/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * Copyright(c) 2016 6WIND S.A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTE_MEMPOOL_H_ #define _RTE_MEMPOOL_H_ /** * @file * RTE Mempool. * * A memory pool is an allocator of fixed-size object. It is * identified by its name, and uses a ring to store free objects. It * provides some other optional services, like a per-core object * cache, and an alignment helper to ensure that objects are padded * to spread them equally on all RAM channels, ranks, and so on. * * Objects owned by a mempool should never be added in another * mempool. When an object is freed using rte_mempool_put() or * equivalent, the object data is not modified; the user can save some * meta-data in the object data and retrieve them when allocating a * new object. * * Note: the mempool implementation is not preemptable. A lcore must * not be interrupted by another task that uses the same mempool * (because it uses a ring which is not preemptable). Also, mempool * functions must not be used outside the DPDK environment: for * example, in linuxapp environment, a thread that is not created by * the EAL must not use mempools. This is due to the per-lcore cache * that won't work as rte_lcore_id() will not return a correct value. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */ #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */ #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /** * A structure that stores the mempool statistics (per-lcore). */ struct rte_mempool_debug_stats { uint64_t put_bulk; /**< Number of puts. */ uint64_t put_objs; /**< Number of objects successfully put. */ uint64_t get_success_bulk; /**< Successful allocation number. */ uint64_t get_success_objs; /**< Objects successfully allocated. */ uint64_t get_fail_bulk; /**< Failed allocation number. */ uint64_t get_fail_objs; /**< Objects that failed to be allocated. */ } __rte_cache_aligned; #endif /** * A structure that stores a per-core object cache. */ struct rte_mempool_cache { uint32_t size; /**< Size of the cache */ uint32_t flushthresh; /**< Threshold before we flush excess elements */ uint32_t len; /**< Current cache count */ /* * Cache is allocated to this size to allow it to overflow in certain * cases to avoid needless emptying of cache. */ void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */ } __rte_cache_aligned; /** * A structure that stores the size of mempool elements. */ struct rte_mempool_objsz { uint32_t elt_size; /**< Size of an element. */ uint32_t header_size; /**< Size of header (before elt). */ uint32_t trailer_size; /**< Size of trailer (after elt). */ uint32_t total_size; /**< Total size of an object (header + elt + trailer). */ }; /**< Maximum length of a memory pool's name. */ #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \ sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1) #define RTE_MEMPOOL_MZ_PREFIX "MP_" /* "MP_" */ #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s" #define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1) /** Mempool over one chunk of physically continuous memory */ #define MEMPOOL_PG_NUM_DEFAULT 1 #ifndef RTE_MEMPOOL_ALIGN #define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE #endif #define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1) /** * Mempool object header structure * * Each object stored in mempools are prefixed by this header structure, * it allows to retrieve the mempool pointer from the object and to * iterate on all objects attached to a mempool. When debug is enabled, * a cookie is also added in this structure preventing corruptions and * double-frees. */ struct rte_mempool_objhdr { STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */ struct rte_mempool *mp; /**< The mempool owning the object. */ phys_addr_t physaddr; /**< Physical address of the object. */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG uint64_t cookie; /**< Debug cookie. */ #endif }; /** * A list of object headers type */ STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr); #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /** * Mempool object trailer structure * * In debug mode, each object stored in mempools are suffixed by this * trailer structure containing a cookie preventing memory corruptions. */ struct rte_mempool_objtlr { uint64_t cookie; /**< Debug cookie. */ }; #endif /** * A list of memory where objects are stored */ STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr); /** * Callback used to free a memory chunk */ typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr, void *opaque); /** * Mempool objects memory header structure * * The memory chunks where objects are stored. Each chunk is virtually * and physically contiguous. */ struct rte_mempool_memhdr { STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */ struct rte_mempool *mp; /**< The mempool owning the chunk */ void *addr; /**< Virtual address of the chunk */ phys_addr_t phys_addr; /**< Physical address of the chunk */ size_t len; /**< length of the chunk */ rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */ void *opaque; /**< Argument passed to the free callback */ }; /** * The RTE mempool structure. */ struct rte_mempool { /* * Note: this field kept the RTE_MEMZONE_NAMESIZE size due to ABI * compatibility requirements, it could be changed to * RTE_MEMPOOL_NAMESIZE next time the ABI changes */ char name[RTE_MEMZONE_NAMESIZE]; /**< Name of mempool. */ RTE_STD_C11 union { void *pool_data; /**< Ring or pool to store objects. */ uint64_t pool_id; /**< External mempool identifier. */ }; void *pool_config; /**< optional args for ops alloc. */ const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */ int flags; /**< Flags of the mempool. */ int socket_id; /**< Socket id passed at create. */ uint32_t size; /**< Max size of the mempool. */ uint32_t cache_size; /**< Size of per-lcore default local cache. */ uint32_t elt_size; /**< Size of an element. */ uint32_t header_size; /**< Size of header (before elt). */ uint32_t trailer_size; /**< Size of trailer (after elt). */ unsigned private_data_size; /**< Size of private data. */ /** * Index into rte_mempool_ops_table array of mempool ops * structs, which contain callback function pointers. * We're using an index here rather than pointers to the callbacks * to facilitate any secondary processes that may want to use * this mempool. */ int32_t ops_index; struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */ uint32_t populated_size; /**< Number of populated objects. */ struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */ uint32_t nb_mem_chunks; /**< Number of memory chunks */ struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /** Per-lcore statistics. */ struct rte_mempool_debug_stats stats[RTE_MAX_LCORE]; #endif } __rte_cache_aligned; #define MEMPOOL_F_NO_SPREAD 0x0001 /**< Do not spread among memory channels. */ #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/ #define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/ #define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/ #define MEMPOOL_F_POOL_CREATED 0x0010 /**< Internal: pool is created. */ #define MEMPOOL_F_NO_PHYS_CONTIG 0x0020 /**< Don't need physically contiguous objs. */ /** * @internal When debug is enabled, store some statistics. * * @param mp * Pointer to the memory pool. * @param name * Name of the statistics field to increment in the memory pool. * @param n * Number to add to the object-oriented statistics. */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG #define __MEMPOOL_STAT_ADD(mp, name, n) do { \ unsigned __lcore_id = rte_lcore_id(); \ if (__lcore_id < RTE_MAX_LCORE) { \ mp->stats[__lcore_id].name##_objs += n; \ mp->stats[__lcore_id].name##_bulk += 1; \ } \ } while(0) #else #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0) #endif /** * Calculate the size of the mempool header. * * @param mp * Pointer to the memory pool. * @param cs * Size of the per-lcore cache. */ #define MEMPOOL_HEADER_SIZE(mp, cs) \ (sizeof(*(mp)) + (((cs) == 0) ? 0 : \ (sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE))) /* return the header of a mempool object (internal) */ static inline struct rte_mempool_objhdr *__mempool_get_header(void *obj) { return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj, sizeof(struct rte_mempool_objhdr)); } /** * Return a pointer to the mempool owning this object. * * @param obj * An object that is owned by a pool. If this is not the case, * the behavior is undefined. * @return * A pointer to the mempool structure. */ static inline struct rte_mempool *rte_mempool_from_obj(void *obj) { struct rte_mempool_objhdr *hdr = __mempool_get_header(obj); return hdr->mp; } /* return the trailer of a mempool object (internal) */ static inline struct rte_mempool_objtlr *__mempool_get_trailer(void *obj) { struct rte_mempool *mp = rte_mempool_from_obj(obj); return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size); } /** * @internal Check and update cookies or panic. * * @param mp * Pointer to the memory pool. * @param obj_table_const * Pointer to a table of void * pointers (objects). * @param n * Index of object in object table. * @param free * - 0: object is supposed to be allocated, mark it as free * - 1: object is supposed to be free, mark it as allocated * - 2: just check that cookie is valid (free or allocated) */ void rte_mempool_check_cookies(const struct rte_mempool *mp, void * const *obj_table_const, unsigned n, int free); #ifdef RTE_LIBRTE_MEMPOOL_DEBUG #define __mempool_check_cookies(mp, obj_table_const, n, free) \ rte_mempool_check_cookies(mp, obj_table_const, n, free) #else #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0) #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */ #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */ /** * Prototype for implementation specific data provisioning function. * * The function should provide the implementation specific memory for * use by the other mempool ops functions in a given mempool ops struct. * E.g. the default ops provides an instance of the rte_ring for this purpose. * it will most likely point to a different type of data structure, and * will be transparent to the application programmer. * This function should set mp->pool_data. */ typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp); /** * Free the opaque private data pointed to by mp->pool_data pointer. */ typedef void (*rte_mempool_free_t)(struct rte_mempool *mp); /** * Enqueue an object into the external pool. */ typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp, void * const *obj_table, unsigned int n); /** * Dequeue an object from the external pool. */ typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp, void **obj_table, unsigned int n); /** * Return the number of available objects in the external pool. */ typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp); /** Structure defining mempool operations structure */ struct rte_mempool_ops { char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */ rte_mempool_alloc_t alloc; /**< Allocate private data. */ rte_mempool_free_t free; /**< Free the external pool. */ rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */ rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */ rte_mempool_get_count get_count; /**< Get qty of available objs. */ } __rte_cache_aligned; #define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */ /** * Structure storing the table of registered ops structs, each of which contain * the function pointers for the mempool ops functions. * Each process has its own storage for this ops struct array so that * the mempools can be shared across primary and secondary processes. * The indices used to access the array are valid across processes, whereas * any function pointers stored directly in the mempool struct would not be. * This results in us simply having "ops_index" in the mempool struct. */ struct rte_mempool_ops_table { rte_spinlock_t sl; /**< Spinlock for add/delete. */ uint32_t num_ops; /**< Number of used ops structs in the table. */ /** * Storage for all possible ops structs. */ struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX]; } __rte_cache_aligned; /** Array of registered ops structs. */ extern struct rte_mempool_ops_table rte_mempool_ops_table; /** * @internal Get the mempool ops struct from its index. * * @param ops_index * The index of the ops struct in the ops struct table. It must be a valid * index: (0 <= idx < num_ops). * @return * The pointer to the ops struct in the table. */ static inline struct rte_mempool_ops * rte_mempool_get_ops(int ops_index) { RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX)); return &rte_mempool_ops_table.ops[ops_index]; } /** * @internal Wrapper for mempool_ops alloc callback. * * @param mp * Pointer to the memory pool. * @return * - 0: Success; successfully allocated mempool pool_data. * - <0: Error; code of alloc function. */ int rte_mempool_ops_alloc(struct rte_mempool *mp); /** * @internal Wrapper for mempool_ops dequeue callback. * * @param mp * Pointer to the memory pool. * @param obj_table * Pointer to a table of void * pointers (objects). * @param n * Number of objects to get. * @return * - 0: Success; got n objects. * - <0: Error; code of dequeue function. */ static inline int rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { struct rte_mempool_ops *ops; ops = rte_mempool_get_ops(mp->ops_index); return ops->dequeue(mp, obj_table, n); } /** * @internal wrapper for mempool_ops enqueue callback. * * @param mp * Pointer to the memory pool. * @param obj_table * Pointer to a table of void * pointers (objects). * @param n * Number of objects to put. * @return * - 0: Success; n objects supplied. * - <0: Error; code of enqueue function. */ static inline int rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { struct rte_mempool_ops *ops; ops = rte_mempool_get_ops(mp->ops_index); return ops->enqueue(mp, obj_table, n); } /** * @internal wrapper for mempool_ops get_count callback. * * @param mp * Pointer to the memory pool. * @return * The number of available objects in the external pool. */ unsigned rte_mempool_ops_get_count(const struct rte_mempool *mp); /** * @internal wrapper for mempool_ops free callback. * * @param mp * Pointer to the memory pool. */ void rte_mempool_ops_free(struct rte_mempool *mp); /** * Set the ops of a mempool. * * This can only be done on a mempool that is not populated, i.e. just after * a call to rte_mempool_create_empty(). * * @param mp * Pointer to the memory pool. * @param name * Name of the ops structure to use for this mempool. * @param pool_config * Opaque data that can be passed by the application to the ops functions. * @return * - 0: Success; the mempool is now using the requested ops functions. * - -EINVAL - Invalid ops struct name provided. * - -EEXIST - mempool already has an ops struct assigned. */ int rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name, void *pool_config); /** * Register mempool operations. * * @param ops * Pointer to an ops structure to register. * @return * - >=0: Success; return the index of the ops struct in the table. * - -EINVAL - some missing callbacks while registering ops struct. * - -ENOSPC - the maximum number of ops structs has been reached. */ int rte_mempool_register_ops(const struct rte_mempool_ops *ops); /** * Macro to statically register the ops of a mempool handler. * Note that the rte_mempool_register_ops fails silently here when * more than RTE_MEMPOOL_MAX_OPS_IDX is registered. */ #define MEMPOOL_REGISTER_OPS(ops) \ void mp_hdlr_init_##ops(void); \ void __attribute__((constructor, used)) mp_hdlr_init_##ops(void)\ { \ rte_mempool_register_ops(&ops); \ } /** * An object callback function for mempool. * * Used by rte_mempool_create() and rte_mempool_obj_iter(). */ typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp, void *opaque, void *obj, unsigned obj_idx); typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */ /** * A memory callback function for mempool. * * Used by rte_mempool_mem_iter(). */ typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp, void *opaque, struct rte_mempool_memhdr *memhdr, unsigned mem_idx); /** * A mempool constructor callback function. * * Arguments are the mempool and the opaque pointer given by the user in * rte_mempool_create(). */ typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *); /** * Create a new mempool named *name* in memory. * * This function uses ``rte_memzone_reserve()`` to allocate memory. The * pool contains n elements of elt_size. Its size is set to n. * * @param name * The name of the mempool. * @param n * The number of elements in the mempool. The optimum size (in terms of * memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * If cache_size is non-zero, the rte_mempool library will try to * limit the accesses to the common lockless pool, by maintaining a * per-lcore object cache. This argument must be lower or equal to * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose * cache_size to have "n modulo cache_size == 0": if this is * not the case, some elements will always stay in the pool and will * never be used. The access to the per-lcore table is of course * faster than the multi-producer/consumer pool. The cache can be * disabled if the cache_size argument is set to 0; it can be useful to * avoid losing objects in cache. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param mp_init * A function pointer that is called for initialization of the pool, * before object initialization. The user can initialize the private * data in this function if needed. This parameter can be NULL if * not needed. * @param mp_init_arg * An opaque pointer to data that can be used in the mempool * constructor function. * @param obj_init * A function pointer that is called for each object at * initialization of the pool. The user can set some meta data in * objects if needed. This parameter can be NULL if not needed. * The obj_init() function takes the mempool pointer, the init_arg, * the object pointer and the object number as parameters. * @param obj_init_arg * An opaque pointer to data that can be used as an argument for * each call to the object constructor function. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * The *flags* arguments is an OR of following flags: * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread * between channels in RAM: the pool allocator will add padding * between objects depending on the hardware configuration. See * Memory alignment constraints for details. If this flag is set, * the allocator will just align them to a cache line. * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are * cache-aligned. This flag removes this constraint, and no * padding will be present between objects. This flag implies * MEMPOOL_F_NO_SPREAD. * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior * when using rte_mempool_put() or rte_mempool_put_bulk() is * "single-producer". Otherwise, it is "multi-producers". * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior * when using rte_mempool_get() or rte_mempool_get_bulk() is * "single-consumer". Otherwise, it is "multi-consumers". * - MEMPOOL_F_NO_PHYS_CONTIG: If set, allocated objects won't * necessarilly be contiguous in physical memory. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - EINVAL - cache size provided is too large * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_cb_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags); /** * Create a new mempool named *name* in memory. * * The pool contains n elements of elt_size. Its size is set to n. * This function uses ``memzone_reserve()`` to allocate the mempool header * (and the objects if vaddr is NULL). * Depending on the input parameters, mempool elements can be either allocated * together with the mempool header, or an externally provided memory buffer * could be used to store mempool objects. In later case, that external * memory buffer can consist of set of disjoint physical pages. * * @param name * The name of the mempool. * @param n * The number of elements in the mempool. The optimum size (in terms of * memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * Size of the cache. See rte_mempool_create() for details. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param mp_init * A function pointer that is called for initialization of the pool, * before object initialization. The user can initialize the private * data in this function if needed. This parameter can be NULL if * not needed. * @param mp_init_arg * An opaque pointer to data that can be used in the mempool * constructor function. * @param obj_init * A function called for each object at initialization of the pool. * See rte_mempool_create() for details. * @param obj_init_arg * An opaque pointer passed to the object constructor function. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * Flags controlling the behavior of the mempool. See * rte_mempool_create() for details. * @param vaddr * Virtual address of the externally allocated memory buffer. * Will be used to store mempool objects. * @param paddr * Array of physical addresses of the pages that comprises given memory * buffer. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. See rte_mempool_create() for details. */ struct rte_mempool * rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_cb_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags, void *vaddr, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift); /** * Create an empty mempool * * The mempool is allocated and initialized, but it is not populated: no * memory is allocated for the mempool elements. The user has to call * rte_mempool_populate_*() to add memory chunks to the pool. Once * populated, the user may also want to initialize each object with * rte_mempool_obj_iter(). * * @param name * The name of the mempool. * @param n * The maximum number of elements that can be added in the mempool. * The optimum size (in terms of memory usage) for a mempool is when n * is a power of two minus one: n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * Size of the cache. See rte_mempool_create() for details. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * Flags controlling the behavior of the mempool. See * rte_mempool_create() for details. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. See rte_mempool_create() for details. */ struct rte_mempool * rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, int socket_id, unsigned flags); /** * Free a mempool * * Unlink the mempool from global list, free the memory chunks, and all * memory referenced by the mempool. The objects must not be used by * other cores as they will be freed. * * @param mp * A pointer to the mempool structure. */ void rte_mempool_free(struct rte_mempool *mp); /** * Add physically contiguous memory for objects in the pool at init * * Add a virtually and physically contiguous memory chunk in the pool * where objects can be instanciated. * * If the given physical address is unknown (paddr = RTE_BAD_PHYS_ADDR), * the chunk doesn't need to be physically contiguous (only virtually), * and allocated objects may span two pages. * * @param mp * A pointer to the mempool structure. * @param vaddr * The virtual address of memory that should be used to store objects. * @param paddr * The physical address * @param len * The length of memory in bytes. * @param free_cb * The callback used to free this chunk when destroying the mempool. * @param opaque * An opaque argument passed to free_cb. * @return * The number of objects added on success. * On error, the chunk is not added in the memory list of the * mempool and a negative errno is returned. */ int rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr, phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque); /** * Add physical memory for objects in the pool at init * * Add a virtually contiguous memory chunk in the pool where objects can * be instanciated. The physical addresses corresponding to the virtual * area are described in paddr[], pg_num, pg_shift. * * @param mp * A pointer to the mempool structure. * @param vaddr * The virtual address of memory that should be used to store objects. * @param paddr * An array of physical addresses of each page composing the virtual * area. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @param free_cb * The callback used to free this chunk when destroying the mempool. * @param opaque * An opaque argument passed to free_cb. * @return * The number of objects added on success. * On error, the chunks are not added in the memory list of the * mempool and a negative errno is returned. */ int rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque); /** * Add virtually contiguous memory for objects in the pool at init * * Add a virtually contiguous memory chunk in the pool where objects can * be instanciated. * * @param mp * A pointer to the mempool structure. * @param addr * The virtual address of memory that should be used to store objects. * Must be page-aligned. * @param len * The length of memory in bytes. Must be page-aligned. * @param pg_sz * The size of memory pages in this virtual area. * @param free_cb * The callback used to free this chunk when destroying the mempool. * @param opaque * An opaque argument passed to free_cb. * @return * The number of objects added on success. * On error, the chunk is not added in the memory list of the * mempool and a negative errno is returned. */ int rte_mempool_populate_virt(struct rte_mempool *mp, char *addr, size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb, void *opaque); /** * Add memory for objects in the pool at init * * This is the default function used by rte_mempool_create() to populate * the mempool. It adds memory allocated using rte_memzone_reserve(). * * @param mp * A pointer to the mempool structure. * @return * The number of objects added on success. * On error, the chunk is not added in the memory list of the * mempool and a negative errno is returned. */ int rte_mempool_populate_default(struct rte_mempool *mp); /** * Add memory from anonymous mapping for objects in the pool at init * * This function mmap an anonymous memory zone that is locked in * memory to store the objects of the mempool. * * @param mp * A pointer to the mempool structure. * @return * The number of objects added on success. * On error, the chunk is not added in the memory list of the * mempool and a negative errno is returned. */ int rte_mempool_populate_anon(struct rte_mempool *mp); /** * Call a function for each mempool element * * Iterate across all objects attached to a rte_mempool and call the * callback function on it. * * @param mp * A pointer to an initialized mempool. * @param obj_cb * A function pointer that is called for each object. * @param obj_cb_arg * An opaque pointer passed to the callback function. * @return * Number of objects iterated. */ uint32_t rte_mempool_obj_iter(struct rte_mempool *mp, rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg); /** * Call a function for each mempool memory chunk * * Iterate across all memory chunks attached to a rte_mempool and call * the callback function on it. * * @param mp * A pointer to an initialized mempool. * @param mem_cb * A function pointer that is called for each memory chunk. * @param mem_cb_arg * An opaque pointer passed to the callback function. * @return * Number of memory chunks iterated. */ uint32_t rte_mempool_mem_iter(struct rte_mempool *mp, rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg); /** * Dump the status of the mempool to a file. * * @param f * A pointer to a file for output * @param mp * A pointer to the mempool structure. */ void rte_mempool_dump(FILE *f, struct rte_mempool *mp); /** * Create a user-owned mempool cache. * * This can be used by non-EAL threads to enable caching when they * interact with a mempool. * * @param size * The size of the mempool cache. See rte_mempool_create()'s cache_size * parameter description for more information. The same limits and * considerations apply here too. * @param socket_id * The socket identifier in the case of NUMA. The value can be * SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone. */ struct rte_mempool_cache * rte_mempool_cache_create(uint32_t size, int socket_id); /** * Free a user-owned mempool cache. * * @param cache * A pointer to the mempool cache. */ void rte_mempool_cache_free(struct rte_mempool_cache *cache); /** * Flush a user-owned mempool cache to the specified mempool. * * @param cache * A pointer to the mempool cache. * @param mp * A pointer to the mempool. */ static inline void __attribute__((always_inline)) rte_mempool_cache_flush(struct rte_mempool_cache *cache, struct rte_mempool *mp) { rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len); cache->len = 0; } /** * Get a pointer to the per-lcore default mempool cache. * * @param mp * A pointer to the mempool structure. * @param lcore_id * The logical core id. * @return * A pointer to the mempool cache or NULL if disabled or non-EAL thread. */ static inline struct rte_mempool_cache *__attribute__((always_inline)) rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id) { if (mp->cache_size == 0) return NULL; if (lcore_id >= RTE_MAX_LCORE) return NULL; return &mp->local_cache[lcore_id]; } /** * @internal Put several objects back in the mempool; used internally. * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to store back in the mempool, must be strictly * positive. * @param cache * A pointer to a mempool cache structure. May be NULL if not needed. * @param flags * The flags used for the mempool creation. * Single-producer (MEMPOOL_F_SP_PUT flag) or multi-producers. */ static inline void __attribute__((always_inline)) __mempool_generic_put(struct rte_mempool *mp, void * const *obj_table, unsigned n, struct rte_mempool_cache *cache) { void **cache_objs; /* increment stat now, adding in mempool always success */ __MEMPOOL_STAT_ADD(mp, put, n); /* No cache provided or if put would overflow mem allocated for cache */ if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE)) goto ring_enqueue; cache_objs = &cache->objs[cache->len]; /* * The cache follows the following algorithm * 1. Add the objects to the cache * 2. Anything greater than the cache min value (if it crosses the * cache flush threshold) is flushed to the ring. */ /* Add elements back into the cache */ rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n); cache->len += n; if (cache->len >= cache->flushthresh) { rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size], cache->len - cache->size); cache->len = cache->size; } return; ring_enqueue: /* push remaining objects in ring */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0) rte_panic("cannot put objects in mempool\n"); #else rte_mempool_ops_enqueue_bulk(mp, obj_table, n); #endif } /** * Put several objects back in the mempool. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from the obj_table. * @param cache * A pointer to a mempool cache structure. May be NULL if not needed. * @param flags * The flags used for the mempool creation. * Single-producer (MEMPOOL_F_SP_PUT flag) or multi-producers. */ static inline void __attribute__((always_inline)) rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table, unsigned n, struct rte_mempool_cache *cache, __rte_unused int flags) { __mempool_check_cookies(mp, obj_table, n, 0); __mempool_generic_put(mp, obj_table, n, cache); } /** * @deprecated * Put several objects back in the mempool (multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from the obj_table. */ __rte_deprecated static inline void __attribute__((always_inline)) rte_mempool_mp_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); rte_mempool_generic_put(mp, obj_table, n, cache, 0); } /** * @deprecated * Put several objects back in the mempool (NOT multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from obj_table. */ __rte_deprecated static inline void __attribute__((always_inline)) rte_mempool_sp_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { rte_mempool_generic_put(mp, obj_table, n, NULL, MEMPOOL_F_SP_PUT); } /** * Put several objects back in the mempool. * * This function calls the multi-producer or the single-producer * version depending on the default behavior that was specified at * mempool creation time (see flags). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from obj_table. */ static inline void __attribute__((always_inline)) rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); rte_mempool_generic_put(mp, obj_table, n, cache, mp->flags); } /** * @deprecated * Put one object in the mempool (multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ __rte_deprecated static inline void __attribute__((always_inline)) rte_mempool_mp_put(struct rte_mempool *mp, void *obj) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); rte_mempool_generic_put(mp, &obj, 1, cache, 0); } /** * @deprecated * Put one object back in the mempool (NOT multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ __rte_deprecated static inline void __attribute__((always_inline)) rte_mempool_sp_put(struct rte_mempool *mp, void *obj) { rte_mempool_generic_put(mp, &obj, 1, NULL, MEMPOOL_F_SP_PUT); } /** * Put one object back in the mempool. * * This function calls the multi-producer or the single-producer * version depending on the default behavior that was specified at * mempool creation time (see flags). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ static inline void __attribute__((always_inline)) rte_mempool_put(struct rte_mempool *mp, void *obj) { rte_mempool_put_bulk(mp, &obj, 1); } /** * @internal Get several objects from the mempool; used internally. * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to get, must be strictly positive. * @param cache * A pointer to a mempool cache structure. May be NULL if not needed. * @param flags * The flags used for the mempool creation. * Single-consumer (MEMPOOL_F_SC_GET flag) or multi-consumers. * @return * - >=0: Success; number of objects supplied. * - <0: Error; code of ring dequeue function. */ static inline int __attribute__((always_inline)) __mempool_generic_get(struct rte_mempool *mp, void **obj_table, unsigned n, struct rte_mempool_cache *cache) { int ret; uint32_t index, len; void **cache_objs; /* No cache provided or cannot be satisfied from cache */ if (unlikely(cache == NULL || n >= cache->size)) goto ring_dequeue; cache_objs = cache->objs; /* Can this be satisfied from the cache? */ if (cache->len < n) { /* No. Backfill the cache first, and then fill from it */ uint32_t req = n + (cache->size - cache->len); /* How many do we require i.e. number to fill the cache + the request */ ret = rte_mempool_ops_dequeue_bulk(mp, &cache->objs[cache->len], req); if (unlikely(ret < 0)) { /* * In the offchance that we are buffer constrained, * where we are not able to allocate cache + n, go to * the ring directly. If that fails, we are truly out of * buffers. */ goto ring_dequeue; } cache->len += req; } /* Now fill in the response ... */ for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++) *obj_table = cache_objs[len]; cache->len -= n; __MEMPOOL_STAT_ADD(mp, get_success, n); return 0; ring_dequeue: /* get remaining objects from ring */ ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n); if (ret < 0) __MEMPOOL_STAT_ADD(mp, get_fail, n); else __MEMPOOL_STAT_ADD(mp, get_success, n); return ret; } /** * Get several objects from the mempool. * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from mempool to obj_table. * @param cache * A pointer to a mempool cache structure. May be NULL if not needed. * @param flags * The flags used for the mempool creation. * Single-consumer (MEMPOOL_F_SC_GET flag) or multi-consumers. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table, unsigned n, struct rte_mempool_cache *cache, __rte_unused int flags) { int ret; ret = __mempool_generic_get(mp, obj_table, n, cache); if (ret == 0) __mempool_check_cookies(mp, obj_table, n, 1); return ret; } /** * @deprecated * Get several objects from the mempool (multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from mempool to obj_table. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ __rte_deprecated static inline int __attribute__((always_inline)) rte_mempool_mc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); return rte_mempool_generic_get(mp, obj_table, n, cache, 0); } /** * @deprecated * Get several objects from the mempool (NOT multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from the mempool to obj_table. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is * retrieved. */ __rte_deprecated static inline int __attribute__((always_inline)) rte_mempool_sc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { return rte_mempool_generic_get(mp, obj_table, n, NULL, MEMPOOL_F_SC_GET); } /** * Get several objects from the mempool. * * This function calls the multi-consumers or the single-consumer * version, depending on the default behaviour that was specified at * mempool creation time (see flags). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from the mempool to obj_table. * @return * - 0: Success; objects taken * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); return rte_mempool_generic_get(mp, obj_table, n, cache, mp->flags); } /** * @deprecated * Get one object from the mempool (multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ __rte_deprecated static inline int __attribute__((always_inline)) rte_mempool_mc_get(struct rte_mempool *mp, void **obj_p) { struct rte_mempool_cache *cache; cache = rte_mempool_default_cache(mp, rte_lcore_id()); return rte_mempool_generic_get(mp, obj_p, 1, cache, 0); } /** * @deprecated * Get one object from the mempool (NOT multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ __rte_deprecated static inline int __attribute__((always_inline)) rte_mempool_sc_get(struct rte_mempool *mp, void **obj_p) { return rte_mempool_generic_get(mp, obj_p, 1, NULL, MEMPOOL_F_SC_GET); } /** * Get one object from the mempool. * * This function calls the multi-consumers or the single-consumer * version, depending on the default behavior that was specified at * mempool creation (see flags). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_get(struct rte_mempool *mp, void **obj_p) { return rte_mempool_get_bulk(mp, obj_p, 1); } /** * Return the number of entries in the mempool. * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. User-owned mempool caches are not accounted for. * * @param mp * A pointer to the mempool structure. * @return * The number of entries in the mempool. */ unsigned int rte_mempool_avail_count(const struct rte_mempool *mp); /** * @deprecated * Return the number of entries in the mempool. * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. * * @param mp * A pointer to the mempool structure. * @return * The number of entries in the mempool. */ __rte_deprecated unsigned rte_mempool_count(const struct rte_mempool *mp); /** * Return the number of elements which have been allocated from the mempool * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. * * @param mp * A pointer to the mempool structure. * @return * The number of free entries in the mempool. */ unsigned int rte_mempool_in_use_count(const struct rte_mempool *mp); /** * @deprecated * Return the number of free entries in the mempool ring. * i.e. how many entries can be freed back to the mempool. * * NOTE: This corresponds to the number of elements *allocated* from the * memory pool, not the number of elements in the pool itself. To count * the number elements currently available in the pool, use "rte_mempool_count" * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. User-owned mempool caches are not accounted for. * * @param mp * A pointer to the mempool structure. * @return * The number of free entries in the mempool. */ __rte_deprecated static inline unsigned rte_mempool_free_count(const struct rte_mempool *mp) { return rte_mempool_in_use_count(mp); } /** * Test if the mempool is full. * * When cache is enabled, this function has to browse the length of all * lcores, so it should not be used in a data path, but only for debug * purposes. User-owned mempool caches are not accounted for. * * @param mp * A pointer to the mempool structure. * @return * - 1: The mempool is full. * - 0: The mempool is not full. */ static inline int rte_mempool_full(const struct rte_mempool *mp) { return !!(rte_mempool_avail_count(mp) == mp->size); } /** * Test if the mempool is empty. * * When cache is enabled, this function has to browse the length of all * lcores, so it should not be used in a data path, but only for debug * purposes. User-owned mempool caches are not accounted for. * * @param mp * A pointer to the mempool structure. * @return * - 1: The mempool is empty. * - 0: The mempool is not empty. */ static inline int rte_mempool_empty(const struct rte_mempool *mp) { return !!(rte_mempool_avail_count(mp) == 0); } /** * Return the physical address of elt, which is an element of the pool mp. * * @param mp * A pointer to the mempool structure. * @param elt * A pointer (virtual address) to the element of the pool. * @return * The physical address of the elt element. * If the mempool was created with MEMPOOL_F_NO_PHYS_CONTIG, the * returned value is RTE_BAD_PHYS_ADDR. */ static inline phys_addr_t rte_mempool_virt2phy(__rte_unused const struct rte_mempool *mp, const void *elt) { const struct rte_mempool_objhdr *hdr; hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt, sizeof(*hdr)); return hdr->physaddr; } /** * Check the consistency of mempool objects. * * Verify the coherency of fields in the mempool structure. Also check * that the cookies of mempool objects (even the ones that are not * present in pool) have a correct value. If not, a panic will occur. * * @param mp * A pointer to the mempool structure. */ void rte_mempool_audit(struct rte_mempool *mp); /** * Return a pointer to the private data in an mempool structure. * * @param mp * A pointer to the mempool structure. * @return * A pointer to the private data. */ static inline void *rte_mempool_get_priv(struct rte_mempool *mp) { return (char *)mp + MEMPOOL_HEADER_SIZE(mp, mp->cache_size); } /** * Dump the status of all mempools on the console * * @param f * A pointer to a file for output */ void rte_mempool_list_dump(FILE *f); /** * Search a mempool from its name * * @param name * The name of the mempool. * @return * The pointer to the mempool matching the name, or NULL if not found. * NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - ENOENT - required entry not available to return. * */ struct rte_mempool *rte_mempool_lookup(const char *name); /** * Get the header, trailer and total size of a mempool element. * * Given a desired size of the mempool element and mempool flags, * calculates header, trailer, body and total sizes of the mempool object. * * @param elt_size * The size of each element, without header and trailer. * @param flags * The flags used for the mempool creation. * Consult rte_mempool_create() for more information about possible values. * The size of each element. * @param sz * The calculated detailed size the mempool object. May be NULL. * @return * Total size of the mempool object. */ uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags, struct rte_mempool_objsz *sz); /** * Get the size of memory required to store mempool elements. * * Calculate the maximum amount of memory required to store given number * of objects. Assume that the memory buffer will be aligned at page * boundary. * * Note that if object size is bigger then page size, then it assumes * that pages are grouped in subsets of physically continuous pages big * enough to store at least one object. * * @param elt_num * Number of elements. * @param total_elt_sz * The size of each element, including header and trailer, as returned * by rte_mempool_calc_obj_size(). * @param pg_shift * LOG2 of the physical pages size. If set to 0, ignore page boundaries. * @return * Required memory size aligned at page boundary. */ size_t rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift); /** * Get the size of memory required to store mempool elements. * * Calculate how much memory would be actually required with the given * memory footprint to store required number of objects. * * @param vaddr * Virtual address of the externally allocated memory buffer. * Will be used to store mempool objects. * @param elt_num * Number of elements. * @param total_elt_sz * The size of each element, including header and trailer, as returned * by rte_mempool_calc_obj_size(). * @param paddr * Array of physical addresses of the pages that comprises given memory * buffer. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @return * On success, the number of bytes needed to store given number of * objects, aligned to the given page size. If the provided memory * buffer is too small, return a negative value whose absolute value * is the actual number of elements that can be stored in that buffer. */ ssize_t rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t total_elt_sz, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift); /** * Walk list of all memory pools * * @param func * Iterator function * @param arg * Argument passed to iterator */ void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg), void *arg); #ifdef __cplusplus } #endif #endif /* _RTE_MEMPOOL_H_ */