/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _RTE_MEMPOOL_H_ #define _RTE_MEMPOOL_H_ /** * @file * RTE Mempool. * * A memory pool is an allocator of fixed-size object. It is * identified by its name, and uses a ring to store free objects. It * provides some other optional services, like a per-core object * cache, and an alignment helper to ensure that objects are padded * to spread them equally on all RAM channels, ranks, and so on. * * Objects owned by a mempool should never be added in another * mempool. When an object is freed using rte_mempool_put() or * equivalent, the object data is not modified; the user can save some * meta-data in the object data and retrieve them when allocating a * new object. * * Note: the mempool implementation is not preemptable. A lcore must * not be interrupted by another task that uses the same mempool * (because it uses a ring which is not preemptable). Also, mempool * functions must not be used outside the DPDK environment: for * example, in linuxapp environment, a thread that is not created by * the EAL must not use mempools. This is due to the per-lcore cache * that won't work as rte_lcore_id() will not return a correct value. */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */ #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */ #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /** * A structure that stores the mempool statistics (per-lcore). */ struct rte_mempool_debug_stats { uint64_t put_bulk; /**< Number of puts. */ uint64_t put_objs; /**< Number of objects successfully put. */ uint64_t get_success_bulk; /**< Successful allocation number. */ uint64_t get_success_objs; /**< Objects successfully allocated. */ uint64_t get_fail_bulk; /**< Failed allocation number. */ uint64_t get_fail_objs; /**< Objects that failed to be allocated. */ } __rte_cache_aligned; #endif #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 /** * A structure that stores a per-core object cache. */ struct rte_mempool_cache { unsigned len; /**< Cache len */ /* * Cache is allocated to this size to allow it to overflow in certain * cases to avoid needless emptying of cache. */ void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */ } __rte_cache_aligned; #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */ struct rte_mempool_objsz { uint32_t elt_size; /**< Size of an element. */ uint32_t header_size; /**< Size of header (before elt). */ uint32_t trailer_size; /**< Size of trailer (after elt). */ uint32_t total_size; /**< Total size of an object (header + elt + trailer). */ }; #define RTE_MEMPOOL_NAMESIZE 32 /**< Maximum length of a memory pool. */ #define RTE_MEMPOOL_MZ_PREFIX "MP_" /* "MP_" */ #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s" #ifdef RTE_LIBRTE_XEN_DOM0 /* "_MP_elt" */ #define RTE_MEMPOOL_OBJ_NAME "%s_" RTE_MEMPOOL_MZ_PREFIX "elt" #else #define RTE_MEMPOOL_OBJ_NAME RTE_MEMPOOL_MZ_FORMAT #endif /* RTE_LIBRTE_XEN_DOM0 */ #define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1) /** Mempool over one chunk of physically continuous memory */ #define MEMPOOL_PG_NUM_DEFAULT 1 /** * The RTE mempool structure. */ struct rte_mempool { char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */ struct rte_ring *ring; /**< Ring to store objects. */ phys_addr_t phys_addr; /**< Phys. addr. of mempool struct. */ int flags; /**< Flags of the mempool. */ uint32_t size; /**< Size of the mempool. */ uint32_t cache_size; /**< Size of per-lcore local cache. */ uint32_t cache_flushthresh; /**< Threshold before we flush excess elements. */ uint32_t elt_size; /**< Size of an element. */ uint32_t header_size; /**< Size of header (before elt). */ uint32_t trailer_size; /**< Size of trailer (after elt). */ unsigned private_data_size; /**< Size of private data. */ #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 /** Per-lcore local cache. */ struct rte_mempool_cache local_cache[RTE_MAX_LCORE]; #endif #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /** Per-lcore statistics. */ struct rte_mempool_debug_stats stats[RTE_MAX_LCORE]; #endif /* Address translation support, starts from next cache line. */ /** Number of elements in the elt_pa array. */ uint32_t pg_num __rte_cache_aligned; uint32_t pg_shift; /**< LOG2 of the physical pages. */ uintptr_t pg_mask; /**< physical page mask value. */ uintptr_t elt_va_start; /**< Virtual address of the first mempool object. */ uintptr_t elt_va_end; /**< Virtual address of the mempool object. */ phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT]; /**< Array of physical pages addresses for the mempool objects buffer. */ } __rte_cache_aligned; #define MEMPOOL_F_NO_SPREAD 0x0001 /**< Do not spread in memory. */ #define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/ #define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/ #define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/ /** * @internal When debug is enabled, store some statistics. * @param mp * Pointer to the memory pool. * @param name * Name of the statistics field to increment in the memory pool. * @param n * Number to add to the object-oriented statistics. */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG #define __MEMPOOL_STAT_ADD(mp, name, n) do { \ unsigned __lcore_id = rte_lcore_id(); \ mp->stats[__lcore_id].name##_objs += n; \ mp->stats[__lcore_id].name##_bulk += 1; \ } while(0) #else #define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0) #endif /** * Calculates size of the mempool header. * @param mp * Pointer to the memory pool. * @param pgn * Number of page used to store mempool objects. */ #define MEMPOOL_HEADER_SIZE(mp, pgn) (sizeof(*(mp)) + \ RTE_ALIGN_CEIL(((pgn) - RTE_DIM((mp)->elt_pa)) * \ sizeof ((mp)->elt_pa[0]), RTE_CACHE_LINE_SIZE)) /** * Returns TRUE if whole mempool is allocated in one contiguous block of memory. */ #define MEMPOOL_IS_CONTIG(mp) \ ((mp)->pg_num == MEMPOOL_PG_NUM_DEFAULT && \ (mp)->phys_addr == (mp)->elt_pa[0]) /** * @internal Get a pointer to a mempool pointer in the object header. * @param obj * Pointer to object. * @return * The pointer to the mempool from which the object was allocated. */ static inline struct rte_mempool **__mempool_from_obj(void *obj) { struct rte_mempool **mpp; unsigned off; off = sizeof(struct rte_mempool *); #ifdef RTE_LIBRTE_MEMPOOL_DEBUG off += sizeof(uint64_t); #endif mpp = (struct rte_mempool **)((char *)obj - off); return mpp; } /** * Return a pointer to the mempool owning this object. * * @param obj * An object that is owned by a pool. If this is not the case, * the behavior is undefined. * @return * A pointer to the mempool structure. */ static inline const struct rte_mempool *rte_mempool_from_obj(void *obj) { struct rte_mempool * const *mpp; mpp = __mempool_from_obj(obj); return *mpp; } #ifdef RTE_LIBRTE_MEMPOOL_DEBUG /* get header cookie value */ static inline uint64_t __mempool_read_header_cookie(const void *obj) { return *(const uint64_t *)((const char *)obj - sizeof(uint64_t)); } /* get trailer cookie value */ static inline uint64_t __mempool_read_trailer_cookie(void *obj) { struct rte_mempool **mpp = __mempool_from_obj(obj); return *(uint64_t *)((char *)obj + (*mpp)->elt_size); } /* write header cookie value */ static inline void __mempool_write_header_cookie(void *obj, int free) { uint64_t *cookie_p; cookie_p = (uint64_t *)((char *)obj - sizeof(uint64_t)); if (free == 0) *cookie_p = RTE_MEMPOOL_HEADER_COOKIE1; else *cookie_p = RTE_MEMPOOL_HEADER_COOKIE2; } /* write trailer cookie value */ static inline void __mempool_write_trailer_cookie(void *obj) { uint64_t *cookie_p; struct rte_mempool **mpp = __mempool_from_obj(obj); cookie_p = (uint64_t *)((char *)obj + (*mpp)->elt_size); *cookie_p = RTE_MEMPOOL_TRAILER_COOKIE; } #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */ /** * @internal Check and update cookies or panic. * * @param mp * Pointer to the memory pool. * @param obj_table_const * Pointer to a table of void * pointers (objects). * @param n * Index of object in object table. * @param free * - 0: object is supposed to be allocated, mark it as free * - 1: object is supposed to be free, mark it as allocated * - 2: just check that cookie is valid (free or allocated) */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG #ifndef __INTEL_COMPILER #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline void __mempool_check_cookies(const struct rte_mempool *mp, void * const *obj_table_const, unsigned n, int free) { uint64_t cookie; void *tmp; void *obj; void **obj_table; /* Force to drop the "const" attribute. This is done only when * DEBUG is enabled */ tmp = (void *) obj_table_const; obj_table = (void **) tmp; while (n--) { obj = obj_table[n]; if (rte_mempool_from_obj(obj) != mp) rte_panic("MEMPOOL: object is owned by another " "mempool\n"); cookie = __mempool_read_header_cookie(obj); if (free == 0) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) { rte_log_set_history(0); RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%"PRIx64"\n", obj, mp, cookie); rte_panic("MEMPOOL: bad header cookie (put)\n"); } __mempool_write_header_cookie(obj, 1); } else if (free == 1) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) { rte_log_set_history(0); RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%"PRIx64"\n", obj, mp, cookie); rte_panic("MEMPOOL: bad header cookie (get)\n"); } __mempool_write_header_cookie(obj, 0); } else if (free == 2) { if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 && cookie != RTE_MEMPOOL_HEADER_COOKIE2) { rte_log_set_history(0); RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%"PRIx64"\n", obj, mp, cookie); rte_panic("MEMPOOL: bad header cookie (audit)\n"); } } cookie = __mempool_read_trailer_cookie(obj); if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) { rte_log_set_history(0); RTE_LOG(CRIT, MEMPOOL, "obj=%p, mempool=%p, cookie=%"PRIx64"\n", obj, mp, cookie); rte_panic("MEMPOOL: bad trailer cookie\n"); } } } #ifndef __INTEL_COMPILER #pragma GCC diagnostic error "-Wcast-qual" #endif #else #define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0) #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */ /** * An mempool's object iterator callback function. */ typedef void (*rte_mempool_obj_iter_t)(void * /*obj_iter_arg*/, void * /*obj_start*/, void * /*obj_end*/, uint32_t /*obj_index */); /* * Iterates across objects of the given size and alignment in the * provided chunk of memory. The given memory buffer can consist of * disjoint physical pages. * For each object calls the provided callback (if any). * Used to populate mempool, walk through all elements of the mempool, * estimate how many elements of the given size could be created in the given * memory buffer. * @param vaddr * Virtual address of the memory buffer. * @param elt_num * Maximum number of objects to iterate through. * @param elt_sz * Size of each object. * @param paddr * Array of phyiscall addresses of the pages that comprises given memory * buffer. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @param obj_iter * Object iterator callback function (could be NULL). * @param obj_iter_arg * User defined Prameter for the object iterator callback function. * * @return * Number of objects iterated through. */ uint32_t rte_mempool_obj_iter(void *vaddr, uint32_t elt_num, size_t elt_sz, size_t align, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift, rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg); /** * An object constructor callback function for mempool. * * Arguments are the mempool, the opaque pointer given by the user in * rte_mempool_create(), the pointer to the element and the index of * the element in the pool. */ typedef void (rte_mempool_obj_ctor_t)(struct rte_mempool *, void *, void *, unsigned); /** * A mempool constructor callback function. * * Arguments are the mempool and the opaque pointer given by the user in * rte_mempool_create(). */ typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *); /** * Creates a new mempool named *name* in memory. * * This function uses ``memzone_reserve()`` to allocate memory. The * pool contains n elements of elt_size. Its size is set to n. * All elements of the mempool are allocated together with the mempool header, * in one physically continuous chunk of memory. * * @param name * The name of the mempool. * @param n * The number of elements in the mempool. The optimum size (in terms of * memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * If cache_size is non-zero, the rte_mempool library will try to * limit the accesses to the common lockless pool, by maintaining a * per-lcore object cache. This argument must be lower or equal to * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose * cache_size to have "n modulo cache_size == 0": if this is * not the case, some elements will always stay in the pool and will * never be used. The access to the per-lcore table is of course * faster than the multi-producer/consumer pool. The cache can be * disabled if the cache_size argument is set to 0; it can be useful to * avoid losing objects in cache. Note that even if not used, the * memory space for cache is always reserved in a mempool structure, * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param mp_init * A function pointer that is called for initialization of the pool, * before object initialization. The user can initialize the private * data in this function if needed. This parameter can be NULL if * not needed. * @param mp_init_arg * An opaque pointer to data that can be used in the mempool * constructor function. * @param obj_init * A function pointer that is called for each object at * initialization of the pool. The user can set some meta data in * objects if needed. This parameter can be NULL if not needed. * The obj_init() function takes the mempool pointer, the init_arg, * the object pointer and the object number as parameters. * @param obj_init_arg * An opaque pointer to data that can be used as an argument for * each call to the object constructor function. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * The *flags* arguments is an OR of following flags: * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread * between channels in RAM: the pool allocator will add padding * between objects depending on the hardware configuration. See * Memory alignment constraints for details. If this flag is set, * the allocator will just align them to a cache line. * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are * cache-aligned. This flag removes this constraint, and no * padding will be present between objects. This flag implies * MEMPOOL_F_NO_SPREAD. * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior * when using rte_mempool_put() or rte_mempool_put_bulk() is * "single-producer". Otherwise, it is "multi-producers". * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior * when using rte_mempool_get() or rte_mempool_get_bulk() is * "single-consumer". Otherwise, it is "multi-consumers". * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - E_RTE_NO_TAILQ - no tailq list could be got for the ring or mempool list * - EINVAL - cache size provided is too large * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags); /** * Creates a new mempool named *name* in memory. * * This function uses ``memzone_reserve()`` to allocate memory. The * pool contains n elements of elt_size. Its size is set to n. * Depending on the input parameters, mempool elements can be either allocated * together with the mempool header, or an externally provided memory buffer * could be used to store mempool objects. In later case, that external * memory buffer can consist of set of disjoint phyiscal pages. * * @param name * The name of the mempool. * @param n * The number of elements in the mempool. The optimum size (in terms of * memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * If cache_size is non-zero, the rte_mempool library will try to * limit the accesses to the common lockless pool, by maintaining a * per-lcore object cache. This argument must be lower or equal to * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose * cache_size to have "n modulo cache_size == 0": if this is * not the case, some elements will always stay in the pool and will * never be used. The access to the per-lcore table is of course * faster than the multi-producer/consumer pool. The cache can be * disabled if the cache_size argument is set to 0; it can be useful to * avoid losing objects in cache. Note that even if not used, the * memory space for cache is always reserved in a mempool structure, * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param mp_init * A function pointer that is called for initialization of the pool, * before object initialization. The user can initialize the private * data in this function if needed. This parameter can be NULL if * not needed. * @param mp_init_arg * An opaque pointer to data that can be used in the mempool * constructor function. * @param obj_init * A function pointer that is called for each object at * initialization of the pool. The user can set some meta data in * objects if needed. This parameter can be NULL if not needed. * The obj_init() function takes the mempool pointer, the init_arg, * the object pointer and the object number as parameters. * @param obj_init_arg * An opaque pointer to data that can be used as an argument for * each call to the object constructor function. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * The *flags* arguments is an OR of following flags: * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread * between channels in RAM: the pool allocator will add padding * between objects depending on the hardware configuration. See * Memory alignment constraints for details. If this flag is set, * the allocator will just align them to a cache line. * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are * cache-aligned. This flag removes this constraint, and no * padding will be present between objects. This flag implies * MEMPOOL_F_NO_SPREAD. * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior * when using rte_mempool_put() or rte_mempool_put_bulk() is * "single-producer". Otherwise, it is "multi-producers". * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior * when using rte_mempool_get() or rte_mempool_get_bulk() is * "single-consumer". Otherwise, it is "multi-consumers". * @param vaddr * Virtual address of the externally allocated memory buffer. * Will be used to store mempool objects. * @param paddr * Array of phyiscall addresses of the pages that comprises given memory * buffer. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - E_RTE_NO_TAILQ - no tailq list could be got for the ring or mempool list * - EINVAL - cache size provided is too large * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags, void *vaddr, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift); #ifdef RTE_LIBRTE_XEN_DOM0 /** * Creates a new mempool named *name* in memory on Xen Dom0. * * This function uses ``rte_mempool_xmem_create()`` to allocate memory. The * pool contains n elements of elt_size. Its size is set to n. * All elements of the mempool are allocated together with the mempool header, * and memory buffer can consist of set of disjoint phyiscal pages. * * @param name * The name of the mempool. * @param n * The number of elements in the mempool. The optimum size (in terms of * memory usage) for a mempool is when n is a power of two minus one: * n = (2^q - 1). * @param elt_size * The size of each element. * @param cache_size * If cache_size is non-zero, the rte_mempool library will try to * limit the accesses to the common lockless pool, by maintaining a * per-lcore object cache. This argument must be lower or equal to * CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose * cache_size to have "n modulo cache_size == 0": if this is * not the case, some elements will always stay in the pool and will * never be used. The access to the per-lcore table is of course * faster than the multi-producer/consumer pool. The cache can be * disabled if the cache_size argument is set to 0; it can be useful to * avoid losing objects in cache. Note that even if not used, the * memory space for cache is always reserved in a mempool structure, * except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0. * @param private_data_size * The size of the private data appended after the mempool * structure. This is useful for storing some private data after the * mempool structure, as is done for rte_mbuf_pool for example. * @param mp_init * A function pointer that is called for initialization of the pool, * before object initialization. The user can initialize the private * data in this function if needed. This parameter can be NULL if * not needed. * @param mp_init_arg * An opaque pointer to data that can be used in the mempool * constructor function. * @param obj_init * A function pointer that is called for each object at * initialization of the pool. The user can set some meta data in * objects if needed. This parameter can be NULL if not needed. * The obj_init() function takes the mempool pointer, the init_arg, * the object pointer and the object number as parameters. * @param obj_init_arg * An opaque pointer to data that can be used as an argument for * each call to the object constructor function. * @param socket_id * The *socket_id* argument is the socket identifier in the case of * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA * constraint for the reserved zone. * @param flags * The *flags* arguments is an OR of following flags: * - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread * between channels in RAM: the pool allocator will add padding * between objects depending on the hardware configuration. See * Memory alignment constraints for details. If this flag is set, * the allocator will just align them to a cache line. * - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are * cache-aligned. This flag removes this constraint, and no * padding will be present between objects. This flag implies * MEMPOOL_F_NO_SPREAD. * - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior * when using rte_mempool_put() or rte_mempool_put_bulk() is * "single-producer". Otherwise, it is "multi-producers". * - MEMPOOL_F_SC_GET: If this flag is set, the default behavior * when using rte_mempool_get() or rte_mempool_get_bulk() is * "single-consumer". Otherwise, it is "multi-consumers". * @return * The pointer to the new allocated mempool, on success. NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure * - E_RTE_SECONDARY - function was called from a secondary process instance * - E_RTE_NO_TAILQ - no tailq list could be got for the ring or mempool list * - EINVAL - cache size provided is too large * - ENOSPC - the maximum number of memzones has already been allocated * - EEXIST - a memzone with the same name already exists * - ENOMEM - no appropriate memory area found in which to create memzone */ struct rte_mempool * rte_dom0_mempool_create(const char *name, unsigned n, unsigned elt_size, unsigned cache_size, unsigned private_data_size, rte_mempool_ctor_t *mp_init, void *mp_init_arg, rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg, int socket_id, unsigned flags); #endif /** * Dump the status of the mempool to the console. * * @param f * A pointer to a file for output * @param mp * A pointer to the mempool structure. */ void rte_mempool_dump(FILE *f, const struct rte_mempool *mp); /** * @internal Put several objects back in the mempool; used internally. * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to store back in the mempool, must be strictly * positive. * @param is_mp * Mono-producer (0) or multi-producers (1). */ static inline void __attribute__((always_inline)) __mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n, int is_mp) { #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 struct rte_mempool_cache *cache; uint32_t index; void **cache_objs; unsigned lcore_id = rte_lcore_id(); uint32_t cache_size = mp->cache_size; uint32_t flushthresh = mp->cache_flushthresh; #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */ /* increment stat now, adding in mempool always success */ __MEMPOOL_STAT_ADD(mp, put, n); #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 /* cache is not enabled or single producer */ if (unlikely(cache_size == 0 || is_mp == 0)) goto ring_enqueue; /* Go straight to ring if put would overflow mem allocated for cache */ if (unlikely(n > RTE_MEMPOOL_CACHE_MAX_SIZE)) goto ring_enqueue; cache = &mp->local_cache[lcore_id]; cache_objs = &cache->objs[cache->len]; /* * The cache follows the following algorithm * 1. Add the objects to the cache * 2. Anything greater than the cache min value (if it crosses the * cache flush threshold) is flushed to the ring. */ /* Add elements back into the cache */ for (index = 0; index < n; ++index, obj_table++) cache_objs[index] = *obj_table; cache->len += n; if (cache->len >= flushthresh) { rte_ring_mp_enqueue_bulk(mp->ring, &cache->objs[cache_size], cache->len - cache_size); cache->len = cache_size; } return; ring_enqueue: #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */ /* push remaining objects in ring */ #ifdef RTE_LIBRTE_MEMPOOL_DEBUG if (is_mp) { if (rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n) < 0) rte_panic("cannot put objects in mempool\n"); } else { if (rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n) < 0) rte_panic("cannot put objects in mempool\n"); } #else if (is_mp) rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n); else rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n); #endif } /** * Put several objects back in the mempool (multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from the obj_table. */ static inline void __attribute__((always_inline)) rte_mempool_mp_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { __mempool_check_cookies(mp, obj_table, n, 0); __mempool_put_bulk(mp, obj_table, n, 1); } /** * Put several objects back in the mempool (NOT multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from obj_table. */ static inline void rte_mempool_sp_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { __mempool_check_cookies(mp, obj_table, n, 0); __mempool_put_bulk(mp, obj_table, n, 0); } /** * Put several objects back in the mempool. * * This function calls the multi-producer or the single-producer * version depending on the default behavior that was specified at * mempool creation time (see flags). * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to add in the mempool from obj_table. */ static inline void __attribute__((always_inline)) rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table, unsigned n) { __mempool_check_cookies(mp, obj_table, n, 0); __mempool_put_bulk(mp, obj_table, n, !(mp->flags & MEMPOOL_F_SP_PUT)); } /** * Put one object in the mempool (multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ static inline void __attribute__((always_inline)) rte_mempool_mp_put(struct rte_mempool *mp, void *obj) { rte_mempool_mp_put_bulk(mp, &obj, 1); } /** * Put one object back in the mempool (NOT multi-producers safe). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ static inline void __attribute__((always_inline)) rte_mempool_sp_put(struct rte_mempool *mp, void *obj) { rte_mempool_sp_put_bulk(mp, &obj, 1); } /** * Put one object back in the mempool. * * This function calls the multi-producer or the single-producer * version depending on the default behavior that was specified at * mempool creation time (see flags). * * @param mp * A pointer to the mempool structure. * @param obj * A pointer to the object to be added. */ static inline void __attribute__((always_inline)) rte_mempool_put(struct rte_mempool *mp, void *obj) { rte_mempool_put_bulk(mp, &obj, 1); } /** * @internal Get several objects from the mempool; used internally. * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects). * @param n * The number of objects to get, must be strictly positive. * @param is_mc * Mono-consumer (0) or multi-consumers (1). * @return * - >=0: Success; number of objects supplied. * - <0: Error; code of ring dequeue function. */ static inline int __attribute__((always_inline)) __mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n, int is_mc) { int ret; #if RTE_MEMPOOL_CACHE_MAX_SIZE > 0 struct rte_mempool_cache *cache; uint32_t index, len; void **cache_objs; unsigned lcore_id = rte_lcore_id(); uint32_t cache_size = mp->cache_size; /* cache is not enabled or single consumer */ if (unlikely(cache_size == 0 || is_mc == 0 || n >= cache_size)) goto ring_dequeue; cache = &mp->local_cache[lcore_id]; cache_objs = cache->objs; /* Can this be satisfied from the cache? */ if (cache->len < n) { /* No. Backfill the cache first, and then fill from it */ uint32_t req = n + (cache_size - cache->len); /* How many do we require i.e. number to fill the cache + the request */ ret = rte_ring_mc_dequeue_bulk(mp->ring, &cache->objs[cache->len], req); if (unlikely(ret < 0)) { /* * In the offchance that we are buffer constrained, * where we are not able to allocate cache + n, go to * the ring directly. If that fails, we are truly out of * buffers. */ goto ring_dequeue; } cache->len += req; } /* Now fill in the response ... */ for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++) *obj_table = cache_objs[len]; cache->len -= n; __MEMPOOL_STAT_ADD(mp, get_success, n); return 0; ring_dequeue: #endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */ /* get remaining objects from ring */ if (is_mc) ret = rte_ring_mc_dequeue_bulk(mp->ring, obj_table, n); else ret = rte_ring_sc_dequeue_bulk(mp->ring, obj_table, n); if (ret < 0) __MEMPOOL_STAT_ADD(mp, get_fail, n); else __MEMPOOL_STAT_ADD(mp, get_success, n); return ret; } /** * Get several objects from the mempool (multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from mempool to obj_table. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_mc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { int ret; ret = __mempool_get_bulk(mp, obj_table, n, 1); if (ret == 0) __mempool_check_cookies(mp, obj_table, n, 1); return ret; } /** * Get several objects from the mempool (NOT multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from the mempool to obj_table. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is * retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_sc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { int ret; ret = __mempool_get_bulk(mp, obj_table, n, 0); if (ret == 0) __mempool_check_cookies(mp, obj_table, n, 1); return ret; } /** * Get several objects from the mempool. * * This function calls the multi-consumers or the single-consumer * version, depending on the default behaviour that was specified at * mempool creation time (see flags). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_table * A pointer to a table of void * pointers (objects) that will be filled. * @param n * The number of objects to get from the mempool to obj_table. * @return * - 0: Success; objects taken * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n) { int ret; ret = __mempool_get_bulk(mp, obj_table, n, !(mp->flags & MEMPOOL_F_SC_GET)); if (ret == 0) __mempool_check_cookies(mp, obj_table, n, 1); return ret; } /** * Get one object from the mempool (multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_mc_get(struct rte_mempool *mp, void **obj_p) { return rte_mempool_mc_get_bulk(mp, obj_p, 1); } /** * Get one object from the mempool (NOT multi-consumers safe). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_sc_get(struct rte_mempool *mp, void **obj_p) { return rte_mempool_sc_get_bulk(mp, obj_p, 1); } /** * Get one object from the mempool. * * This function calls the multi-consumers or the single-consumer * version, depending on the default behavior that was specified at * mempool creation (see flags). * * If cache is enabled, objects will be retrieved first from cache, * subsequently from the common pool. Note that it can return -ENOENT when * the local cache and common pool are empty, even if cache from other * lcores are full. * * @param mp * A pointer to the mempool structure. * @param obj_p * A pointer to a void * pointer (object) that will be filled. * @return * - 0: Success; objects taken. * - -ENOENT: Not enough entries in the mempool; no object is retrieved. */ static inline int __attribute__((always_inline)) rte_mempool_get(struct rte_mempool *mp, void **obj_p) { return rte_mempool_get_bulk(mp, obj_p, 1); } /** * Return the number of entries in the mempool. * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. * * @param mp * A pointer to the mempool structure. * @return * The number of entries in the mempool. */ unsigned rte_mempool_count(const struct rte_mempool *mp); /** * Return the number of free entries in the mempool ring. * i.e. how many entries can be freed back to the mempool. * * NOTE: This corresponds to the number of elements *allocated* from the * memory pool, not the number of elements in the pool itself. To count * the number elements currently available in the pool, use "rte_mempool_count" * * When cache is enabled, this function has to browse the length of * all lcores, so it should not be used in a data path, but only for * debug purposes. * * @param mp * A pointer to the mempool structure. * @return * The number of free entries in the mempool. */ static inline unsigned rte_mempool_free_count(const struct rte_mempool *mp) { return mp->size - rte_mempool_count(mp); } /** * Test if the mempool is full. * * When cache is enabled, this function has to browse the length of all * lcores, so it should not be used in a data path, but only for debug * purposes. * * @param mp * A pointer to the mempool structure. * @return * - 1: The mempool is full. * - 0: The mempool is not full. */ static inline int rte_mempool_full(const struct rte_mempool *mp) { return !!(rte_mempool_count(mp) == mp->size); } /** * Test if the mempool is empty. * * When cache is enabled, this function has to browse the length of all * lcores, so it should not be used in a data path, but only for debug * purposes. * * @param mp * A pointer to the mempool structure. * @return * - 1: The mempool is empty. * - 0: The mempool is not empty. */ static inline int rte_mempool_empty(const struct rte_mempool *mp) { return !!(rte_mempool_count(mp) == 0); } /** * Return the physical address of elt, which is an element of the pool mp. * * @param mp * A pointer to the mempool structure. * @param elt * A pointer (virtual address) to the element of the pool. * @return * The physical address of the elt element. */ static inline phys_addr_t rte_mempool_virt2phy(const struct rte_mempool *mp, const void *elt) { if (rte_eal_has_hugepages()) { uintptr_t off; off = (const char *)elt - (const char *)mp->elt_va_start; return (mp->elt_pa[off >> mp->pg_shift] + (off & mp->pg_mask)); } else { /* * If huge pages are disabled, we cannot assume the * memory region to be physically contiguous. * Lookup for each element. */ return rte_mem_virt2phy(elt); } } /** * Check the consistency of mempool objects. * * Verify the coherency of fields in the mempool structure. Also check * that the cookies of mempool objects (even the ones that are not * present in pool) have a correct value. If not, a panic will occur. * * @param mp * A pointer to the mempool structure. */ void rte_mempool_audit(const struct rte_mempool *mp); /** * Return a pointer to the private data in an mempool structure. * * @param mp * A pointer to the mempool structure. * @return * A pointer to the private data. */ static inline void *rte_mempool_get_priv(struct rte_mempool *mp) { return (char *)mp + MEMPOOL_HEADER_SIZE(mp, mp->pg_num); } /** * Dump the status of all mempools on the console * * @param f * A pointer to a file for output */ void rte_mempool_list_dump(FILE *f); /** * Search a mempool from its name * * @param name * The name of the mempool. * @return * The pointer to the mempool matching the name, or NULL if not found. * NULL on error * with rte_errno set appropriately. Possible rte_errno values include: * - ENOENT - required entry not available to return. * */ struct rte_mempool *rte_mempool_lookup(const char *name); /** * Given a desired size of the mempool element and mempool flags, * caluclates header, trailer, body and total sizes of the mempool object. * @param elt_size * The size of each element. * @param flags * The flags used for the mempool creation. * Consult rte_mempool_create() for more information about possible values. * The size of each element. * @return * Total size of the mempool object. */ uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags, struct rte_mempool_objsz *sz); /** * Calculate maximum amount of memory required to store given number of objects. * Assumes that the memory buffer will be aligned at page boundary. * Note, that if object size is bigger then page size, then it assumes that * we have a subsets of physically continuous pages big enough to store * at least one object. * @param elt_num * Number of elements. * @param elt_sz * The size of each element. * @param pg_shift * LOG2 of the physical pages size. * @return * Required memory size aligned at page boundary. */ size_t rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz, uint32_t pg_shift); /** * Calculate how much memory would be actually required with the given * memory footprint to store required number of objects. * @param vaddr * Virtual address of the externally allocated memory buffer. * Will be used to store mempool objects. * @param elt_num * Number of elements. * @param elt_sz * The size of each element. * @param paddr * Array of phyiscall addresses of the pages that comprises given memory * buffer. * @param pg_num * Number of elements in the paddr array. * @param pg_shift * LOG2 of the physical pages size. * @return * Number of bytes needed to store given number of objects, * aligned to the given page size. * If provided memory buffer is not big enough: * (-1) * actual number of elemnts that can be stored in that buffer. */ ssize_t rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz, const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift); /** * Walk list of all memory pools * * @param func * Iterator function * @param arg * Argument passed to iterator */ void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *arg), void *arg); #ifdef __cplusplus } #endif #endif /* _RTE_MEMPOOL_H_ */