* map rss and vlan type to rss hash and vlan flag */ const uint8x16_t vlan_flags = { 0, 0, 0, 0, PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8x16_t rss_flags = { 0, PKT_RX_FDIR, 0, 0, 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8x16_t l3_l4e_flags = { 0, PKT_RX_IP_CKSUM_BAD, PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD, 0, 0, 0, 0, 0, 0, 0, 0}; vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]), vreinterpretq_u32_u64(descs[2])).val[1]; vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]), vreinterpretq_u32_u64(descs[3])).val[1]; vlan0 = vzipq_u32(vlan0, vlan1).val[0]; vlan1 = vandq_u32(vlan0, rss_vlan_msk); vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags, vreinterpretq_u8_u32(vlan1))); rss = vshrq_n_u32(vlan1, 11); rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags, vreinterpretq_u8_u32(rss))); l3_l4e = vshrq_n_u32(vlan1, 22); l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags, vreinterpretq_u8_u32(l3_l4e))); vlan0 = vorrq_u32(vlan0, rss); vlan0 = vorrq_u32(vlan0, l3_l4e); rx_pkts[0]->ol_flags = vgetq_lane_u32(vlan0, 0); rx_pkts[1]->ol_flags = vgetq_lane_u32(vlan0, 1); rx_pkts[2]->ol_flags = vgetq_lane_u32(vlan0, 2); rx_pkts[3]->ol_flags = vgetq_lane_u32(vlan0, 3); } #else #define desc_to_olflags_v(descs, rx_pkts) do {} while (0) #endif #define PKTLEN_SHIFT 10 #define I40E_VPMD_DESC_DD_MASK 0x0001000100010001ULL static inline void desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **rx_pkts) { int i; uint8_t ptype; uint8x16_t tmp; for (i = 0; i < 4; i++) { tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30)); ptype = vgetq_lane_u8(tmp, 8); rx_pkts[0]->packet_type = i40e_rxd_pkt_type_mapping(ptype); } } /* * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST * numbers of DD bits */ static inline uint16_t _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, uint8_t *split_packet) { volatile union i40e_rx_desc *rxdp; struct i40e_rx_entry *sw_ring; uint16_t nb_pkts_recd; int pos; uint64_t var; /* mask to shuffle from desc. to mbuf */ uint8x16_t shuf_msk = { 0xFF, 0xFF, /* pkt_type set as unknown */ 0xFF, 0xFF, /* pkt_type set as unknown */ 14, 15, /* octet 15~14, low 16 bits pkt_len */ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ 14, 15, /* octet 15~14, 16 bits data_len */ 2, 3, /* octet 2~3, low 16 bits vlan_macip */ 4, 5, 6, 7 /* octet 4~7, 32bits rss */ }; uint8x16_t eop_check = { 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint16x8_t crc_adjust = { 0, 0, /* ignore pkt_type field */ rxq->crc_len, /* sub crc on pkt_len */ 0, /* ignore high-16bits of pkt_len */ rxq->crc_len, /* sub crc on data_len */ 0, 0, 0 /* ignore non-length fields */ }; /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */ nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST); /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP); /* Just the act of getting into the function from the application is * going to cost about 7 cycles */ rxdp = rxq->rx_ring + rxq->rx_tail; rte_prefetch_non_temporal(rxdp); /* See if we need to rearm the RX queue - gives the prefetch a bit * of time to act */ if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH) i40e_rxq_rearm(rxq); /* Before we start moving massive data around, check to see if * there is actually a packet available */ if (!(rxdp->wb.qword1.status_error_len & rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT))) return 0; /* Cache is empty -> need to scan the buffer rings, but first move * the next 'n' mbufs into the cache */ sw_ring = &rxq->sw_ring[rxq->rx_tail]; /* A. load 4 packet in one loop * [A*. mask out 4 unused dirty field in desc] * B. copy 4 mbuf point from swring to rx_pkts * C. calc the number of DD bits among the 4 packets * [C*. extract the end-of-packet bit, if requested] * D. fill info. from desc to mbuf */ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts; pos += RTE_I40E_DESCS_PER_LOOP, rxdp += RTE_I40E_DESCS_PER_LOOP) { uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP]; uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4; uint16x8x2_t sterr_tmp1, sterr_tmp2; uint64x2_t mbp1, mbp2; uint16x8_t staterr; uint16x8_t tmp; uint64_t stat; int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT}; /* B.1 load 1 mbuf point */ mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]); /* Read desc statuses backwards to avoid race condition */ /* A.1 load 4 pkts desc */ descs[3] = vld1q_u64((uint64_t *)(rxdp + 3)); rte_rmb(); /* B.2 copy 2 mbuf point into rx_pkts */ vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1); /* B.1 load 1 mbuf point */ mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]); descs[2] = vld1q_u64((uint64_t *)(rxdp + 2)); /* B.1 load 2 mbuf point */ descs[1] = vld1q_u64((uint64_t *)(rxdp + 1)); descs[0] = vld1q_u64((uint64_t *)(rxdp)); /* B.2 copy 2 mbuf point into rx_pkts */ vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2); if (split_packet) { rte_mbuf_prefetch_part2(rx_pkts[pos]); rte_mbuf_prefetch_part2(rx_pkts[pos + 1]); rte_mbuf_prefetch_part2(rx_pkts[pos + 2]); rte_mbuf_prefetch_part2(rx_pkts[pos + 3]); } /* avoid compiler reorder optimization */ rte_compiler_barrier(); /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/ uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]), len_shl); descs[3] = vreinterpretq_u64_u32(len3); uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]), len_shl); descs[2] = vreinterpretq_u64_u32(len2); /* D.1 pkt 3,4 convert format from desc to pktmbuf */ pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk); pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk); /* C.1 4=>2 filter staterr info only */ sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]), vreinterpretq_u16_u64(descs[3])); /* C.1 4=>2 filter staterr info only */ sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]), vreinterpretq_u16_u64(descs[2])); /* C.2 get 4 pkts staterr value */ staterr = vzipq_u16(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0]; stat = vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0); desc_to_olflags_v(descs, &rx_pkts[pos]); /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust); pkt_mb4 = vreinterpretq_u8_u16(tmp); tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust); pkt_mb3 = vreinterpretq_u8_u16(tmp); /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/ uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]), len_shl); descs[1] = vreinterpretq_u64_u32(len1); uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]), len_shl); descs[0] = vreinterpretq_u64_u32(len0); /* D.1 pkt 1,2 convert format from desc to pktmbuf */ pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk); pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk); /* D.3 copy final 3,4 data to rx_pkts */ vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1, pkt_mb4); vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1, pkt_mb3); /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust); pkt_mb2 = vreinterpretq_u8_u16(tmp); tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust); pkt_mb1 = vreinterpretq_u8_u16(tmp); /* C* extract and record EOP bit */ if (split_packet) { uint8x16_t eop_shuf_mask = { 0x00, 0x02, 0x04, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8x16_t eop_bits; /* and with mask to extract bits, flipping 1-0 */ eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr)); eop_bits = vandq_u8(eop_bits, eop_check); /* the staterr values are not in order, as the count * count of dd bits doesn't care. However, for end of * packet tracking, we do care, so shuffle. This also * compresses the 32-bit values to 8-bit */ eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask); /* store the resulting 32-bit value */ vst1q_lane_u32((uint32_t *)split_packet, vreinterpretq_u32_u8(eop_bits), 0); split_packet += RTE_I40E_DESCS_PER_LOOP; /* zero-out next pointers */ rx_pkts[pos]->next = NULL; rx_pkts[pos + 1]->next = NULL; rx_pkts[pos + 2]->next = NULL; rx_pkts[pos + 3]->next = NULL; } rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP); /* D.3 copy final 1,2 data to rx_pkts */ vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1, pkt_mb2); vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1, pkt_mb1); desc_to_ptype_v(descs, &rx_pkts[pos]); /* C.4 calc avaialbe number of desc */ var = __builtin_popcountll(stat & I40E_VPMD_DESC_DD_MASK); nb_pkts_recd += var; if (likely(var != RTE_I40E_DESCS_PER_LOOP)) break; } /* Update our internal tail pointer */ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd); rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1)); rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd); return nb_pkts_recd; } /* * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST * numbers of DD bits */ uint16_t i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL); } /* vPMD receive routine that reassembles scattered packets * Notice: * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST * numbers of DD bits */ uint16_t i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) { struct i40e_rx_queue *rxq = rx_queue; uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0}; /* get some new buffers */ uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts, split_flags); if (nb_bufs == 0) return 0; /* happy day case, full burst + no packets to be joined */ const uint64_t *split_fl64 = (uint64_t *)split_flags; if (rxq->pkt_first_seg == NULL && split_fl64[0] == 0 && split_fl64[1] == 0 && split_fl64[2] == 0 && split_fl64[3] == 0) return nb_bufs; /* reassemble any packets that need reassembly*/ unsigned i = 0; if (rxq->pkt_first_seg == NULL) { /* find the first split flag, and only reassemble then*/ while (i < nb_bufs && !split_flags[i]) i++; if (i == nb_bufs) return nb_bufs; } return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, &split_flags[i]); } static inline void vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) { uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA | ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) | ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT)); uint64x2_t descriptor = {pkt->buf_physaddr + pkt->data_off, high_qw}; vst1q_u64((uint64_t *)txdp, descriptor); } static inline void vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) { int i; for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt) vtx1(txdp, *pkt, flags); } uint16_t i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue; volatile struct i40e_tx_desc *txdp; struct i40e_tx_entry *txep; uint16_t n, nb_commit, tx_id; uint64_t flags = I40E_TD_CMD; uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD; int i; /* cross rx_thresh boundary is not allowed */ nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); if (txq->nb_tx_free < txq->tx_free_thresh) i40e_tx_free_bufs(txq); nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); if (unlikely(nb_pkts == 0)) return 0; tx_id = txq->tx_tail; txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); n = (uint16_t)(txq->nb_tx_desc - tx_id); if (nb_commit >= n) { tx_backlog_entry(txep, tx_pkts, n); for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp) vtx1(txdp, *tx_pkts, flags); vtx1(txdp, *tx_pkts++, rs); nb_commit = (uint16_t)(nb_commit - n); tx_id = 0; txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); /* avoid reach the end of ring */ txdp = &txq->tx_ring[tx_id]; txep = &txq->sw_ring[tx_id]; } tx_backlog_entry(txep, tx_pkts, nb_commit); vtx(txdp, tx_pkts, nb_commit, flags); tx_id = (uint16_t)(tx_id + nb_commit); if (tx_id > txq->tx_next_rs) { txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << I40E_TXD_QW1_CMD_SHIFT); txq->tx_next_rs = (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); } txq->tx_tail = tx_id; I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); return nb_pkts; } void __attribute__((cold)) i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq) { _i40e_rx_queue_release_mbufs_vec(rxq); } int __attribute__((cold)) i40e_rxq_vec_setup(struct i40e_rx_queue *rxq) { return i40e_rxq_vec_setup_default(rxq); } int __attribute__((cold)) i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq) { return 0; } int __attribute__((cold)) i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev) { return i40e_rx_vec_dev_conf_condition_check_default(dev); }