/*- * BSD LICENSE * * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _FM10K_H_ #define _FM10K_H_ #include #include #include #include #include #include "fm10k_logs.h" #include "base/fm10k_type.h" /* descriptor ring base addresses must be aligned to the following */ #define FM10K_ALIGN_RX_DESC 128 #define FM10K_ALIGN_TX_DESC 128 /* The maximum packet size that FM10K supports */ #define FM10K_MAX_PKT_SIZE (15 * 1024) /* Minimum size of RX buffer FM10K supported */ #define FM10K_MIN_RX_BUF_SIZE 256 /* The maximum of SRIOV VFs per port supported */ #define FM10K_MAX_VF_NUM 64 /* number of descriptors must be a multiple of the following */ #define FM10K_MULT_RX_DESC FM10K_REQ_RX_DESCRIPTOR_MULTIPLE #define FM10K_MULT_TX_DESC FM10K_REQ_TX_DESCRIPTOR_MULTIPLE /* maximum size of descriptor rings */ #define FM10K_MAX_RX_RING_SZ (512 * 1024) #define FM10K_MAX_TX_RING_SZ (512 * 1024) /* minimum and maximum number of descriptors in a ring */ #define FM10K_MIN_RX_DESC 32 #define FM10K_MIN_TX_DESC 32 #define FM10K_MAX_RX_DESC (FM10K_MAX_RX_RING_SZ / sizeof(union fm10k_rx_desc)) #define FM10K_MAX_TX_DESC (FM10K_MAX_TX_RING_SZ / sizeof(struct fm10k_tx_desc)) /* * byte aligment for HW RX data buffer * Datasheet requires RX buffer addresses shall either be 512-byte aligned or * be 8-byte aligned but without crossing host memory pages (4KB alignment * boundaries). Satisfy first option. */ #define FM10K_RX_DATABUF_ALIGN 512 /* * threshold default, min, max, and divisor constraints * the configured values must satisfy the following: * MIN <= value <= MAX * DIV % value == 0 */ #define FM10K_RX_FREE_THRESH_DEFAULT(rxq) 32 #define FM10K_RX_FREE_THRESH_MIN(rxq) 1 #define FM10K_RX_FREE_THRESH_MAX(rxq) ((rxq)->nb_desc - 1) #define FM10K_RX_FREE_THRESH_DIV(rxq) ((rxq)->nb_desc) #define FM10K_TX_FREE_THRESH_DEFAULT(txq) 32 #define FM10K_TX_FREE_THRESH_MIN(txq) 1 #define FM10K_TX_FREE_THRESH_MAX(txq) ((txq)->nb_desc - 3) #define FM10K_TX_FREE_THRESH_DIV(txq) 0 #define FM10K_DEFAULT_RX_PTHRESH 8 #define FM10K_DEFAULT_RX_HTHRESH 8 #define FM10K_DEFAULT_RX_WTHRESH 0 #define FM10K_DEFAULT_TX_PTHRESH 32 #define FM10K_DEFAULT_TX_HTHRESH 0 #define FM10K_DEFAULT_TX_WTHRESH 0 #define FM10K_TX_RS_THRESH_DEFAULT(txq) 32 #define FM10K_TX_RS_THRESH_MIN(txq) 1 #define FM10K_TX_RS_THRESH_MAX(txq) \ RTE_MIN(((txq)->nb_desc - 2), (txq)->free_thresh) #define FM10K_TX_RS_THRESH_DIV(txq) ((txq)->nb_desc) #define FM10K_VLAN_TAG_SIZE 4 /* Maximum number of MAC addresses per PF/VF */ #define FM10K_MAX_MACADDR_NUM 64 #define FM10K_UINT32_BIT_SIZE (CHAR_BIT * sizeof(uint32_t)) #define FM10K_VFTA_SIZE (4096 / FM10K_UINT32_BIT_SIZE) /* vlan_id is a 12 bit number. * The VFTA array is actually a 4096 bit array, 128 of 32bit elements. * 2^5 = 32. The val of lower 5 bits specifies the bit in the 32bit element. * The higher 7 bit val specifies VFTA array index. */ #define FM10K_VFTA_BIT(vlan_id) (1 << ((vlan_id) & 0x1F)) #define FM10K_VFTA_IDX(vlan_id) ((vlan_id) >> 5) #define RTE_FM10K_RXQ_REARM_THRESH 32 #define RTE_FM10K_VPMD_TX_BURST 32 #define RTE_FM10K_MAX_RX_BURST RTE_FM10K_RXQ_REARM_THRESH #define RTE_FM10K_TX_MAX_FREE_BUF_SZ 64 #define RTE_FM10K_DESCS_PER_LOOP 4 #define FM10K_SIMPLE_TX_FLAG ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \ ETH_TXQ_FLAGS_NOOFFLOADS) struct fm10k_macvlan_filter_info { uint16_t vlan_num; /* Total VLAN number */ uint16_t mac_num; /* Total mac number */ uint16_t nb_queue_pools; /* Active queue pools number */ /* VMDQ ID for each MAC address */ uint8_t mac_vmdq_id[FM10K_MAX_MACADDR_NUM]; uint32_t vfta[FM10K_VFTA_SIZE]; /* VLAN bitmap */ }; struct fm10k_dev_info { volatile uint32_t enable; volatile uint32_t glort; /* Protect the mailbox to avoid race condition */ rte_spinlock_t mbx_lock; struct fm10k_macvlan_filter_info macvlan; /* Flag to indicate if RX vector conditions satisfied */ bool rx_vec_allowed; }; /* * Structure to store private data for each driver instance. */ struct fm10k_adapter { struct fm10k_hw hw; struct fm10k_hw_stats stats; struct fm10k_dev_info info; }; #define FM10K_DEV_PRIVATE_TO_HW(adapter) \ (&((struct fm10k_adapter *)adapter)->hw) #define FM10K_DEV_PRIVATE_TO_STATS(adapter) \ (&((struct fm10k_adapter *)adapter)->stats) #define FM10K_DEV_PRIVATE_TO_INFO(adapter) \ (&((struct fm10k_adapter *)adapter)->info) #define FM10K_DEV_PRIVATE_TO_MBXLOCK(adapter) \ (&(((struct fm10k_adapter *)adapter)->info.mbx_lock)) #define FM10K_DEV_PRIVATE_TO_MACVLAN(adapter) \ (&(((struct fm10k_adapter *)adapter)->info.macvlan)) struct fm10k_rx_queue { struct rte_mempool *mp; struct rte_mbuf **sw_ring; volatile union fm10k_rx_desc *hw_ring; struct rte_mbuf *pkt_first_seg; /* First segment of current packet. */ struct rte_mbuf *pkt_last_seg; /* Last segment of current packet. */ uint64_t hw_ring_phys_addr; uint64_t mbuf_initializer; /* value to init mbufs */ /* need to alloc dummy mbuf, for wraparound when scanning hw ring */ struct rte_mbuf fake_mbuf; uint16_t next_dd; uint16_t next_alloc; uint16_t next_trigger; uint16_t alloc_thresh; volatile uint32_t *tail_ptr; uint16_t nb_desc; /* Number of faked desc added at the tail for Vector RX function */ uint16_t nb_fake_desc; uint16_t queue_id; /* Below 2 fields only valid in case vPMD is applied. */ uint16_t rxrearm_nb; /* number of remaining to be re-armed */ uint16_t rxrearm_start; /* the idx we start the re-arming from */ uint16_t rx_using_sse; /* indicates that vector RX is in use */ uint8_t port_id; uint8_t drop_en; uint8_t rx_deferred_start; /* don't start this queue in dev start. */ }; /* * a FIFO is used to track which descriptors have their RS bit set for Tx * queues which are configured to allow multiple descriptors per packet */ struct fifo { uint16_t *list; uint16_t *head; uint16_t *tail; uint16_t *endp; }; struct fm10k_txq_ops; struct fm10k_tx_queue { struct rte_mbuf **sw_ring; struct fm10k_tx_desc *hw_ring; uint64_t hw_ring_phys_addr; struct fifo rs_tracker; const struct fm10k_txq_ops *ops; /* txq ops */ uint16_t last_free; uint16_t next_free; uint16_t nb_free; uint16_t nb_used; uint16_t free_thresh; uint16_t rs_thresh; /* Below 2 fields only valid in case vPMD is applied. */ uint16_t next_rs; /* Next pos to set RS flag */ uint16_t next_dd; /* Next pos to check DD flag */ volatile uint32_t *tail_ptr; uint32_t txq_flags; /* Holds flags for this TXq */ uint16_t nb_desc; uint8_t port_id; uint8_t tx_deferred_start; /** don't start this queue in dev start. */ uint16_t queue_id; }; struct fm10k_txq_ops { void (*reset)(struct fm10k_tx_queue *txq); }; #define MBUF_DMA_ADDR(mb) \ ((uint64_t) ((mb)->buf_physaddr + (mb)->data_off)) /* enforce 512B alignment on default Rx DMA addresses */ #define MBUF_DMA_ADDR_DEFAULT(mb) \ ((uint64_t) RTE_ALIGN(((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM),\ FM10K_RX_DATABUF_ALIGN)) static inline void fifo_reset(struct fifo *fifo, uint32_t len) { fifo->head = fifo->tail = fifo->list; fifo->endp = fifo->list + len; } static inline void fifo_insert(struct fifo *fifo, uint16_t val) { *fifo->head = val; if (++fifo->head == fifo->endp) fifo->head = fifo->list; } /* do not worry about list being empty since we only check it once we know * we have used enough descriptors to set the RS bit at least once */ static inline uint16_t fifo_peek(struct fifo *fifo) { return *fifo->tail; } static inline uint16_t fifo_remove(struct fifo *fifo) { uint16_t val; val = *fifo->tail; if (++fifo->tail == fifo->endp) fifo->tail = fifo->list; return val; } static inline void fm10k_pktmbuf_reset(struct rte_mbuf *mb, uint8_t in_port) { rte_mbuf_refcnt_set(mb, 1); mb->next = NULL; mb->nb_segs = 1; /* enforce 512B alignment on default Rx virtual addresses */ mb->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb->buf_addr + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN) - (char *)mb->buf_addr); mb->port = in_port; } /* * Verify Rx packet buffer alignment is valid. * * Hardware requires specific alignment for Rx packet buffers. At * least one of the following two conditions must be satisfied. * 1. Address is 512B aligned * 2. Address is 8B aligned and buffer does not cross 4K boundary. * * Return 1 if buffer alignment satisfies at least one condition, * otherwise return 0. * * Note: Alignment is checked by the driver when the Rx queue is reset. It * is assumed that if an entire descriptor ring can be filled with * buffers containing valid alignment, then all buffers in that mempool * have valid address alignment. It is the responsibility of the user * to ensure all buffers have valid alignment, as it is the user who * creates the mempool. * Note: It is assumed the buffer needs only to store a maximum size Ethernet * frame. */ static inline int fm10k_addr_alignment_valid(struct rte_mbuf *mb) { uint64_t addr = MBUF_DMA_ADDR_DEFAULT(mb); uint64_t boundary1, boundary2; /* 512B aligned? */ if (RTE_ALIGN(addr, FM10K_RX_DATABUF_ALIGN) == addr) return 1; /* 8B aligned, and max Ethernet frame would not cross a 4KB boundary? */ if (RTE_ALIGN(addr, 8) == addr) { boundary1 = RTE_ALIGN_FLOOR(addr, 4096); boundary2 = RTE_ALIGN_FLOOR(addr + ETHER_MAX_VLAN_FRAME_LEN, 4096); if (boundary1 == boundary2) return 1; } PMD_INIT_LOG(ERR, "Error: Invalid buffer alignment!"); return 0; } /* Rx and Tx prototypes */ uint16_t fm10k_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t fm10k_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t fm10k_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); int fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq); int fm10k_rx_vec_condition_check(struct rte_eth_dev *); void fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq); uint16_t fm10k_recv_pkts_vec(void *, struct rte_mbuf **, uint16_t); uint16_t fm10k_recv_scattered_pkts_vec(void *, struct rte_mbuf **, uint16_t); uint16_t fm10k_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); void fm10k_txq_vec_setup(struct fm10k_tx_queue *txq); int fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq); #endif