diff options
author | Damjan Marion <damarion@cisco.com> | 2023-03-15 11:42:06 +0000 |
---|---|---|
committer | Ole Tr�an <otroan@employees.org> | 2023-03-23 12:04:46 +0000 |
commit | b47376f0b404d2ba5526fba52b171d79b0f352f8 (patch) | |
tree | 5ffcdb47d48f4db0b87483fe6f99a7249831118c /src/plugins/crypto_native/ghash.h | |
parent | 5527a78ed96043d2c26e3271066c50b44dd7fc0b (diff) |
vppinfra: AES-CBC and AES-GCM refactor and optimizations
- crypto code moved to vppinfra for better testing and reuse
- added 256-bit VAES support (Intel Client CPUs)
- added AES_GMAC functions
Change-Id: I960c8e14ca0a0126703e8f1589d86f32e2a98361
Type: improvement
Signed-off-by: Damjan Marion <damarion@cisco.com>
Diffstat (limited to 'src/plugins/crypto_native/ghash.h')
-rw-r--r-- | src/plugins/crypto_native/ghash.h | 419 |
1 files changed, 0 insertions, 419 deletions
diff --git a/src/plugins/crypto_native/ghash.h b/src/plugins/crypto_native/ghash.h deleted file mode 100644 index 5f619cfa129..00000000000 --- a/src/plugins/crypto_native/ghash.h +++ /dev/null @@ -1,419 +0,0 @@ -/* - *------------------------------------------------------------------ - * Copyright (c) 2019 Cisco and/or its affiliates. - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at: - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - *------------------------------------------------------------------ - */ - -/* - *------------------------------------------------------------------ - * Copyright(c) 2018, Intel Corporation All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE, - * DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - *------------------------------------------------------------------ - */ - -/* - * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk, - * Vinodh Gopal, James Guilford, Tomasz Kantecki - * - * References: - * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on - * Intel Architecture Processors. August, 2010 - * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on - * Intel Architecture Processors. October, 2012. - * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git - * - * Definitions: - * GF Galois Extension Field GF(2^128) - finite field where elements are - * represented as polynomials with coefficients in GF(2) with the - * highest degree of 127. Polynomials are represented as 128-bit binary - * numbers where each bit represents one coefficient. - * e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011. - * H hash key (128 bit) - * POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1 - * RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1 - * + addition in GF, which equals to XOR operation - * * multiplication in GF - * - * GF multiplication consists of 2 steps: - * - carry-less multiplication of two 128-bit operands into 256-bit result - * - reduction of 256-bit result into 128-bit with modulo POLY - * - * GHash is calculated on 128-bit blocks of data according to the following - * formula: - * GH = (GH + data) * hash_key - * - * To avoid bit-reflection of data, this code uses GF multipication - * with reversed polynomial: - * a * b * x^-127 mod RPOLY - * - * To improve computation speed table Hi is precomputed with powers of H', - * where H' is calculated as H<<1 mod RPOLY. - * This allows us to improve performance by deferring reduction. For example - * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do: - * - * __i128 Hi[4]; - * ghash_precompute (H, Hi, 4); - * - * ghash_data_t _gd, *gd = &_gd; - * ghash_mul_first (gd, GH ^ b0, Hi[3]); - * ghash_mul_next (gd, b1, Hi[2]); - * ghash_mul_next (gd, b2, Hi[1]); - * ghash_mul_next (gd, b3, Hi[0]); - * ghash_reduce (gd); - * ghash_reduce2 (gd); - * GH = ghash_final (gd); - * - * Reduction step is split into 3 functions so it can be better interleaved - * with other code, (i.e. with AES computation). - */ - -#ifndef __ghash_h__ -#define __ghash_h__ - -static_always_inline u8x16 -gmul_lo_lo (u8x16 a, u8x16 b) -{ -#if defined (__PCLMUL__) - return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00); -#elif defined (__ARM_FEATURE_CRYPTO) - return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), - (poly64_t) vget_low_p64 ((poly64x2_t) b)); -#endif -} - -static_always_inline u8x16 -gmul_hi_lo (u8x16 a, u8x16 b) -{ -#if defined (__PCLMUL__) - return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01); -#elif defined (__ARM_FEATURE_CRYPTO) - return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a), - (poly64_t) vget_low_p64 ((poly64x2_t) b)); -#endif -} - -static_always_inline u8x16 -gmul_lo_hi (u8x16 a, u8x16 b) -{ -#if defined (__PCLMUL__) - return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10); -#elif defined (__ARM_FEATURE_CRYPTO) - return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), - (poly64_t) vget_high_p64 ((poly64x2_t) b)); -#endif -} - -static_always_inline u8x16 -gmul_hi_hi (u8x16 a, u8x16 b) -{ -#if defined (__PCLMUL__) - return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11); -#elif defined (__ARM_FEATURE_CRYPTO) - return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b); -#endif -} - -typedef struct -{ - u8x16 mid, hi, lo, tmp_lo, tmp_hi; - int pending; -} ghash_data_t; - -static const u8x16 ghash_poly = { - 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 -}; - -static const u8x16 ghash_poly2 = { - 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 -}; - -static_always_inline void -ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b) -{ - /* a1 * b1 */ - gd->hi = gmul_hi_hi (a, b); - /* a0 * b0 */ - gd->lo = gmul_lo_lo (a, b); - /* a0 * b1 ^ a1 * b0 */ - gd->mid = (gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b)); - - /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that - there is no pending data in tmp_lo and tmp_hi */ - gd->pending = 0; -} - -static_always_inline void -ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b) -{ - /* a1 * b1 */ - u8x16 hi = gmul_hi_hi (a, b); - /* a0 * b0 */ - u8x16 lo = gmul_lo_lo (a, b); - - /* this branch will be optimized out by the compiler, and it allows us to - reduce number of XOR operations by using ternary logic */ - if (gd->pending) - { - /* there is peding data from previous invocation so we can XOR */ - gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi); - gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo); - gd->pending = 0; - } - else - { - /* there is no peding data from previous invocation so we postpone XOR */ - gd->tmp_hi = hi; - gd->tmp_lo = lo; - gd->pending = 1; - } - - /* gd->mid ^= a0 * b1 ^ a1 * b0 */ - gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b)); -} - -static_always_inline void -ghash_reduce (ghash_data_t * gd) -{ - u8x16 r; - - /* Final combination: - gd->lo ^= gd->mid << 64 - gd->hi ^= gd->mid >> 64 */ - u8x16 midl = u8x16_word_shift_left (gd->mid, 8); - u8x16 midr = u8x16_word_shift_right (gd->mid, 8); - - if (gd->pending) - { - gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl); - gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr); - } - else - { - gd->lo ^= midl; - gd->hi ^= midr; - } - r = gmul_hi_lo (ghash_poly2, gd->lo); - gd->lo ^= u8x16_word_shift_left (r, 8); -} - -static_always_inline void -ghash_reduce2 (ghash_data_t * gd) -{ - gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo); - gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo); -} - -static_always_inline u8x16 -ghash_final (ghash_data_t * gd) -{ - return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4), - u8x16_word_shift_left (gd->tmp_hi, 4)); -} - -static_always_inline u8x16 -ghash_mul (u8x16 a, u8x16 b) -{ - ghash_data_t _gd, *gd = &_gd; - ghash_mul_first (gd, a, b); - ghash_reduce (gd); - ghash_reduce2 (gd); - return ghash_final (gd); -} - -#if defined(__VPCLMULQDQ__) && defined(__AVX512F__) - -static const u8x64 ghash4_poly2 = { - 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, - 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, - 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, - 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, - 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, -}; - -typedef struct -{ - u8x64 hi, lo, mid, tmp_lo, tmp_hi; - int pending; -} ghash4_data_t; - -static_always_inline u8x64 -gmul4_lo_lo (u8x64 a, u8x64 b) -{ - return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00); -} - -static_always_inline u8x64 -gmul4_hi_lo (u8x64 a, u8x64 b) -{ - return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01); -} - -static_always_inline u8x64 -gmul4_lo_hi (u8x64 a, u8x64 b) -{ - return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10); -} - -static_always_inline u8x64 -gmul4_hi_hi (u8x64 a, u8x64 b) -{ - return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11); -} - - -static_always_inline void -ghash4_mul_first (ghash4_data_t * gd, u8x64 a, u8x64 b) -{ - gd->hi = gmul4_hi_hi (a, b); - gd->lo = gmul4_lo_lo (a, b); - gd->mid = (gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b)); - gd->pending = 0; -} - -static_always_inline void -ghash4_mul_next (ghash4_data_t * gd, u8x64 a, u8x64 b) -{ - u8x64 hi = gmul4_hi_hi (a, b); - u8x64 lo = gmul4_lo_lo (a, b); - - if (gd->pending) - { - /* there is peding data from previous invocation so we can XOR */ - gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, hi); - gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, lo); - gd->pending = 0; - } - else - { - /* there is no peding data from previous invocation so we postpone XOR */ - gd->tmp_hi = hi; - gd->tmp_lo = lo; - gd->pending = 1; - } - gd->mid = u8x64_xor3 (gd->mid, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b)); -} - -static_always_inline void -ghash4_reduce (ghash4_data_t * gd) -{ - u8x64 r; - - /* Final combination: - gd->lo ^= gd->mid << 64 - gd->hi ^= gd->mid >> 64 */ - - u8x64 midl = u8x64_word_shift_left (gd->mid, 8); - u8x64 midr = u8x64_word_shift_right (gd->mid, 8); - - if (gd->pending) - { - gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, midl); - gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, midr); - } - else - { - gd->lo ^= midl; - gd->hi ^= midr; - } - - r = gmul4_hi_lo (ghash4_poly2, gd->lo); - gd->lo ^= u8x64_word_shift_left (r, 8); - -} - -static_always_inline void -ghash4_reduce2 (ghash4_data_t * gd) -{ - gd->tmp_lo = gmul4_lo_lo (ghash4_poly2, gd->lo); - gd->tmp_hi = gmul4_lo_hi (ghash4_poly2, gd->lo); -} - -static_always_inline u8x16 -ghash4_final (ghash4_data_t * gd) -{ - u8x64 r; - u8x32 t; - - r = u8x64_xor3 (gd->hi, u8x64_word_shift_right (gd->tmp_lo, 4), - u8x64_word_shift_left (gd->tmp_hi, 4)); - - /* horizontal XOR of 4 128-bit lanes */ - t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r); - return u8x32_extract_hi (t) ^ u8x32_extract_lo (t); -} -#endif - -static_always_inline void -ghash_precompute (u8x16 H, u8x16 * Hi, int n) -{ - u8x16 r8; - u32x4 r32; - /* calcullate H<<1 mod poly from the hash key */ - r8 = (u8x16) ((u64x2) H >> 63); - H = (u8x16) ((u64x2) H << 1); - H |= u8x16_word_shift_left (r8, 8); - r32 = (u32x4) u8x16_word_shift_right (r8, 8); -#ifdef __SSE2__ - r32 = u32x4_shuffle (r32, 0, 1, 2, 0); -#else - r32[3] = r32[0]; -#endif - /* *INDENT-OFF* */ - r32 = r32 == (u32x4) {1, 0, 0, 1}; - /* *INDENT-ON* */ - Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly); - - /* calculate H^(i + 1) */ - for (int i = n - 2; i >= 0; i--) - Hi[i] = ghash_mul (H, Hi[i + 1]); -} - -#endif /* __ghash_h__ */ - -/* - * fd.io coding-style-patch-verification: ON - * - * Local Variables: - * eval: (c-set-style "gnu") - * End: - */ |