/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "acl_vect.h" #include "acl.h" #define QRANGE_MIN ((uint8_t)INT8_MIN) #define RTE_ACL_VERIFY(exp) do { \ if (!(exp)) \ rte_panic("line %d\tassert \"" #exp "\" failed\n", __LINE__); \ } while (0) struct acl_node_counters { int match; int match_used; int single; int quad; int quad_vectors; int dfa; int smallest_match; }; struct rte_acl_indices { int dfa_index; int quad_index; int single_index; int match_index; }; static void acl_gen_log_stats(const struct rte_acl_ctx *ctx, const struct acl_node_counters *counts) { RTE_LOG(DEBUG, ACL, "Gen phase for ACL \"%s\":\n" "runtime memory footprint on socket %d:\n" "single nodes/bytes used: %d/%zu\n" "quad nodes/bytes used: %d/%zu\n" "DFA nodes/bytes used: %d/%zu\n" "match nodes/bytes used: %d/%zu\n" "total: %zu bytes\n", ctx->name, ctx->socket_id, counts->single, counts->single * sizeof(uint64_t), counts->quad, counts->quad_vectors * sizeof(uint64_t), counts->dfa, counts->dfa * RTE_ACL_DFA_SIZE * sizeof(uint64_t), counts->match, counts->match * sizeof(struct rte_acl_match_results), ctx->mem_sz); } /* * Counts the number of groups of sequential bits that are * either 0 or 1, as specified by the zero_one parameter. This is used to * calculate the number of ranges in a node to see if it fits in a quad range * node. */ static int acl_count_sequential_groups(struct rte_acl_bitset *bits, int zero_one) { int n, ranges, last_bit; ranges = 0; last_bit = zero_one ^ 1; for (n = QRANGE_MIN; n < UINT8_MAX + 1; n++) { if (bits->bits[n / (sizeof(bits_t) * 8)] & (1 << (n % (sizeof(bits_t) * 8)))) { if (zero_one == 1 && last_bit != 1) ranges++; last_bit = 1; } else { if (zero_one == 0 && last_bit != 0) ranges++; last_bit = 0; } } for (n = 0; n < QRANGE_MIN; n++) { if (bits->bits[n / (sizeof(bits_t) * 8)] & (1 << (n % (sizeof(bits_t) * 8)))) { if (zero_one == 1 && last_bit != 1) ranges++; last_bit = 1; } else { if (zero_one == 0 && last_bit != 0) ranges++; last_bit = 0; } } return ranges; } /* * Count number of ranges spanned by the node's pointers */ static int acl_count_fanout(struct rte_acl_node *node) { uint32_t n; int ranges; if (node->fanout != 0) return node->fanout; ranges = acl_count_sequential_groups(&node->values, 0); for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) ranges += acl_count_sequential_groups( &node->ptrs[n].values, 1); } node->fanout = ranges; return node->fanout; } /* * Determine the type of nodes and count each type */ static int acl_count_trie_types(struct acl_node_counters *counts, struct rte_acl_node *node, int match, int force_dfa) { uint32_t n; int num_ptrs; /* skip if this node has been counted */ if (node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED) return match; if (node->match_flag != 0 || node->num_ptrs == 0) { counts->match++; if (node->match_flag == -1) node->match_flag = match++; node->node_type = RTE_ACL_NODE_MATCH; if (counts->smallest_match > node->match_flag) counts->smallest_match = node->match_flag; return match; } num_ptrs = acl_count_fanout(node); /* Force type to dfa */ if (force_dfa) num_ptrs = RTE_ACL_DFA_SIZE; /* determine node type based on number of ranges */ if (num_ptrs == 1) { counts->single++; node->node_type = RTE_ACL_NODE_SINGLE; } else if (num_ptrs <= RTE_ACL_QUAD_MAX) { counts->quad++; counts->quad_vectors += node->fanout; node->node_type = RTE_ACL_NODE_QRANGE; } else { counts->dfa++; node->node_type = RTE_ACL_NODE_DFA; } /* * recursively count the types of all children */ for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) match = acl_count_trie_types(counts, node->ptrs[n].ptr, match, 0); } return match; } static void acl_add_ptrs(struct rte_acl_node *node, uint64_t *node_array, uint64_t no_match, int resolved) { uint32_t n, x; int m, ranges, last_bit; struct rte_acl_node *child; struct rte_acl_bitset *bits; uint64_t *node_a, index, dfa[RTE_ACL_DFA_SIZE]; ranges = 0; last_bit = 0; for (n = 0; n < RTE_DIM(dfa); n++) dfa[n] = no_match; for (x = 0; x < node->num_ptrs; x++) { child = node->ptrs[x].ptr; if (child == NULL) continue; bits = &node->ptrs[x].values; for (n = 0; n < RTE_DIM(dfa); n++) { if (bits->bits[n / (sizeof(bits_t) * CHAR_BIT)] & (1 << (n % (sizeof(bits_t) * CHAR_BIT)))) { dfa[n] = resolved ? child->node_index : x; ranges += (last_bit == 0); last_bit = 1; } else { last_bit = 0; } } } /* * Rather than going from 0 to 256, the range count and * the layout are from 80-ff then 0-7f due to signed compare * for SSE (cmpgt). */ if (node->node_type == RTE_ACL_NODE_QRANGE) { m = 0; node_a = node_array; index = dfa[QRANGE_MIN]; *node_a++ = index; for (x = QRANGE_MIN + 1; x < UINT8_MAX + 1; x++) { if (dfa[x] != index) { index = dfa[x]; *node_a++ = index; node->transitions[m++] = (uint8_t)(x - 1); } } for (x = 0; x < INT8_MAX + 1; x++) { if (dfa[x] != index) { index = dfa[x]; *node_a++ = index; node->transitions[m++] = (uint8_t)(x - 1); } } /* fill unused locations with max value - nothing is greater */ for (; m < RTE_ACL_QUAD_SIZE; m++) node->transitions[m] = INT8_MAX; RTE_ACL_VERIFY(m <= RTE_ACL_QUAD_SIZE); } else if (node->node_type == RTE_ACL_NODE_DFA && resolved) { for (n = 0; n < RTE_DIM(dfa); n++) node_array[n] = dfa[n]; } } /* * Routine that allocates space for this node and recursively calls * to allocate space for each child. Once all the children are allocated, * then resolve all transitions for this node. */ static void acl_gen_node(struct rte_acl_node *node, uint64_t *node_array, uint64_t no_match, struct rte_acl_indices *index, int num_categories) { uint32_t n, *qtrp; uint64_t *array_ptr; struct rte_acl_match_results *match; if (node->node_index != RTE_ACL_NODE_UNDEFINED) return; array_ptr = NULL; switch (node->node_type) { case RTE_ACL_NODE_DFA: node->node_index = index->dfa_index | node->node_type; array_ptr = &node_array[index->dfa_index]; index->dfa_index += RTE_ACL_DFA_SIZE; for (n = 0; n < RTE_ACL_DFA_SIZE; n++) array_ptr[n] = no_match; break; case RTE_ACL_NODE_SINGLE: node->node_index = RTE_ACL_QUAD_SINGLE | index->single_index | node->node_type; array_ptr = &node_array[index->single_index]; index->single_index += 1; array_ptr[0] = no_match; break; case RTE_ACL_NODE_QRANGE: array_ptr = &node_array[index->quad_index]; acl_add_ptrs(node, array_ptr, no_match, 0); qtrp = (uint32_t *)node->transitions; node->node_index = qtrp[0]; node->node_index <<= sizeof(index->quad_index) * CHAR_BIT; node->node_index |= index->quad_index | node->node_type; index->quad_index += node->fanout; break; case RTE_ACL_NODE_MATCH: match = ((struct rte_acl_match_results *) (node_array + index->match_index)); memcpy(match + node->match_flag, node->mrt, sizeof(*node->mrt)); node->node_index = node->match_flag | node->node_type; break; case RTE_ACL_NODE_UNDEFINED: RTE_ACL_VERIFY(node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED); break; } /* recursively allocate space for all children */ for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) acl_gen_node(node->ptrs[n].ptr, node_array, no_match, index, num_categories); } /* All children are resolved, resolve this node's pointers */ switch (node->node_type) { case RTE_ACL_NODE_DFA: acl_add_ptrs(node, array_ptr, no_match, 1); break; case RTE_ACL_NODE_SINGLE: for (n = 0; n < node->num_ptrs; n++) { if (node->ptrs[n].ptr != NULL) array_ptr[0] = node->ptrs[n].ptr->node_index; } break; case RTE_ACL_NODE_QRANGE: acl_add_ptrs(node, array_ptr, no_match, 1); break; case RTE_ACL_NODE_MATCH: break; case RTE_ACL_NODE_UNDEFINED: RTE_ACL_VERIFY(node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED); break; } } static int acl_calc_counts_indices(struct acl_node_counters *counts, struct rte_acl_indices *indices, struct rte_acl_trie *trie, struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries, int match_num) { uint32_t n; memset(indices, 0, sizeof(*indices)); memset(counts, 0, sizeof(*counts)); /* Get stats on nodes */ for (n = 0; n < num_tries; n++) { counts->smallest_match = INT32_MAX; match_num = acl_count_trie_types(counts, node_bld_trie[n].trie, match_num, 1); trie[n].smallest = counts->smallest_match; } indices->dfa_index = RTE_ACL_DFA_SIZE + 1; indices->quad_index = indices->dfa_index + counts->dfa * RTE_ACL_DFA_SIZE; indices->single_index = indices->quad_index + counts->quad_vectors; indices->match_index = indices->single_index + counts->single + 1; indices->match_index = RTE_ALIGN(indices->match_index, (XMM_SIZE / sizeof(uint64_t))); return match_num; } /* * Generate the runtime structure using build structure */ int rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie, struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries, uint32_t num_categories, uint32_t data_index_sz, int match_num) { void *mem; size_t total_size; uint64_t *node_array, no_match; uint32_t n, match_index; struct rte_acl_match_results *match; struct acl_node_counters counts; struct rte_acl_indices indices; /* Fill counts and indices arrays from the nodes. */ match_num = acl_calc_counts_indices(&counts, &indices, trie, node_bld_trie, num_tries, match_num); /* Allocate runtime memory (align to cache boundary) */ total_size = RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE) + indices.match_index * sizeof(uint64_t) + (match_num + 2) * sizeof(struct rte_acl_match_results) + XMM_SIZE; mem = rte_zmalloc_socket(ctx->name, total_size, RTE_CACHE_LINE_SIZE, ctx->socket_id); if (mem == NULL) { RTE_LOG(ERR, ACL, "allocation of %zu bytes on socket %d for %s failed\n", total_size, ctx->socket_id, ctx->name); return -ENOMEM; } /* Fill the runtime structure */ match_index = indices.match_index; node_array = (uint64_t *)((uintptr_t)mem + RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE)); /* * Setup the NOMATCH node (a SINGLE at the * highest index, that points to itself) */ node_array[RTE_ACL_DFA_SIZE] = RTE_ACL_DFA_SIZE | RTE_ACL_NODE_SINGLE; no_match = RTE_ACL_NODE_MATCH; for (n = 0; n < RTE_ACL_DFA_SIZE; n++) node_array[n] = no_match; match = ((struct rte_acl_match_results *)(node_array + match_index)); memset(match, 0, sizeof(*match)); for (n = 0; n < num_tries; n++) { acl_gen_node(node_bld_trie[n].trie, node_array, no_match, &indices, num_categories); if (node_bld_trie[n].trie->node_index == no_match) trie[n].root_index = 0; else trie[n].root_index = node_bld_trie[n].trie->node_index; } ctx->mem = mem; ctx->mem_sz = total_size; ctx->data_indexes = mem; ctx->num_tries = num_tries; ctx->num_categories = num_categories; ctx->match_index = match_index; ctx->no_match = no_match; ctx->idle = node_array[RTE_ACL_DFA_SIZE]; ctx->trans_table = node_array; memcpy(ctx->trie, trie, sizeof(ctx->trie)); acl_gen_log_stats(ctx, &counts); return 0; }