/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "acl_run.h" enum { SHUFFLE32_SLOT1 = 0xe5, SHUFFLE32_SLOT2 = 0xe6, SHUFFLE32_SLOT3 = 0xe7, SHUFFLE32_SWAP64 = 0x4e, }; static const rte_xmm_t mm_type_quad_range = { .u32 = { RTE_ACL_NODE_QRANGE, RTE_ACL_NODE_QRANGE, RTE_ACL_NODE_QRANGE, RTE_ACL_NODE_QRANGE, }, }; static const rte_xmm_t mm_type_quad_range64 = { .u32 = { RTE_ACL_NODE_QRANGE, RTE_ACL_NODE_QRANGE, 0, 0, }, }; static const rte_xmm_t mm_shuffle_input = { .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}, }; static const rte_xmm_t mm_shuffle_input64 = { .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080}, }; static const rte_xmm_t mm_ones_16 = { .u16 = {1, 1, 1, 1, 1, 1, 1, 1}, }; static const rte_xmm_t mm_bytes = { .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX}, }; static const rte_xmm_t mm_bytes64 = { .u32 = {UINT8_MAX, UINT8_MAX, 0, 0}, }; static const rte_xmm_t mm_match_mask = { .u32 = { RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, RTE_ACL_NODE_MATCH, }, }; static const rte_xmm_t mm_match_mask64 = { .u32 = { RTE_ACL_NODE_MATCH, 0, RTE_ACL_NODE_MATCH, 0, }, }; static const rte_xmm_t mm_index_mask = { .u32 = { RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, }, }; static const rte_xmm_t mm_index_mask64 = { .u32 = { RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX, 0, 0, }, }; /* * Resolve priority for multiple results (sse version). * This consists comparing the priority of the current traversal with the * running set of results for the packet. * For each result, keep a running array of the result (rule number) and * its priority for each category. */ static inline void resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx, struct parms *parms, const struct rte_acl_match_results *p, uint32_t categories) { uint32_t x; xmm_t results, priority, results1, priority1, selector; xmm_t *saved_results, *saved_priority; for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); saved_priority = (xmm_t *)(&parms[n].cmplt->priority[x]); /* get results and priorities for completed trie */ results = MM_LOADU((const xmm_t *)&p[transition].results[x]); priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]); /* if this is not the first completed trie */ if (parms[n].cmplt->count != ctx->num_tries) { /* get running best results and their priorities */ results1 = MM_LOADU(saved_results); priority1 = MM_LOADU(saved_priority); /* select results that are highest priority */ selector = MM_CMPGT32(priority1, priority); results = MM_BLENDV8(results, results1, selector); priority = MM_BLENDV8(priority, priority1, selector); } /* save running best results and their priorities */ MM_STOREU(saved_results, results); MM_STOREU(saved_priority, priority); } } /* * Extract transitions from an XMM register and check for any matches */ static void acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows) { uint64_t transition1, transition2; /* extract transition from low 64 bits. */ transition1 = MM_CVT64(*indices); /* extract transition from high 64 bits. */ *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64); transition2 = MM_CVT64(*indices); transition1 = acl_match_check(transition1, slot, ctx, parms, flows, resolve_priority_sse); transition2 = acl_match_check(transition2, slot + 1, ctx, parms, flows, resolve_priority_sse); /* update indices with new transitions. */ *indices = MM_SET64(transition2, transition1); } /* * Check for a match in 2 transitions (contained in SSE register) */ static inline void acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask) { xmm_t temp; temp = MM_AND(match_mask, *indices); while (!MM_TESTZ(temp, temp)) { acl_process_matches(indices, slot, ctx, parms, flows); temp = MM_AND(match_mask, *indices); } } /* * Check for any match in 4 transitions (contained in 2 SSE registers) */ static inline void acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2, xmm_t match_mask) { xmm_t temp; /* put low 32 bits of each transition into one register */ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, 0x88); /* test for match node */ temp = MM_AND(match_mask, temp); while (!MM_TESTZ(temp, temp)) { acl_process_matches(indices1, slot, ctx, parms, flows); acl_process_matches(indices2, slot + 2, ctx, parms, flows); temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, 0x88); temp = MM_AND(match_mask, temp); } } /* * Calculate the address of the next transition for * all types of nodes. Note that only DFA nodes and range * nodes actually transition to another node. Match * nodes don't move. */ static inline xmm_t acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, xmm_t *indices1, xmm_t *indices2) { xmm_t addr, node_types, temp; /* * Note that no transition is done for a match * node and therefore a stream freezes when * it reaches a match. */ /* Shuffle low 32 into temp and high 32 into indices2 */ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, 0x88); *indices2 = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, 0xdd); /* Calc node type and node addr */ node_types = MM_ANDNOT(index_mask, temp); addr = MM_AND(index_mask, temp); /* * Calc addr for DFAs - addr = dfa_index + input_byte */ /* mask for DFA type (0) nodes */ temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types)); /* add input byte to DFA position */ temp = MM_AND(temp, bytes); temp = MM_AND(temp, next_input); addr = MM_ADD32(addr, temp); /* * Calc addr for Range nodes -> range_index + range(input) */ node_types = MM_CMPEQ32(node_types, type_quad_range); /* * Calculate number of range boundaries that are less than the * input value. Range boundaries for each node are in signed 8 bit, * ordered from -128 to 127 in the indices2 register. * This is effectively a popcnt of bytes that are greater than the * input byte. */ /* shuffle input byte to all 4 positions of 32 bit value */ temp = MM_SHUFFLE8(next_input, shuffle_input); /* check ranges */ temp = MM_CMPGT8(temp, *indices2); /* convert -1 to 1 (bytes greater than input byte */ temp = MM_SIGN8(temp, temp); /* horizontal add pairs of bytes into words */ temp = MM_MADD8(temp, temp); /* horizontal add pairs of words into dwords */ temp = MM_MADD16(temp, ones_16); /* mask to range type nodes */ temp = MM_AND(temp, node_types); /* add index into node position */ return MM_ADD32(addr, temp); } /* * Process 4 transitions (in 2 SIMD registers) in parallel */ static inline xmm_t transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, const uint64_t *trans, xmm_t *indices1, xmm_t *indices2) { xmm_t addr; uint64_t trans0, trans2; /* Calculate the address (array index) for all 4 transitions. */ addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, bytes, type_quad_range, indices1, indices2); /* Gather 64 bit transitions and pack back into 2 registers. */ trans0 = trans[MM_CVT32(addr)]; /* get slot 2 */ /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2); trans2 = trans[MM_CVT32(addr)]; /* get slot 1 */ /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0); /* get slot 3 */ /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3); *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2); return MM_SRL32(next_input, 8); } /* * Execute trie traversal with 8 traversals in parallel */ static inline int search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SSE8]; struct completion cmplt[MAX_SEARCHES_SSE8]; struct parms parms[MAX_SEARCHES_SSE8]; xmm_t input0, input1; xmm_t indices1, indices2, indices3, indices4; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SSE8; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } /* * indices1 contains index_array[0,1] * indices2 contains index_array[2,3] * indices3 contains index_array[4,5] * indices4 contains index_array[6,7] */ indices1 = MM_LOADU((xmm_t *) &index_array[0]); indices2 = MM_LOADU((xmm_t *) &index_array[2]); indices3 = MM_LOADU((xmm_t *) &index_array[4]); indices4 = MM_LOADU((xmm_t *) &index_array[6]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, mm_match_mask.m); acl_match_check_x4(4, ctx, parms, &flows, &indices3, &indices4, mm_match_mask.m); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4), 0); input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1); input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1); input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2); input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2); input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3); input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3); /* Process the 4 bytes of input on each stream. */ input0 = transition4(mm_index_mask.m, input0, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input1 = transition4(mm_index_mask.m, input1, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices3, &indices4); input0 = transition4(mm_index_mask.m, input0, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input1 = transition4(mm_index_mask.m, input1, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices3, &indices4); input0 = transition4(mm_index_mask.m, input0, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input1 = transition4(mm_index_mask.m, input1, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices3, &indices4); input0 = transition4(mm_index_mask.m, input0, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input1 = transition4(mm_index_mask.m, input1, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices3, &indices4); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, mm_match_mask.m); acl_match_check_x4(4, ctx, parms, &flows, &indices3, &indices4, mm_match_mask.m); } return 0; } /* * Execute trie traversal with 4 traversals in parallel */ static inline int search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, int total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SSE4]; struct completion cmplt[MAX_SEARCHES_SSE4]; struct parms parms[MAX_SEARCHES_SSE4]; xmm_t input, indices1, indices2; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SSE4; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } indices1 = MM_LOADU((xmm_t *) &index_array[0]); indices2 = MM_LOADU((xmm_t *) &index_array[2]); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, mm_match_mask.m); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2); input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3); /* Process the 4 bytes of input on each stream. */ input = transition4(mm_index_mask.m, input, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input = transition4(mm_index_mask.m, input, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input = transition4(mm_index_mask.m, input, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); input = transition4(mm_index_mask.m, input, mm_shuffle_input.m, mm_ones_16.m, mm_bytes.m, mm_type_quad_range.m, flows.trans, &indices1, &indices2); /* Check for any matches. */ acl_match_check_x4(0, ctx, parms, &flows, &indices1, &indices2, mm_match_mask.m); } return 0; } static inline xmm_t transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, const uint64_t *trans, xmm_t *indices1) { uint64_t t; xmm_t addr, indices2; indices2 = MM_XOR(ones_16, ones_16); addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, bytes, type_quad_range, indices1, &indices2); /* Gather 64 bit transitions and pack 2 per register. */ t = trans[MM_CVT32(addr)]; /* get slot 1 */ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); *indices1 = MM_SET64(trans[MM_CVT32(addr)], t); return MM_SRL32(next_input, 8); } /* * Execute trie traversal with 2 traversals in parallel. */ static inline int search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t total_packets, uint32_t categories) { int n; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SSE2]; struct completion cmplt[MAX_SEARCHES_SSE2]; struct parms parms[MAX_SEARCHES_SSE2]; xmm_t input, indices; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, total_packets, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SSE2; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } indices = MM_LOADU((xmm_t *) &index_array[0]); /* Check for any matches. */ acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.m); while (flows.started > 0) { /* Gather 4 bytes of input data for each stream. */ input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); /* Process the 4 bytes of input on each stream. */ input = transition2(mm_index_mask64.m, input, mm_shuffle_input64.m, mm_ones_16.m, mm_bytes64.m, mm_type_quad_range64.m, flows.trans, &indices); input = transition2(mm_index_mask64.m, input, mm_shuffle_input64.m, mm_ones_16.m, mm_bytes64.m, mm_type_quad_range64.m, flows.trans, &indices); input = transition2(mm_index_mask64.m, input, mm_shuffle_input64.m, mm_ones_16.m, mm_bytes64.m, mm_type_quad_range64.m, flows.trans, &indices); input = transition2(mm_index_mask64.m, input, mm_shuffle_input64.m, mm_ones_16.m, mm_bytes64.m, mm_type_quad_range64.m, flows.trans, &indices); /* Check for any matches. */ acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.m); } return 0; } int rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories) { if (categories != 1 && ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) return -EINVAL; if (likely(num >= MAX_SEARCHES_SSE8)) return search_sse_8(ctx, data, results, num, categories); else if (num >= MAX_SEARCHES_SSE4) return search_sse_4(ctx, data, results, num, categories); else return search_sse_2(ctx, data, results, num, categories); }