/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_logs.h" #include "e1000/e1000_api.h" #include "e1000_ethdev.h" /* * Default values for port configuration */ #define IGB_DEFAULT_RX_FREE_THRESH 32 #define IGB_DEFAULT_RX_PTHRESH 8 #define IGB_DEFAULT_RX_HTHRESH 8 #define IGB_DEFAULT_RX_WTHRESH 0 #define IGB_DEFAULT_TX_PTHRESH 32 #define IGB_DEFAULT_TX_HTHRESH 0 #define IGB_DEFAULT_TX_WTHRESH 0 /* Bit shift and mask */ #define IGB_4_BIT_WIDTH (CHAR_BIT / 2) #define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t) #define IGB_8_BIT_WIDTH CHAR_BIT #define IGB_8_BIT_MASK UINT8_MAX static int eth_igb_configure(struct rte_eth_dev *dev); static int eth_igb_start(struct rte_eth_dev *dev); static void eth_igb_stop(struct rte_eth_dev *dev); static void eth_igb_close(struct rte_eth_dev *dev); static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev); static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev); static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev); static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev); static int eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete); static void eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); static void eth_igb_stats_reset(struct rte_eth_dev *dev); static void eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static void eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info); static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf); static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev); static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev); static int eth_igb_interrupt_action(struct rte_eth_dev *dev); static void eth_igb_interrupt_handler(struct rte_intr_handle *handle, void *param); static int igb_hardware_init(struct e1000_hw *hw); static void igb_hw_control_acquire(struct e1000_hw *hw); static void igb_hw_control_release(struct e1000_hw *hw); static void igb_init_manageability(struct e1000_hw *hw); static void igb_release_manageability(struct e1000_hw *hw); static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id); static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask); static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev); static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev); static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev); static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev); static int eth_igb_led_on(struct rte_eth_dev *dev); static int eth_igb_led_off(struct rte_eth_dev *dev); static void igb_intr_disable(struct e1000_hw *hw); static int igb_get_rx_buffer_size(struct e1000_hw *hw); static void eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, uint32_t pool); static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index); static void igbvf_intr_disable(struct e1000_hw *hw); static int igbvf_dev_configure(struct rte_eth_dev *dev); static int igbvf_dev_start(struct rte_eth_dev *dev); static void igbvf_dev_stop(struct rte_eth_dev *dev); static void igbvf_dev_close(struct rte_eth_dev *dev); static int eth_igbvf_link_update(struct e1000_hw *hw); static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); static void eth_igbvf_stats_reset(struct rte_eth_dev *dev); static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on); static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on); static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on); static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size); static int eth_igb_add_syn_filter(struct rte_eth_dev *dev, struct rte_syn_filter *filter, uint16_t rx_queue); static int eth_igb_remove_syn_filter(struct rte_eth_dev *dev); static int eth_igb_get_syn_filter(struct rte_eth_dev *dev, struct rte_syn_filter *filter, uint16_t *rx_queue); static int eth_igb_add_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_ethertype_filter *filter, uint16_t rx_queue); static int eth_igb_remove_ethertype_filter(struct rte_eth_dev *dev, uint16_t index); static int eth_igb_get_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_ethertype_filter *filter, uint16_t *rx_queue); static int eth_igb_add_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_2tuple_filter *filter, uint16_t rx_queue); static int eth_igb_remove_2tuple_filter(struct rte_eth_dev *dev, uint16_t index); static int eth_igb_get_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_2tuple_filter *filter, uint16_t *rx_queue); static int eth_igb_add_flex_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_flex_filter *filter, uint16_t rx_queue); static int eth_igb_remove_flex_filter(struct rte_eth_dev *dev, uint16_t index); static int eth_igb_get_flex_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_flex_filter *filter, uint16_t *rx_queue); static int eth_igb_add_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_5tuple_filter *filter, uint16_t rx_queue); static int eth_igb_remove_5tuple_filter(struct rte_eth_dev *dev, uint16_t index); static int eth_igb_get_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_5tuple_filter *filter, uint16_t *rx_queue); /* * Define VF Stats MACRO for Non "cleared on read" register */ #define UPDATE_VF_STAT(reg, last, cur) \ { \ u32 latest = E1000_READ_REG(hw, reg); \ cur += latest - last; \ last = latest; \ } #define IGB_FC_PAUSE_TIME 0x0680 #define IGB_LINK_UPDATE_CHECK_TIMEOUT 10 /* 9s */ #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ #define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */ static enum e1000_fc_mode igb_fc_setting = e1000_fc_full; /* * The set of PCI devices this driver supports */ static struct rte_pci_id pci_id_igb_map[] = { #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)}, #include "rte_pci_dev_ids.h" {.device_id = 0}, }; /* * The set of PCI devices this driver supports (for 82576&I350 VF) */ static struct rte_pci_id pci_id_igbvf_map[] = { #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)}, #include "rte_pci_dev_ids.h" {.device_id = 0}, }; static struct eth_dev_ops eth_igb_ops = { .dev_configure = eth_igb_configure, .dev_start = eth_igb_start, .dev_stop = eth_igb_stop, .dev_close = eth_igb_close, .promiscuous_enable = eth_igb_promiscuous_enable, .promiscuous_disable = eth_igb_promiscuous_disable, .allmulticast_enable = eth_igb_allmulticast_enable, .allmulticast_disable = eth_igb_allmulticast_disable, .link_update = eth_igb_link_update, .stats_get = eth_igb_stats_get, .stats_reset = eth_igb_stats_reset, .dev_infos_get = eth_igb_infos_get, .mtu_set = eth_igb_mtu_set, .vlan_filter_set = eth_igb_vlan_filter_set, .vlan_tpid_set = eth_igb_vlan_tpid_set, .vlan_offload_set = eth_igb_vlan_offload_set, .rx_queue_setup = eth_igb_rx_queue_setup, .rx_queue_release = eth_igb_rx_queue_release, .rx_queue_count = eth_igb_rx_queue_count, .rx_descriptor_done = eth_igb_rx_descriptor_done, .tx_queue_setup = eth_igb_tx_queue_setup, .tx_queue_release = eth_igb_tx_queue_release, .dev_led_on = eth_igb_led_on, .dev_led_off = eth_igb_led_off, .flow_ctrl_get = eth_igb_flow_ctrl_get, .flow_ctrl_set = eth_igb_flow_ctrl_set, .mac_addr_add = eth_igb_rar_set, .mac_addr_remove = eth_igb_rar_clear, .reta_update = eth_igb_rss_reta_update, .reta_query = eth_igb_rss_reta_query, .rss_hash_update = eth_igb_rss_hash_update, .rss_hash_conf_get = eth_igb_rss_hash_conf_get, .add_syn_filter = eth_igb_add_syn_filter, .remove_syn_filter = eth_igb_remove_syn_filter, .get_syn_filter = eth_igb_get_syn_filter, .add_ethertype_filter = eth_igb_add_ethertype_filter, .remove_ethertype_filter = eth_igb_remove_ethertype_filter, .get_ethertype_filter = eth_igb_get_ethertype_filter, .add_2tuple_filter = eth_igb_add_2tuple_filter, .remove_2tuple_filter = eth_igb_remove_2tuple_filter, .get_2tuple_filter = eth_igb_get_2tuple_filter, .add_flex_filter = eth_igb_add_flex_filter, .remove_flex_filter = eth_igb_remove_flex_filter, .get_flex_filter = eth_igb_get_flex_filter, .add_5tuple_filter = eth_igb_add_5tuple_filter, .remove_5tuple_filter = eth_igb_remove_5tuple_filter, .get_5tuple_filter = eth_igb_get_5tuple_filter, }; /* * dev_ops for virtual function, bare necessities for basic vf * operation have been implemented */ static struct eth_dev_ops igbvf_eth_dev_ops = { .dev_configure = igbvf_dev_configure, .dev_start = igbvf_dev_start, .dev_stop = igbvf_dev_stop, .dev_close = igbvf_dev_close, .link_update = eth_igb_link_update, .stats_get = eth_igbvf_stats_get, .stats_reset = eth_igbvf_stats_reset, .vlan_filter_set = igbvf_vlan_filter_set, .dev_infos_get = eth_igbvf_infos_get, .rx_queue_setup = eth_igb_rx_queue_setup, .rx_queue_release = eth_igb_rx_queue_release, .tx_queue_setup = eth_igb_tx_queue_setup, .tx_queue_release = eth_igb_tx_queue_release, }; /** * Atomically reads the link status information from global * structure rte_eth_dev. * * @param dev * - Pointer to the structure rte_eth_dev to read from. * - Pointer to the buffer to be saved with the link status. * * @return * - On success, zero. * - On failure, negative value. */ static inline int rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = link; struct rte_eth_link *src = &(dev->data->dev_link); if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } /** * Atomically writes the link status information into global * structure rte_eth_dev. * * @param dev * - Pointer to the structure rte_eth_dev to read from. * - Pointer to the buffer to be saved with the link status. * * @return * - On success, zero. * - On failure, negative value. */ static inline int rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev, struct rte_eth_link *link) { struct rte_eth_link *dst = &(dev->data->dev_link); struct rte_eth_link *src = link; if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, *(uint64_t *)src) == 0) return -1; return 0; } static inline void igb_intr_enable(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); E1000_WRITE_REG(hw, E1000_IMS, intr->mask); E1000_WRITE_FLUSH(hw); } static void igb_intr_disable(struct e1000_hw *hw) { E1000_WRITE_REG(hw, E1000_IMC, ~0); E1000_WRITE_FLUSH(hw); } static inline int32_t igb_pf_reset_hw(struct e1000_hw *hw) { uint32_t ctrl_ext; int32_t status; status = e1000_reset_hw(hw); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); return status; } static void igb_identify_hardware(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); hw->vendor_id = dev->pci_dev->id.vendor_id; hw->device_id = dev->pci_dev->id.device_id; hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id; hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id; e1000_set_mac_type(hw); /* need to check if it is a vf device below */ } static int igb_reset_swfw_lock(struct e1000_hw *hw) { int ret_val; /* * Do mac ops initialization manually here, since we will need * some function pointers set by this call. */ ret_val = e1000_init_mac_params(hw); if (ret_val) return ret_val; /* * SMBI lock should not fail in this early stage. If this is the case, * it is due to an improper exit of the application. * So force the release of the faulty lock. */ if (e1000_get_hw_semaphore_generic(hw) < 0) { PMD_DRV_LOG(DEBUG, "SMBI lock released"); } e1000_put_hw_semaphore_generic(hw); if (hw->mac.ops.acquire_swfw_sync != NULL) { uint16_t mask; /* * Phy lock should not fail in this early stage. If this is the case, * it is due to an improper exit of the application. * So force the release of the faulty lock. */ mask = E1000_SWFW_PHY0_SM << hw->bus.func; if (hw->bus.func > E1000_FUNC_1) mask <<= 2; if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released", hw->bus.func); } hw->mac.ops.release_swfw_sync(hw, mask); /* * This one is more tricky since it is common to all ports; but * swfw_sync retries last long enough (1s) to be almost sure that if * lock can not be taken it is due to an improper lock of the * semaphore. */ mask = E1000_SWFW_EEP_SM; if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { PMD_DRV_LOG(DEBUG, "SWFW common locks released"); } hw->mac.ops.release_swfw_sync(hw, mask); } return E1000_SUCCESS; } static int eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv, struct rte_eth_dev *eth_dev) { int error = 0; struct rte_pci_device *pci_dev; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); uint32_t ctrl_ext; pci_dev = eth_dev->pci_dev; eth_dev->dev_ops = ð_igb_ops; eth_dev->rx_pkt_burst = ð_igb_recv_pkts; eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ if (eth_dev->data->scattered_rx) eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; return 0; } hw->hw_addr= (void *)pci_dev->mem_resource[0].addr; igb_identify_hardware(eth_dev); if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) { error = -EIO; goto err_late; } e1000_get_bus_info(hw); /* Reset any pending lock */ if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) { error = -EIO; goto err_late; } /* Finish initialization */ if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) { error = -EIO; goto err_late; } hw->mac.autoneg = 1; hw->phy.autoneg_wait_to_complete = 0; hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = 0; /* AUTO_ALL_MODES */ hw->phy.disable_polarity_correction = 0; hw->phy.ms_type = e1000_ms_hw_default; } /* * Start from a known state, this is important in reading the nvm * and mac from that. */ igb_pf_reset_hw(hw); /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(hw) < 0) { /* * Some PCI-E parts fail the first check due to * the link being in sleep state, call it again, * if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); error = -EIO; goto err_late; } } /* Read the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(hw) != 0) { PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); error = -EIO; goto err_late; } /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " "store MAC addresses", ETHER_ADDR_LEN * hw->mac.rar_entry_count); error = -ENOMEM; goto err_late; } /* Copy the permanent MAC address */ ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); /* initialize the vfta */ memset(shadow_vfta, 0, sizeof(*shadow_vfta)); /* Now initialize the hardware */ if (igb_hardware_init(hw) != 0) { PMD_INIT_LOG(ERR, "Hardware initialization failed"); rte_free(eth_dev->data->mac_addrs); eth_dev->data->mac_addrs = NULL; error = -ENODEV; goto err_late; } hw->mac.get_link_status = 1; /* Indicate SOL/IDER usage */ if (e1000_check_reset_block(hw) < 0) { PMD_INIT_LOG(ERR, "PHY reset is blocked due to" "SOL/IDER session"); } /* initialize PF if max_vfs not zero */ igb_pf_host_init(eth_dev); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id); rte_intr_callback_register(&(pci_dev->intr_handle), eth_igb_interrupt_handler, (void *)eth_dev); /* enable uio intr after callback register */ rte_intr_enable(&(pci_dev->intr_handle)); /* enable support intr */ igb_intr_enable(eth_dev); return 0; err_late: igb_hw_control_release(hw); return (error); } /* * Virtual Function device init */ static int eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv, struct rte_eth_dev *eth_dev) { struct rte_pci_device *pci_dev; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); int diag; PMD_INIT_FUNC_TRACE(); eth_dev->dev_ops = &igbvf_eth_dev_ops; eth_dev->rx_pkt_burst = ð_igb_recv_pkts; eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; /* for secondary processes, we don't initialise any further as primary * has already done this work. Only check we don't need a different * RX function */ if (rte_eal_process_type() != RTE_PROC_PRIMARY){ if (eth_dev->data->scattered_rx) eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; return 0; } pci_dev = eth_dev->pci_dev; hw->device_id = pci_dev->id.device_id; hw->vendor_id = pci_dev->id.vendor_id; hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; /* Initialize the shared code (base driver) */ diag = e1000_setup_init_funcs(hw, TRUE); if (diag != 0) { PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d", diag); return -EIO; } /* init_mailbox_params */ hw->mbx.ops.init_params(hw); /* Disable the interrupts for VF */ igbvf_intr_disable(hw); diag = hw->mac.ops.reset_hw(hw); /* Allocate memory for storing MAC addresses */ eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); if (eth_dev->data->mac_addrs == NULL) { PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to store MAC " "addresses", ETHER_ADDR_LEN * hw->mac.rar_entry_count); return -ENOMEM; } /* Copy the permanent MAC address */ ether_addr_copy((struct ether_addr *) hw->mac.perm_addr, ð_dev->data->mac_addrs[0]); PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x " "mac.type=%s", eth_dev->data->port_id, pci_dev->id.vendor_id, pci_dev->id.device_id, "igb_mac_82576_vf"); return 0; } static struct eth_driver rte_igb_pmd = { { .name = "rte_igb_pmd", .id_table = pci_id_igb_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, }, .eth_dev_init = eth_igb_dev_init, .dev_private_size = sizeof(struct e1000_adapter), }; /* * virtual function driver struct */ static struct eth_driver rte_igbvf_pmd = { { .name = "rte_igbvf_pmd", .id_table = pci_id_igbvf_map, .drv_flags = RTE_PCI_DRV_NEED_MAPPING, }, .eth_dev_init = eth_igbvf_dev_init, .dev_private_size = sizeof(struct e1000_adapter), }; static int rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused) { rte_eth_driver_register(&rte_igb_pmd); return 0; } static void igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); /* RCTL: enable VLAN filter since VMDq always use VLAN filter */ uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, rctl); } /* * VF Driver initialization routine. * Invoked one at EAL init time. * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices. */ static int rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused) { PMD_INIT_FUNC_TRACE(); rte_eth_driver_register(&rte_igbvf_pmd); return (0); } static int eth_igb_configure(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; PMD_INIT_FUNC_TRACE(); return (0); } static int eth_igb_start(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret, i, mask; uint32_t ctrl_ext; PMD_INIT_FUNC_TRACE(); /* Power up the phy. Needed to make the link go Up */ e1000_power_up_phy(hw); /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. */ if (hw->mac.type == e1000_82575) { uint32_t pba; pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ E1000_WRITE_REG(hw, E1000_PBA, pba); } /* Put the address into the Receive Address Array */ e1000_rar_set(hw, hw->mac.addr, 0); /* Initialize the hardware */ if (igb_hardware_init(hw)) { PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); return (-EIO); } E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); /* Set PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext |= E1000_CTRL_EXT_PFRSTD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); /* configure PF module if SRIOV enabled */ igb_pf_host_configure(dev); /* Configure for OS presence */ igb_init_manageability(hw); eth_igb_tx_init(dev); /* This can fail when allocating mbufs for descriptor rings */ ret = eth_igb_rx_init(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); igb_dev_clear_queues(dev); return ret; } e1000_clear_hw_cntrs_base_generic(hw); /* * VLAN Offload Settings */ mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ ETH_VLAN_EXTEND_MASK; eth_igb_vlan_offload_set(dev, mask); if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) { /* Enable VLAN filter since VMDq always use VLAN filter */ igb_vmdq_vlan_hw_filter_enable(dev); } /* * Configure the Interrupt Moderation register (EITR) with the maximum * possible value (0xFFFF) to minimize "System Partial Write" issued by * spurious [DMA] memory updates of RX and TX ring descriptors. * * With a EITR granularity of 2 microseconds in the 82576, only 7/8 * spurious memory updates per second should be expected. * ((65535 * 2) / 1000.1000 ~= 0.131 second). * * Because interrupts are not used at all, the MSI-X is not activated * and interrupt moderation is controlled by EITR[0]. * * Note that having [almost] disabled memory updates of RX and TX ring * descriptors through the Interrupt Moderation mechanism, memory * updates of ring descriptors are now moderated by the configurable * value of Write-Back Threshold registers. */ if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) || (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { uint32_t ivar; /* Enable all RX & TX queues in the IVAR registers */ ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID); for (i = 0; i < 8; i++) E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar); /* Configure EITR with the maximum possible value (0xFFFF) */ E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF); } /* Setup link speed and duplex */ switch (dev->data->dev_conf.link_speed) { case ETH_LINK_SPEED_AUTONEG: if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX; else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX; else goto error_invalid_config; break; case ETH_LINK_SPEED_10: if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) hw->phy.autoneg_advertised = E1000_ALL_10_SPEED; else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) hw->phy.autoneg_advertised = ADVERTISE_10_HALF; else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) hw->phy.autoneg_advertised = ADVERTISE_10_FULL; else goto error_invalid_config; break; case ETH_LINK_SPEED_100: if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) hw->phy.autoneg_advertised = E1000_ALL_100_SPEED; else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) hw->phy.autoneg_advertised = ADVERTISE_100_HALF; else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) hw->phy.autoneg_advertised = ADVERTISE_100_FULL; else goto error_invalid_config; break; case ETH_LINK_SPEED_1000: if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) || (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)) hw->phy.autoneg_advertised = ADVERTISE_1000_FULL; else goto error_invalid_config; break; case ETH_LINK_SPEED_10000: default: goto error_invalid_config; } e1000_setup_link(hw); /* check if lsc interrupt feature is enabled */ if (dev->data->dev_conf.intr_conf.lsc != 0) ret = eth_igb_lsc_interrupt_setup(dev); /* resume enabled intr since hw reset */ igb_intr_enable(dev); PMD_INIT_LOG(DEBUG, "<<"); return (0); error_invalid_config: PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u", dev->data->dev_conf.link_speed, dev->data->dev_conf.link_duplex, dev->data->port_id); igb_dev_clear_queues(dev); return (-EINVAL); } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC. * **********************************************************************/ static void eth_igb_stop(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link; igb_intr_disable(hw); igb_pf_reset_hw(hw); E1000_WRITE_REG(hw, E1000_WUC, 0); /* Set bit for Go Link disconnect */ if (hw->mac.type >= e1000_82580) { uint32_t phpm_reg; phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); phpm_reg |= E1000_82580_PM_GO_LINKD; E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); } /* Power down the phy. Needed to make the link go Down */ e1000_power_down_phy(hw); igb_dev_clear_queues(dev); /* clear the recorded link status */ memset(&link, 0, sizeof(link)); rte_igb_dev_atomic_write_link_status(dev, &link); } static void eth_igb_close(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link; eth_igb_stop(dev); e1000_phy_hw_reset(hw); igb_release_manageability(hw); igb_hw_control_release(hw); /* Clear bit for Go Link disconnect */ if (hw->mac.type >= e1000_82580) { uint32_t phpm_reg; phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); phpm_reg &= ~E1000_82580_PM_GO_LINKD; E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); } igb_dev_clear_queues(dev); memset(&link, 0, sizeof(link)); rte_igb_dev_atomic_write_link_status(dev, &link); } static int igb_get_rx_buffer_size(struct e1000_hw *hw) { uint32_t rx_buf_size; if (hw->mac.type == e1000_82576) { rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10; } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) { /* PBS needs to be translated according to a lookup table */ rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf); rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size); rx_buf_size = (rx_buf_size << 10); } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10; } else { rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10; } return rx_buf_size; } /********************************************************************* * * Initialize the hardware * **********************************************************************/ static int igb_hardware_init(struct e1000_hw *hw) { uint32_t rx_buf_size; int diag; /* Let the firmware know the OS is in control */ igb_hw_control_acquire(hw); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two standard size (1518) * frames to be received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitrary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buf_size = igb_get_rx_buffer_size(hw); hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2); hw->fc.low_water = hw->fc.high_water - 1500; hw->fc.pause_time = IGB_FC_PAUSE_TIME; hw->fc.send_xon = 1; /* Set Flow control, use the tunable location if sane */ if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4)) hw->fc.requested_mode = igb_fc_setting; else hw->fc.requested_mode = e1000_fc_none; /* Issue a global reset */ igb_pf_reset_hw(hw); E1000_WRITE_REG(hw, E1000_WUC, 0); diag = e1000_init_hw(hw); if (diag < 0) return (diag); E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); e1000_get_phy_info(hw); e1000_check_for_link(hw); return (0); } /* This function is based on igb_update_stats_counters() in igb/if_igb.c */ static void eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_hw_stats *stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); int pause_frames; if(hw->phy.media_type == e1000_media_type_copper || (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS); stats->sec += E1000_READ_REG(hw, E1000_SEC); } stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); stats->mpc += E1000_READ_REG(hw, E1000_MPC); stats->scc += E1000_READ_REG(hw, E1000_SCC); stats->ecol += E1000_READ_REG(hw, E1000_ECOL); stats->mcc += E1000_READ_REG(hw, E1000_MCC); stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); stats->colc += E1000_READ_REG(hw, E1000_COLC); stats->dc += E1000_READ_REG(hw, E1000_DC); stats->rlec += E1000_READ_REG(hw, E1000_RLEC); stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); /* ** For watchdog management we need to know if we have been ** paused during the last interval, so capture that here. */ pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); stats->xoffrxc += pause_frames; stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); stats->gprc += E1000_READ_REG(hw, E1000_GPRC); stats->bprc += E1000_READ_REG(hw, E1000_BPRC); stats->mprc += E1000_READ_REG(hw, E1000_MPRC); stats->gptc += E1000_READ_REG(hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ stats->gorc += E1000_READ_REG(hw, E1000_GORCL); stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); stats->ruc += E1000_READ_REG(hw, E1000_RUC); stats->rfc += E1000_READ_REG(hw, E1000_RFC); stats->roc += E1000_READ_REG(hw, E1000_ROC); stats->rjc += E1000_READ_REG(hw, E1000_RJC); stats->tor += E1000_READ_REG(hw, E1000_TORH); stats->tot += E1000_READ_REG(hw, E1000_TOTH); stats->tpr += E1000_READ_REG(hw, E1000_TPR); stats->tpt += E1000_READ_REG(hw, E1000_TPT); stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); stats->mptc += E1000_READ_REG(hw, E1000_MPTC); stats->bptc += E1000_READ_REG(hw, E1000_BPTC); /* Interrupt Counts */ stats->iac += E1000_READ_REG(hw, E1000_IAC); stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); /* Host to Card Statistics */ stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC); stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC); stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC); stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC); stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC); stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC); stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC); stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL); stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32); stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL); stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32); stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS); stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC); stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC); stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); if (rte_stats == NULL) return; /* Rx Errors */ rte_stats->ibadcrc = stats->crcerrs; rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc; rte_stats->imissed = stats->mpc; rte_stats->ierrors = rte_stats->ibadcrc + rte_stats->ibadlen + rte_stats->imissed + stats->rxerrc + stats->algnerrc + stats->cexterr; /* Tx Errors */ rte_stats->oerrors = stats->ecol + stats->latecol; /* XON/XOFF pause frames */ rte_stats->tx_pause_xon = stats->xontxc; rte_stats->rx_pause_xon = stats->xonrxc; rte_stats->tx_pause_xoff = stats->xofftxc; rte_stats->rx_pause_xoff = stats->xoffrxc; rte_stats->ipackets = stats->gprc; rte_stats->opackets = stats->gptc; rte_stats->ibytes = stats->gorc; rte_stats->obytes = stats->gotc; } static void eth_igb_stats_reset(struct rte_eth_dev *dev) { struct e1000_hw_stats *hw_stats = E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* HW registers are cleared on read */ eth_igb_stats_get(dev, NULL); /* Reset software totals */ memset(hw_stats, 0, sizeof(*hw_stats)); } static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* Good Rx packets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGPRC, hw_stats->last_gprc, hw_stats->gprc); /* Good Rx octets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGORC, hw_stats->last_gorc, hw_stats->gorc); /* Good Tx packets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGPTC, hw_stats->last_gptc, hw_stats->gptc); /* Good Tx octets, include VF loopback */ UPDATE_VF_STAT(E1000_VFGOTC, hw_stats->last_gotc, hw_stats->gotc); /* Rx Multicst packets */ UPDATE_VF_STAT(E1000_VFMPRC, hw_stats->last_mprc, hw_stats->mprc); /* Good Rx loopback packets */ UPDATE_VF_STAT(E1000_VFGPRLBC, hw_stats->last_gprlbc, hw_stats->gprlbc); /* Good Rx loopback octets */ UPDATE_VF_STAT(E1000_VFGORLBC, hw_stats->last_gorlbc, hw_stats->gorlbc); /* Good Tx loopback packets */ UPDATE_VF_STAT(E1000_VFGPTLBC, hw_stats->last_gptlbc, hw_stats->gptlbc); /* Good Tx loopback octets */ UPDATE_VF_STAT(E1000_VFGOTLBC, hw_stats->last_gotlbc, hw_stats->gotlbc); if (rte_stats == NULL) return; memset(rte_stats, 0, sizeof(*rte_stats)); rte_stats->ipackets = hw_stats->gprc; rte_stats->ibytes = hw_stats->gorc; rte_stats->opackets = hw_stats->gptc; rte_stats->obytes = hw_stats->gotc; rte_stats->imcasts = hw_stats->mprc; rte_stats->ilbpackets = hw_stats->gprlbc; rte_stats->ilbbytes = hw_stats->gorlbc; rte_stats->olbpackets = hw_stats->gptlbc; rte_stats->olbbytes = hw_stats->gotlbc; } static void eth_igbvf_stats_reset(struct rte_eth_dev *dev) { struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); /* Sync HW register to the last stats */ eth_igbvf_stats_get(dev, NULL); /* reset HW current stats*/ memset(&hw_stats->gprc, 0, sizeof(*hw_stats) - offsetof(struct e1000_vf_stats, gprc)); } static void eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ dev_info->max_mac_addrs = hw->mac.rar_entry_count; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM; switch (hw->mac.type) { case e1000_82575: dev_info->max_rx_queues = 4; dev_info->max_tx_queues = 4; dev_info->max_vmdq_pools = 0; break; case e1000_82576: dev_info->max_rx_queues = 16; dev_info->max_tx_queues = 16; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 16; break; case e1000_82580: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 8; break; case e1000_i350: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; dev_info->max_vmdq_pools = ETH_8_POOLS; dev_info->vmdq_queue_num = 8; break; case e1000_i354: dev_info->max_rx_queues = 8; dev_info->max_tx_queues = 8; break; case e1000_i210: dev_info->max_rx_queues = 4; dev_info->max_tx_queues = 4; dev_info->max_vmdq_pools = 0; break; case e1000_i211: dev_info->max_rx_queues = 2; dev_info->max_tx_queues = 2; dev_info->max_vmdq_pools = 0; break; default: /* Should not happen */ break; } dev_info->reta_size = ETH_RSS_RETA_SIZE_128; dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = IGB_DEFAULT_RX_PTHRESH, .hthresh = IGB_DEFAULT_RX_HTHRESH, .wthresh = IGB_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = IGB_DEFAULT_TX_PTHRESH, .hthresh = IGB_DEFAULT_TX_HTHRESH, .wthresh = IGB_DEFAULT_TX_WTHRESH, }, .txq_flags = 0, }; } static void eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ dev_info->max_mac_addrs = hw->mac.rar_entry_count; dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | DEV_RX_OFFLOAD_IPV4_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM; dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_SCTP_CKSUM; switch (hw->mac.type) { case e1000_vfadapt: dev_info->max_rx_queues = 2; dev_info->max_tx_queues = 2; break; case e1000_vfadapt_i350: dev_info->max_rx_queues = 1; dev_info->max_tx_queues = 1; break; default: /* Should not happen */ break; } dev_info->default_rxconf = (struct rte_eth_rxconf) { .rx_thresh = { .pthresh = IGB_DEFAULT_RX_PTHRESH, .hthresh = IGB_DEFAULT_RX_HTHRESH, .wthresh = IGB_DEFAULT_RX_WTHRESH, }, .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, .rx_drop_en = 0, }; dev_info->default_txconf = (struct rte_eth_txconf) { .tx_thresh = { .pthresh = IGB_DEFAULT_TX_PTHRESH, .hthresh = IGB_DEFAULT_TX_HTHRESH, .wthresh = IGB_DEFAULT_TX_WTHRESH, }, .txq_flags = 0, }; } /* return 0 means link status changed, -1 means not changed */ static int eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct rte_eth_link link, old; int link_check, count; link_check = 0; hw->mac.get_link_status = 1; /* possible wait-to-complete in up to 9 seconds */ for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) { /* Read the real link status */ switch (hw->phy.media_type) { case e1000_media_type_copper: /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = hw->mac.serdes_has_link; break; /* VF device is type_unknown */ case e1000_media_type_unknown: eth_igbvf_link_update(hw); link_check = !hw->mac.get_link_status; break; default: break; } if (link_check || wait_to_complete == 0) break; rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL); } memset(&link, 0, sizeof(link)); rte_igb_dev_atomic_read_link_status(dev, &link); old = link; /* Now we check if a transition has happened */ if (link_check) { hw->mac.ops.get_link_up_info(hw, &link.link_speed, &link.link_duplex); link.link_status = 1; } else if (!link_check) { link.link_speed = 0; link.link_duplex = 0; link.link_status = 0; } rte_igb_dev_atomic_write_link_status(dev, &link); /* not changed */ if (old.link_status == link.link_status) return -1; /* changed */ return 0; } /* * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means * that the driver is loaded. */ static void igb_hw_control_acquire(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /* * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. */ static void igb_hw_control_release(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Let firmware taken over control of h/w */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features. */ static void igb_init_manageability(struct e1000_hw *hw) { if (e1000_enable_mng_pass_thru(hw)) { uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); uint32_t manc = E1000_READ_REG(hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; manc2h |= 1 << 5; /* Mng Port 623 */ manc2h |= 1 << 6; /* Mng Port 664 */ E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(hw, E1000_MANC, manc); } } static void igb_release_manageability(struct e1000_hw *hw) { if (e1000_enable_mng_pass_thru(hw)) { uint32_t manc = E1000_READ_REG(hw, E1000_MANC); manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(hw, E1000_MANC, manc); } } static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= (~E1000_RCTL_UPE); if (dev->data->all_multicast == 1) rctl |= E1000_RCTL_MPE; else rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rctl; if (dev->data->promiscuous == 1) return; /* must remain in all_multicast mode */ rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(hw, E1000_RCTL, rctl); } static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t vfta; uint32_t vid_idx; uint32_t vid_bit; vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK); vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); if (on) vfta |= vid_bit; else vfta &= ~vid_bit; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); /* update local VFTA copy */ shadow_vfta->vfta[vid_idx] = vfta; return 0; } static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg = ETHER_TYPE_VLAN ; reg |= (tpid << 16); E1000_WRITE_REG(hw, E1000_VET, reg); } static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* Filter Table Disable */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg &= ~E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t reg; int i; /* Filter Table Enable, CFI not used for packet acceptance */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); /* restore VFTA table */ for (i = 0; i < IGB_VFTA_SIZE; i++) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); } static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Disable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* VLAN Mode Enable */ reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* CTRL_EXT: Extended VLAN */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_EXTEND_VLAN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Update maximum packet length */ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len + VLAN_TAG_SIZE); } static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t reg; /* CTRL_EXT: Extended VLAN */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_EXTEND_VLAN; E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); /* Update maximum packet length */ if (dev->data->dev_conf.rxmode.jumbo_frame == 1) E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len + 2 * VLAN_TAG_SIZE); } static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask) { if(mask & ETH_VLAN_STRIP_MASK){ if (dev->data->dev_conf.rxmode.hw_vlan_strip) igb_vlan_hw_strip_enable(dev); else igb_vlan_hw_strip_disable(dev); } if(mask & ETH_VLAN_FILTER_MASK){ if (dev->data->dev_conf.rxmode.hw_vlan_filter) igb_vlan_hw_filter_enable(dev); else igb_vlan_hw_filter_disable(dev); } if(mask & ETH_VLAN_EXTEND_MASK){ if (dev->data->dev_conf.rxmode.hw_vlan_extend) igb_vlan_hw_extend_enable(dev); else igb_vlan_hw_extend_disable(dev); } } /** * It enables the interrupt mask and then enable the interrupt. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev) { struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); intr->mask |= E1000_ICR_LSC; return 0; } /* * It reads ICR and gets interrupt causes, check it and set a bit flag * to update link status. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev) { uint32_t icr; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); igb_intr_disable(hw); /* read-on-clear nic registers here */ icr = E1000_READ_REG(hw, E1000_ICR); intr->flags = 0; if (icr & E1000_ICR_LSC) { intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; } if (icr & E1000_ICR_VMMB) intr->flags |= E1000_FLAG_MAILBOX; return 0; } /* * It executes link_update after knowing an interrupt is prsent. * * @param dev * Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_interrupt_action(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_interrupt *intr = E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); uint32_t tctl, rctl; struct rte_eth_link link; int ret; if (intr->flags & E1000_FLAG_MAILBOX) { igb_pf_mbx_process(dev); intr->flags &= ~E1000_FLAG_MAILBOX; } igb_intr_enable(dev); rte_intr_enable(&(dev->pci_dev->intr_handle)); if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) { intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; /* set get_link_status to check register later */ hw->mac.get_link_status = 1; ret = eth_igb_link_update(dev, 0); /* check if link has changed */ if (ret < 0) return 0; memset(&link, 0, sizeof(link)); rte_igb_dev_atomic_read_link_status(dev, &link); if (link.link_status) { PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s", dev->data->port_id, (unsigned)link.link_speed, link.link_duplex == ETH_LINK_FULL_DUPLEX ? "full-duplex" : "half-duplex"); } else { PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id); } PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d", dev->pci_dev->addr.domain, dev->pci_dev->addr.bus, dev->pci_dev->addr.devid, dev->pci_dev->addr.function); tctl = E1000_READ_REG(hw, E1000_TCTL); rctl = E1000_READ_REG(hw, E1000_RCTL); if (link.link_status) { /* enable Tx/Rx */ tctl |= E1000_TCTL_EN; rctl |= E1000_RCTL_EN; } else { /* disable Tx/Rx */ tctl &= ~E1000_TCTL_EN; rctl &= ~E1000_RCTL_EN; } E1000_WRITE_REG(hw, E1000_TCTL, tctl); E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC); } return 0; } /** * Interrupt handler which shall be registered at first. * * @param handle * Pointer to interrupt handle. * @param param * The address of parameter (struct rte_eth_dev *) regsitered before. * * @return * void */ static void eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle, void *param) { struct rte_eth_dev *dev = (struct rte_eth_dev *)param; eth_igb_interrupt_get_status(dev); eth_igb_interrupt_action(dev); } static int eth_igb_led_on(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); } static int eth_igb_led_off(struct rte_eth_dev *dev) { struct e1000_hw *hw; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); } static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; uint32_t ctrl; int tx_pause; int rx_pause; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); fc_conf->pause_time = hw->fc.pause_time; fc_conf->high_water = hw->fc.high_water; fc_conf->low_water = hw->fc.low_water; fc_conf->send_xon = hw->fc.send_xon; fc_conf->autoneg = hw->mac.autoneg; /* * Return rx_pause and tx_pause status according to actual setting of * the TFCE and RFCE bits in the CTRL register. */ ctrl = E1000_READ_REG(hw, E1000_CTRL); if (ctrl & E1000_CTRL_TFCE) tx_pause = 1; else tx_pause = 0; if (ctrl & E1000_CTRL_RFCE) rx_pause = 1; else rx_pause = 0; if (rx_pause && tx_pause) fc_conf->mode = RTE_FC_FULL; else if (rx_pause) fc_conf->mode = RTE_FC_RX_PAUSE; else if (tx_pause) fc_conf->mode = RTE_FC_TX_PAUSE; else fc_conf->mode = RTE_FC_NONE; return 0; } static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) { struct e1000_hw *hw; int err; enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { e1000_fc_none, e1000_fc_rx_pause, e1000_fc_tx_pause, e1000_fc_full }; uint32_t rx_buf_size; uint32_t max_high_water; uint32_t rctl; hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (fc_conf->autoneg != hw->mac.autoneg) return -ENOTSUP; rx_buf_size = igb_get_rx_buffer_size(hw); PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); /* At least reserve one Ethernet frame for watermark */ max_high_water = rx_buf_size - ETHER_MAX_LEN; if ((fc_conf->high_water > max_high_water) || (fc_conf->high_water < fc_conf->low_water)) { PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); return (-EINVAL); } hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; hw->fc.pause_time = fc_conf->pause_time; hw->fc.high_water = fc_conf->high_water; hw->fc.low_water = fc_conf->low_water; hw->fc.send_xon = fc_conf->send_xon; err = e1000_setup_link_generic(hw); if (err == E1000_SUCCESS) { /* check if we want to forward MAC frames - driver doesn't have native * capability to do that, so we'll write the registers ourselves */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* set or clear MFLCN.PMCF bit depending on configuration */ if (fc_conf->mac_ctrl_frame_fwd != 0) rctl |= E1000_RCTL_PMCF; else rctl &= ~E1000_RCTL_PMCF; E1000_WRITE_REG(hw, E1000_RCTL, rctl); E1000_WRITE_FLUSH(hw); return 0; } PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); return (-EIO); } #define E1000_RAH_POOLSEL_SHIFT (18) static void eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, uint32_t index, __rte_unused uint32_t pool) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t rah; e1000_rar_set(hw, mac_addr->addr_bytes, index); rah = E1000_READ_REG(hw, E1000_RAH(index)); rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool)); E1000_WRITE_REG(hw, E1000_RAH(index), rah); } static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index) { uint8_t addr[ETHER_ADDR_LEN]; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); memset(addr, 0, sizeof(addr)); e1000_rar_set(hw, addr, index); } /* * Virtual Function operations */ static void igbvf_intr_disable(struct e1000_hw *hw) { PMD_INIT_FUNC_TRACE(); /* Clear interrupt mask to stop from interrupts being generated */ E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF); E1000_WRITE_FLUSH(hw); } static void igbvf_stop_adapter(struct rte_eth_dev *dev) { u32 reg_val; u16 i; struct rte_eth_dev_info dev_info; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); memset(&dev_info, 0, sizeof(dev_info)); eth_igbvf_infos_get(dev, &dev_info); /* Clear interrupt mask to stop from interrupts being generated */ igbvf_intr_disable(hw); /* Clear any pending interrupts, flush previous writes */ E1000_READ_REG(hw, E1000_EICR); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < dev_info.max_tx_queues; i++) E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH); /* Disable the receive unit by stopping each queue */ for (i = 0; i < dev_info.max_rx_queues; i++) { reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i)); reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE; E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val); while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE) ; } /* flush all queues disables */ E1000_WRITE_FLUSH(hw); msec_delay(2); } static int eth_igbvf_link_update(struct e1000_hw *hw) { struct e1000_mbx_info *mbx = &hw->mbx; struct e1000_mac_info *mac = &hw->mac; int ret_val = E1000_SUCCESS; PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf"); /* * We only want to run this if there has been a rst asserted. * in this case that could mean a link change, device reset, * or a virtual function reset */ /* If we were hit with a reset or timeout drop the link */ if (!e1000_check_for_rst(hw, 0) || !mbx->timeout) mac->get_link_status = TRUE; if (!mac->get_link_status) goto out; /* if link status is down no point in checking to see if pf is up */ if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) goto out; /* if we passed all the tests above then the link is up and we no * longer need to check for link */ mac->get_link_status = FALSE; out: return ret_val; } static int igbvf_dev_configure(struct rte_eth_dev *dev) { struct rte_eth_conf* conf = &dev->data->dev_conf; PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d", dev->data->port_id); /* * VF has no ability to enable/disable HW CRC * Keep the persistent behavior the same as Host PF */ #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC if (!conf->rxmode.hw_strip_crc) { PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip"); conf->rxmode.hw_strip_crc = 1; } #else if (conf->rxmode.hw_strip_crc) { PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip"); conf->rxmode.hw_strip_crc = 0; } #endif return 0; } static int igbvf_dev_start(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); int ret; PMD_INIT_FUNC_TRACE(); hw->mac.ops.reset_hw(hw); /* Set all vfta */ igbvf_set_vfta_all(dev,1); eth_igbvf_tx_init(dev); /* This can fail when allocating mbufs for descriptor rings */ ret = eth_igbvf_rx_init(dev); if (ret) { PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); igb_dev_clear_queues(dev); return ret; } return 0; } static void igbvf_dev_stop(struct rte_eth_dev *dev) { PMD_INIT_FUNC_TRACE(); igbvf_stop_adapter(dev); /* * Clear what we set, but we still keep shadow_vfta to * restore after device starts */ igbvf_set_vfta_all(dev,0); igb_dev_clear_queues(dev); } static void igbvf_dev_close(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); PMD_INIT_FUNC_TRACE(); e1000_reset_hw(hw); igbvf_dev_stop(dev); } static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on) { struct e1000_mbx_info *mbx = &hw->mbx; uint32_t msgbuf[2]; /* After set vlan, vlan strip will also be enabled in igb driver*/ msgbuf[0] = E1000_VF_SET_VLAN; msgbuf[1] = vid; /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ if (on) msgbuf[0] |= E1000_VF_SET_VLAN_ADD; return (mbx->ops.write_posted(hw, msgbuf, 2, 0)); } static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); int i = 0, j = 0, vfta = 0, mask = 1; for (i = 0; i < IGB_VFTA_SIZE; i++){ vfta = shadow_vfta->vfta[i]; if(vfta){ mask = 1; for (j = 0; j < 32; j++){ if(vfta & mask) igbvf_set_vfta(hw, (uint16_t)((i<<5)+j), on); mask<<=1; } } } } static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); struct e1000_vfta * shadow_vfta = E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); uint32_t vid_idx = 0; uint32_t vid_bit = 0; int ret = 0; PMD_INIT_FUNC_TRACE(); /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/ ret = igbvf_set_vfta(hw, vlan_id, !!on); if(ret){ PMD_INIT_LOG(ERR, "Unable to set VF vlan"); return ret; } vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F); vid_bit = (uint32_t) (1 << (vlan_id & 0x1F)); /*Save what we set and retore it after device reset*/ if (on) shadow_vfta->vfta[vid_idx] |= vid_bit; else shadow_vfta->vfta[vid_idx] &= ~vid_bit; return 0; } static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { uint8_t i, j, mask; uint32_t reta, r; uint16_t idx, shift; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (reta_size != ETH_RSS_RETA_SIZE_128) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number hardware can supported " "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128); return -EINVAL; } for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; mask = (uint8_t)((reta_conf[idx].mask >> shift) & IGB_4_BIT_MASK); if (!mask) continue; if (mask == IGB_4_BIT_MASK) r = 0; else r = E1000_READ_REG(hw, E1000_RETA(i >> 2)); for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) { if (mask & (0x1 << j)) reta |= reta_conf[idx].reta[shift + j] << (CHAR_BIT * j); else reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j)); } E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); } return 0; } static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, struct rte_eth_rss_reta_entry64 *reta_conf, uint16_t reta_size) { uint8_t i, j, mask; uint32_t reta; uint16_t idx, shift; struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (reta_size != ETH_RSS_RETA_SIZE_128) { PMD_DRV_LOG(ERR, "The size of hash lookup table configured " "(%d) doesn't match the number hardware can supported " "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128); return -EINVAL; } for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { idx = i / RTE_RETA_GROUP_SIZE; shift = i % RTE_RETA_GROUP_SIZE; mask = (uint8_t)((reta_conf[idx].mask >> shift) & IGB_4_BIT_MASK); if (!mask) continue; reta = E1000_READ_REG(hw, E1000_RETA(i >> 2)); for (j = 0; j < IGB_4_BIT_WIDTH; j++) { if (mask & (0x1 << j)) reta_conf[idx].reta[shift + j] = ((reta >> (CHAR_BIT * j)) & IGB_8_BIT_MASK); } } return 0; } #define MAC_TYPE_FILTER_SUP(type) do {\ if ((type) != e1000_82580 && (type) != e1000_i350 &&\ (type) != e1000_82576)\ return -ENOSYS;\ } while (0) /* * add the syn filter * * @param * dev: Pointer to struct rte_eth_dev. * filter: ponter to the filter that will be added. * rx_queue: the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_add_syn_filter(struct rte_eth_dev *dev, struct rte_syn_filter *filter, uint16_t rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t synqf, rfctl; MAC_TYPE_FILTER_SUP(hw->mac.type); if (rx_queue >= IGB_MAX_RX_QUEUE_NUM) return -EINVAL; synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); if (synqf & E1000_SYN_FILTER_ENABLE) return -EINVAL; synqf = (uint32_t)(((rx_queue << E1000_SYN_FILTER_QUEUE_SHIFT) & E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE); rfctl = E1000_READ_REG(hw, E1000_RFCTL); if (filter->hig_pri) rfctl |= E1000_RFCTL_SYNQFP; else rfctl &= ~E1000_RFCTL_SYNQFP; E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); return 0; } /* * remove the syn filter * * @param * dev: Pointer to struct rte_eth_dev. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_remove_syn_filter(struct rte_eth_dev *dev) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); MAC_TYPE_FILTER_SUP(hw->mac.type); E1000_WRITE_REG(hw, E1000_SYNQF(0), 0); return 0; } /* * get the syn filter's info * * @param * dev: Pointer to struct rte_eth_dev. * filter: ponter to the filter that returns. * *rx_queue: pointer to the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_get_syn_filter(struct rte_eth_dev *dev, struct rte_syn_filter *filter, uint16_t *rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t synqf, rfctl; MAC_TYPE_FILTER_SUP(hw->mac.type); synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); if (synqf & E1000_SYN_FILTER_ENABLE) { rfctl = E1000_READ_REG(hw, E1000_RFCTL); filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0; *rx_queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >> E1000_SYN_FILTER_QUEUE_SHIFT); return 0; } return -ENOENT; } /* * add an ethertype filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that will be added. * rx_queue: the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_add_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_ethertype_filter *filter, uint16_t rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t etqf; MAC_TYPE_FILTER_SUP(hw->mac.type); if (index >= E1000_MAX_ETQF_FILTERS || rx_queue >= IGB_MAX_RX_QUEUE_NUM) return -EINVAL; etqf = E1000_READ_REG(hw, E1000_ETQF(index)); if (etqf & E1000_ETQF_FILTER_ENABLE) return -EINVAL; /* filter index is in use. */ else etqf = 0; etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE; etqf |= (uint32_t)(filter->ethertype & E1000_ETQF_ETHERTYPE); etqf |= rx_queue << E1000_ETQF_QUEUE_SHIFT; if (filter->priority_en) { PMD_INIT_LOG(ERR, "vlan and priority (%d) is not supported" " in E1000.", filter->priority); return -EINVAL; } E1000_WRITE_REG(hw, E1000_ETQF(index), etqf); return 0; } /* * remove an ethertype filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_remove_ethertype_filter(struct rte_eth_dev *dev, uint16_t index) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); MAC_TYPE_FILTER_SUP(hw->mac.type); if (index >= E1000_MAX_ETQF_FILTERS) return -EINVAL; E1000_WRITE_REG(hw, E1000_ETQF(index), 0); return 0; } /* * get an ethertype filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that will be gotten. * *rx_queue: the ponited of the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_get_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_ethertype_filter *filter, uint16_t *rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t etqf; MAC_TYPE_FILTER_SUP(hw->mac.type); if (index >= E1000_MAX_ETQF_FILTERS) return -EINVAL; etqf = E1000_READ_REG(hw, E1000_ETQF(index)); if (etqf & E1000_ETQF_FILTER_ENABLE) { filter->ethertype = etqf & E1000_ETQF_ETHERTYPE; filter->priority_en = 0; *rx_queue = (etqf & E1000_ETQF_QUEUE) >> E1000_ETQF_QUEUE_SHIFT; return 0; } return -ENOENT; } #define MAC_TYPE_FILTER_SUP_EXT(type) do {\ if ((type) != e1000_82580 && (type) != e1000_i350)\ return -ENOSYS; \ } while (0) /* * add a 2tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that will be added. * rx_queue: the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_add_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_2tuple_filter *filter, uint16_t rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t ttqf, imir = 0; uint32_t imir_ext = 0; MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_TTQF_FILTERS || rx_queue >= IGB_MAX_RX_QUEUE_NUM || filter->priority > E1000_2TUPLE_MAX_PRI) return -EINVAL; /* filter index is out of range. */ if (filter->tcp_flags > TCP_FLAG_ALL) return -EINVAL; /* flags is invalid. */ ttqf = E1000_READ_REG(hw, E1000_TTQF(index)); if (ttqf & E1000_TTQF_QUEUE_ENABLE) return -EINVAL; /* filter index is in use. */ imir = (uint32_t)(filter->dst_port & E1000_IMIR_DSTPORT); if (filter->dst_port_mask == 1) /* 1b means not compare. */ imir |= E1000_IMIR_PORT_BP; else imir &= ~E1000_IMIR_PORT_BP; imir |= filter->priority << E1000_IMIR_PRIORITY_SHIFT; ttqf = 0; ttqf |= E1000_TTQF_QUEUE_ENABLE; ttqf |= (uint32_t)(rx_queue << E1000_TTQF_QUEUE_SHIFT); ttqf |= (uint32_t)(filter->protocol & E1000_TTQF_PROTOCOL_MASK); if (filter->protocol_mask == 1) ttqf |= E1000_TTQF_MASK_ENABLE; else ttqf &= ~E1000_TTQF_MASK_ENABLE; imir_ext |= E1000_IMIR_EXT_SIZE_BP; /* tcp flags bits setting. */ if (filter->tcp_flags & TCP_FLAG_ALL) { if (filter->tcp_flags & TCP_UGR_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_UGR; if (filter->tcp_flags & TCP_ACK_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_ACK; if (filter->tcp_flags & TCP_PSH_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_PSH; if (filter->tcp_flags & TCP_RST_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_RST; if (filter->tcp_flags & TCP_SYN_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_SYN; if (filter->tcp_flags & TCP_FIN_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_FIN; imir_ext &= ~E1000_IMIR_EXT_CTRL_BP; } else imir_ext |= E1000_IMIR_EXT_CTRL_BP; E1000_WRITE_REG(hw, E1000_IMIR(index), imir); E1000_WRITE_REG(hw, E1000_TTQF(index), ttqf); E1000_WRITE_REG(hw, E1000_IMIREXT(index), imir_ext); return 0; } /* * remove a 2tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_remove_2tuple_filter(struct rte_eth_dev *dev, uint16_t index) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_TTQF_FILTERS) return -EINVAL; /* filter index is out of range */ E1000_WRITE_REG(hw, E1000_TTQF(index), 0); E1000_WRITE_REG(hw, E1000_IMIR(index), 0); E1000_WRITE_REG(hw, E1000_IMIREXT(index), 0); return 0; } /* * get a 2tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that returns. * *rx_queue: pointer of the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_get_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_2tuple_filter *filter, uint16_t *rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t imir, ttqf, imir_ext; MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_TTQF_FILTERS) return -EINVAL; /* filter index is out of range. */ ttqf = E1000_READ_REG(hw, E1000_TTQF(index)); if (ttqf & E1000_TTQF_QUEUE_ENABLE) { imir = E1000_READ_REG(hw, E1000_IMIR(index)); filter->protocol = ttqf & E1000_TTQF_PROTOCOL_MASK; filter->protocol_mask = (ttqf & E1000_TTQF_MASK_ENABLE) ? 1 : 0; *rx_queue = (ttqf & E1000_TTQF_RX_QUEUE_MASK) >> E1000_TTQF_QUEUE_SHIFT; filter->dst_port = (uint16_t)(imir & E1000_IMIR_DSTPORT); filter->dst_port_mask = (imir & E1000_IMIR_PORT_BP) ? 1 : 0; filter->priority = (imir & E1000_IMIR_PRIORITY) >> E1000_IMIR_PRIORITY_SHIFT; imir_ext = E1000_READ_REG(hw, E1000_IMIREXT(index)); if (!(imir_ext & E1000_IMIR_EXT_CTRL_BP)) { if (imir_ext & E1000_IMIR_EXT_CTRL_UGR) filter->tcp_flags |= TCP_UGR_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_ACK) filter->tcp_flags |= TCP_ACK_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_PSH) filter->tcp_flags |= TCP_PSH_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_RST) filter->tcp_flags |= TCP_RST_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_SYN) filter->tcp_flags |= TCP_SYN_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_FIN) filter->tcp_flags |= TCP_FIN_FLAG; } else filter->tcp_flags = 0; return 0; } return -ENOENT; } /* * add a flex filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that will be added. * rx_queue: the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_add_flex_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_flex_filter *filter, uint16_t rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t wufc, en_bits = 0; uint32_t queueing = 0; uint32_t reg_off = 0; uint8_t i, j = 0; MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_FLEXIBLE_FILTERS) return -EINVAL; /* filter index is out of range. */ if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN || filter->len % 8 != 0 || filter->priority > E1000_MAX_FLEX_FILTER_PRI) return -EINVAL; wufc = E1000_READ_REG(hw, E1000_WUFC); en_bits = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index); if ((wufc & en_bits) == en_bits) return -EINVAL; /* the filter is in use. */ E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index)); j = 0; if (index < E1000_MAX_FHFT) reg_off = E1000_FHFT(index); else reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); for (i = 0; i < 16; i++) { E1000_WRITE_REG(hw, reg_off + i*4*4, filter->dwords[j]); E1000_WRITE_REG(hw, reg_off + (i*4+1)*4, filter->dwords[++j]); E1000_WRITE_REG(hw, reg_off + (i*4+2)*4, (uint32_t)filter->mask[i]); ++j; } queueing |= filter->len | (rx_queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) | (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT); E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET, queueing); return 0; } /* * remove a flex filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_remove_flex_filter(struct rte_eth_dev *dev, uint16_t index) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t wufc, reg_off = 0; uint8_t i; MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_FLEXIBLE_FILTERS) return -EINVAL; /* filter index is out of range. */ wufc = E1000_READ_REG(hw, E1000_WUFC); E1000_WRITE_REG(hw, E1000_WUFC, wufc & (~(E1000_WUFC_FLX0 << index))); if (index < E1000_MAX_FHFT) reg_off = E1000_FHFT(index); else reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); for (i = 0; i < 64; i++) E1000_WRITE_REG(hw, reg_off + i*4, 0); return 0; } /* * get a flex filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that returns. * *rx_queue: the pointer of the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_get_flex_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_flex_filter *filter, uint16_t *rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t wufc, queueing, wufc_en = 0; uint8_t i, j; MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); if (index >= E1000_MAX_FLEXIBLE_FILTERS) return -EINVAL; /* filter index is out of range. */ wufc = E1000_READ_REG(hw, E1000_WUFC); wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index); if ((wufc & wufc_en) == wufc_en) { uint32_t reg_off = 0; j = 0; if (index < E1000_MAX_FHFT) reg_off = E1000_FHFT(index); else reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); for (i = 0; i < 16; i++, j = i * 2) { filter->dwords[j] = E1000_READ_REG(hw, reg_off + i*4*4); filter->dwords[j+1] = E1000_READ_REG(hw, reg_off + (i*4+1)*4); filter->mask[i] = E1000_READ_REG(hw, reg_off + (i*4+2)*4); } queueing = E1000_READ_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET); filter->len = queueing & E1000_FHFT_QUEUEING_LEN; filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >> E1000_FHFT_QUEUEING_PRIO_SHIFT; *rx_queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >> E1000_FHFT_QUEUEING_QUEUE_SHIFT; return 0; } return -ENOENT; } /* * add a 5tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates. * filter: ponter to the filter that will be added. * rx_queue: the queue id the filter assigned to. * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_add_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_5tuple_filter *filter, uint16_t rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t ftqf, spqf = 0; uint32_t imir = 0; uint32_t imir_ext = 0; if (hw->mac.type != e1000_82576) return -ENOSYS; if (index >= E1000_MAX_FTQF_FILTERS || rx_queue >= IGB_MAX_RX_QUEUE_NUM_82576) return -EINVAL; /* filter index is out of range. */ ftqf = E1000_READ_REG(hw, E1000_FTQF(index)); if (ftqf & E1000_FTQF_QUEUE_ENABLE) return -EINVAL; /* filter index is in use. */ ftqf = 0; ftqf |= filter->protocol & E1000_FTQF_PROTOCOL_MASK; if (filter->src_ip_mask == 1) /* 1b means not compare. */ ftqf |= E1000_FTQF_SOURCE_ADDR_MASK; if (filter->dst_ip_mask == 1) ftqf |= E1000_FTQF_DEST_ADDR_MASK; if (filter->src_port_mask == 1) ftqf |= E1000_FTQF_SOURCE_PORT_MASK; if (filter->protocol_mask == 1) ftqf |= E1000_FTQF_PROTOCOL_COMP_MASK; ftqf |= (rx_queue << E1000_FTQF_QUEUE_SHIFT) & E1000_FTQF_QUEUE_MASK; ftqf |= E1000_FTQF_VF_MASK_EN; ftqf |= E1000_FTQF_QUEUE_ENABLE; E1000_WRITE_REG(hw, E1000_FTQF(index), ftqf); E1000_WRITE_REG(hw, E1000_DAQF(index), filter->dst_ip); E1000_WRITE_REG(hw, E1000_SAQF(index), filter->src_ip); spqf |= filter->src_port & E1000_SPQF_SRCPORT; E1000_WRITE_REG(hw, E1000_SPQF(index), spqf); imir |= (uint32_t)(filter->dst_port & E1000_IMIR_DSTPORT); if (filter->dst_port_mask == 1) /* 1b means not compare. */ imir |= E1000_IMIR_PORT_BP; else imir &= ~E1000_IMIR_PORT_BP; imir |= filter->priority << E1000_IMIR_PRIORITY_SHIFT; imir_ext |= E1000_IMIR_EXT_SIZE_BP; /* tcp flags bits setting. */ if (filter->tcp_flags & TCP_FLAG_ALL) { if (filter->tcp_flags & TCP_UGR_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_UGR; if (filter->tcp_flags & TCP_ACK_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_ACK; if (filter->tcp_flags & TCP_PSH_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_PSH; if (filter->tcp_flags & TCP_RST_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_RST; if (filter->tcp_flags & TCP_SYN_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_SYN; if (filter->tcp_flags & TCP_FIN_FLAG) imir_ext |= E1000_IMIR_EXT_CTRL_FIN; } else imir_ext |= E1000_IMIR_EXT_CTRL_BP; E1000_WRITE_REG(hw, E1000_IMIR(index), imir); E1000_WRITE_REG(hw, E1000_IMIREXT(index), imir_ext); return 0; } /* * remove a 5tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_remove_5tuple_filter(struct rte_eth_dev *dev, uint16_t index) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); if (hw->mac.type != e1000_82576) return -ENOSYS; if (index >= E1000_MAX_FTQF_FILTERS) return -EINVAL; /* filter index is out of range. */ E1000_WRITE_REG(hw, E1000_FTQF(index), 0); E1000_WRITE_REG(hw, E1000_DAQF(index), 0); E1000_WRITE_REG(hw, E1000_SAQF(index), 0); E1000_WRITE_REG(hw, E1000_SPQF(index), 0); E1000_WRITE_REG(hw, E1000_IMIR(index), 0); E1000_WRITE_REG(hw, E1000_IMIREXT(index), 0); return 0; } /* * get a 5tuple filter * * @param * dev: Pointer to struct rte_eth_dev. * index: the index the filter allocates * filter: ponter to the filter that returns * *rx_queue: pointer of the queue id the filter assigned to * * @return * - On success, zero. * - On failure, a negative value. */ static int eth_igb_get_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, struct rte_5tuple_filter *filter, uint16_t *rx_queue) { struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); uint32_t spqf, ftqf, imir, imir_ext; if (hw->mac.type != e1000_82576) return -ENOSYS; if (index >= E1000_MAX_FTQF_FILTERS) return -EINVAL; /* filter index is out of range. */ ftqf = E1000_READ_REG(hw, E1000_FTQF(index)); if (ftqf & E1000_FTQF_QUEUE_ENABLE) { filter->src_ip_mask = (ftqf & E1000_FTQF_SOURCE_ADDR_MASK) ? 1 : 0; filter->dst_ip_mask = (ftqf & E1000_FTQF_DEST_ADDR_MASK) ? 1 : 0; filter->src_port_mask = (ftqf & E1000_FTQF_SOURCE_PORT_MASK) ? 1 : 0; filter->protocol_mask = (ftqf & E1000_FTQF_PROTOCOL_COMP_MASK) ? 1 : 0; filter->protocol = (uint8_t)ftqf & E1000_FTQF_PROTOCOL_MASK; *rx_queue = (uint16_t)((ftqf & E1000_FTQF_QUEUE_MASK) >> E1000_FTQF_QUEUE_SHIFT); spqf = E1000_READ_REG(hw, E1000_SPQF(index)); filter->src_port = spqf & E1000_SPQF_SRCPORT; filter->dst_ip = E1000_READ_REG(hw, E1000_DAQF(index)); filter->src_ip = E1000_READ_REG(hw, E1000_SAQF(index)); imir = E1000_READ_REG(hw, E1000_IMIR(index)); filter->dst_port_mask = (imir & E1000_IMIR_PORT_BP) ? 1 : 0; filter->dst_port = (uint16_t)(imir & E1000_IMIR_DSTPORT); filter->priority = (imir & E1000_IMIR_PRIORITY) >> E1000_IMIR_PRIORITY_SHIFT; imir_ext = E1000_READ_REG(hw, E1000_IMIREXT(index)); if (!(imir_ext & E1000_IMIR_EXT_CTRL_BP)) { if (imir_ext & E1000_IMIR_EXT_CTRL_UGR) filter->tcp_flags |= TCP_UGR_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_ACK) filter->tcp_flags |= TCP_ACK_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_PSH) filter->tcp_flags |= TCP_PSH_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_RST) filter->tcp_flags |= TCP_RST_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_SYN) filter->tcp_flags |= TCP_SYN_FLAG; if (imir_ext & E1000_IMIR_EXT_CTRL_FIN) filter->tcp_flags |= TCP_FIN_FLAG; } else filter->tcp_flags = 0; return 0; } return -ENOENT; } static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) { uint32_t rctl; struct e1000_hw *hw; struct rte_eth_dev_info dev_info; uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE); hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); #ifdef RTE_LIBRTE_82571_SUPPORT /* XXX: not bigger than max_rx_pktlen */ if (hw->mac.type == e1000_82571) return -ENOTSUP; #endif eth_igb_infos_get(dev, &dev_info); /* check that mtu is within the allowed range */ if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) return -EINVAL; /* refuse mtu that requires the support of scattered packets when this * feature has not been enabled before. */ if (!dev->data->scattered_rx && frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) return -EINVAL; rctl = E1000_READ_REG(hw, E1000_RCTL); /* switch to jumbo mode if needed */ if (frame_size > ETHER_MAX_LEN) { dev->data->dev_conf.rxmode.jumbo_frame = 1; rctl |= E1000_RCTL_LPE; } else { dev->data->dev_conf.rxmode.jumbo_frame = 0; rctl &= ~E1000_RCTL_LPE; } E1000_WRITE_REG(hw, E1000_RCTL, rctl); /* update max frame size */ dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; E1000_WRITE_REG(hw, E1000_RLPML, dev->data->dev_conf.rxmode.max_rx_pkt_len); return 0; } static struct rte_driver pmd_igb_drv = { .type = PMD_PDEV, .init = rte_igb_pmd_init, }; static struct rte_driver pmd_igbvf_drv = { .type = PMD_PDEV, .init = rte_igbvf_pmd_init, }; PMD_REGISTER_DRIVER(pmd_igb_drv); PMD_REGISTER_DRIVER(pmd_igbvf_drv);