From d4a70647e6b8de2cb81cbea3c53d08c299b65cc5 Mon Sep 17 00:00:00 2001 From: Nathan Skrzypczak Date: Fri, 8 Oct 2021 14:01:27 +0200 Subject: docs: convert vpp doc md->rst Type: improvement Change-Id: If453321785b04f9c16e8cea36fb1910efaeb2c59 Signed-off-by: Nathan Skrzypczak --- src/vlibapi/api_doc.rst | 342 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 342 insertions(+) create mode 100644 src/vlibapi/api_doc.rst (limited to 'src/vlibapi/api_doc.rst') diff --git a/src/vlibapi/api_doc.rst b/src/vlibapi/api_doc.rst new file mode 100644 index 00000000000..7d2b80a2e06 --- /dev/null +++ b/src/vlibapi/api_doc.rst @@ -0,0 +1,342 @@ +.. _api_doc: + +Writing API handlers +==================== + +VPP provides a binary API scheme to allow a wide variety of client codes +to program data-plane tables. As of this writing, there are hundreds of +binary APIs. + +Messages are defined in ``*.api`` files. Today, there are about 50 api +files, with more arriving as folks add programmable features. The API +file compiler sources reside in @ref src/tools/vppapigen. + +From @ref src/vnet/interface.api, here’s a typical request/response +message definition: + +.. code:: c + + autoreply define sw_interface_set_flags + { + u32 client_index; + u32 context; + u32 sw_if_index; + /* 1 = up, 0 = down */ + u8 admin_up_down; + }; + +To a first approximation, the API compiler renders this definition into +``build-root/.../vpp/include/vnet/interface.api.h`` as follows: + +.. code:: c + + /****** Message ID / handler enum ******/ + #ifdef vl_msg_id + vl_msg_id(VL_API_SW_INTERFACE_SET_FLAGS, vl_api_sw_interface_set_flags_t_handler) + vl_msg_id(VL_API_SW_INTERFACE_SET_FLAGS_REPLY, vl_api_sw_interface_set_flags_reply_t_handler) + #endif + + /****** Message names ******/ + #ifdef vl_msg_name + vl_msg_name(vl_api_sw_interface_set_flags_t, 1) + vl_msg_name(vl_api_sw_interface_set_flags_reply_t, 1) + #endif + + /****** Message name, crc list ******/ + #ifdef vl_msg_name_crc_list + #define foreach_vl_msg_name_crc_interface \ + _(VL_API_SW_INTERFACE_SET_FLAGS, sw_interface_set_flags, f890584a) \ + _(VL_API_SW_INTERFACE_SET_FLAGS_REPLY, sw_interface_set_flags_reply, dfbf3afa) \ + #endif + + /****** Typedefs *****/ + #ifdef vl_typedefs + typedef VL_API_PACKED(struct _vl_api_sw_interface_set_flags { + u16 _vl_msg_id; + u32 client_index; + u32 context; + u32 sw_if_index; + u8 admin_up_down; + }) vl_api_sw_interface_set_flags_t; + + typedef VL_API_PACKED(struct _vl_api_sw_interface_set_flags_reply { + u16 _vl_msg_id; + u32 context; + i32 retval; + }) vl_api_sw_interface_set_flags_reply_t; + + ... + #endif /* vl_typedefs */ + +To change the admin state of an interface, a binary api client sends a +@ref vl_api_sw_interface_set_flags_t to VPP, which will respond with a +@ref vl_api_sw_interface_set_flags_reply_t message. + +Multiple layers of software, transport types, and shared libraries +implement a variety of features: + +- API message allocation, tracing, pretty-printing, and replay. +- Message transport via global shared memory, pairwise/private shared + memory, and sockets. +- Barrier synchronization of worker threads across thread-unsafe + message handlers. + +Correctly-coded message handlers know nothing about the transport used +to deliver messages to/from VPP. It’s reasonably straightforward to use +multiple API message transport types simultaneously. + +For historical reasons, binary api messages are (putatively) sent in +network byte order. As of this writing, we’re seriously considering +whether that choice makes sense. + +Message Allocation +------------------ + +Since binary API messages are always processed in order, we allocate +messages using a ring allocator whenever possible. This scheme is +extremely fast when compared with a traditional memory allocator, and +doesn’t cause heap fragmentation. See @ref +src/vlibmemory/memory_shared.c @ref vl_msg_api_alloc_internal(). + +Regardless of transport, binary api messages always follow a @ref +msgbuf_t header: + +.. code:: c + + typedef struct msgbuf_ + { + unix_shared_memory_queue_t *q; + u32 data_len; + u32 gc_mark_timestamp; + u8 data[0]; + } msgbuf_t; + +This structure makes it easy to trace messages without having to decode +them - simply save data_len bytes - and allows @ref vl_msg_api_free() to +rapidly dispose of message buffers: + +.. code:: c + + void + vl_msg_api_free (void *a) + { + msgbuf_t *rv; + api_main_t *am = &api_main; + + rv = (msgbuf_t *) (((u8 *) a) - offsetof (msgbuf_t, data)); + + /* + * Here's the beauty of the scheme. Only one proc/thread has + * control of a given message buffer. To free a buffer, we just + * clear the queue field, and leave. No locks, no hits, no errors... + */ + if (rv->q) + { + rv->q = 0; + rv->gc_mark_timestamp = 0; + return; + } + + } + +Message Tracing and Replay +-------------------------- + +It’s extremely important that VPP can capture and replay sizeable binary +API traces. System-level issues involving hundreds of thousands of API +transactions can be re-run in a second or less. Partial replay allows +one to binary-search for the point where the wheels fall off. One can +add scaffolding to the data plane, to trigger when complex conditions +obtain. + +With binary API trace, print, and replay, system-level bug reports of +the form “after 300,000 API transactions, the VPP data-plane stopped +forwarding traffic, FIX IT!” can be solved offline. + +More often than not, one discovers that a control-plane client +misprograms the data plane after a long time or under complex +circumstances. Without direct evidence, “it’s a data-plane problem!” + +See @ref src/vlibmemory/memory_vlib.c @ref vl_msg_api_process_file(), +and @ref src/vlibapi/api_shared.c. See also the debug CLI command “api +trace” + +Client connection details +------------------------- + +Establishing a binary API connection to VPP from a C-language client is +easy: + +.. code:: c + + int + connect_to_vpe (char *client_name, int client_message_queue_length) + { + vat_main_t *vam = &vat_main; + api_main_t *am = &api_main; + + if (vl_client_connect_to_vlib ("/vpe-api", client_name, + client_message_queue_length) < 0) + return -1; + + /* Memorize vpp's binary API message input queue address */ + vam->vl_input_queue = am->shmem_hdr->vl_input_queue; + /* And our client index */ + vam->my_client_index = am->my_client_index; + return 0; + } + +32 is a typical value for client_message_queue_length. VPP cannot block +when it needs to send an API message to a binary API client, and the +VPP-side binary API message handlers are very fast. When sending +asynchronous messages, make sure to scrape the binary API rx ring with +some enthusiasm. + +binary API message RX pthread +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Calling @ref vl_client_connect_to_vlib spins up a binary API message RX +pthread: + +.. code:: c + + static void * + rx_thread_fn (void *arg) + { + unix_shared_memory_queue_t *q; + memory_client_main_t *mm = &memory_client_main; + api_main_t *am = &api_main; + + q = am->vl_input_queue; + + /* So we can make the rx thread terminate cleanly */ + if (setjmp (mm->rx_thread_jmpbuf) == 0) + { + mm->rx_thread_jmpbuf_valid = 1; + while (1) + { + vl_msg_api_queue_handler (q); + } + } + pthread_exit (0); + } + +To handle the binary API message queue yourself, use @ref +vl_client_connect_to_vlib_no_rx_pthread. + +In turn, vl_msg_api_queue_handler(…) uses mutex/condvar signalling to +wake up, process VPP -> client traffic, then sleep. VPP supplies a +condvar broadcast when the VPP -> client API message queue transitions +from empty to nonempty. + +VPP checks its own binary API input queue at a very high rate. VPP +invokes message handlers in “process” context [aka cooperative +multitasking thread context] at a variable rate, depending on data-plane +packet processing requirements. + +Client disconnection details +---------------------------- + +To disconnect from VPP, call @ref vl_client_disconnect_from_vlib. Please +arrange to call this function if the client application terminates +abnormally. VPP makes every effort to hold a decent funeral for dead +clients, but VPP can’t guarantee to free leaked memory in the shared +binary API segment. + +Sending binary API messages to VPP +---------------------------------- + +The point of the exercise is to send binary API messages to VPP, and to +receive replies from VPP. Many VPP binary APIs comprise a client request +message, and a simple status reply. For example, to set the admin status +of an interface, one codes: + +.. code:: c + + vl_api_sw_interface_set_flags_t *mp; + + mp = vl_msg_api_alloc (sizeof (*mp)); + memset (mp, 0, sizeof (*mp)); + mp->_vl_msg_id = clib_host_to_net_u16 (VL_API_SW_INTERFACE_SET_FLAGS); + mp->client_index = api_main.my_client_index; + mp->sw_if_index = clib_host_to_net_u32 (); + vl_msg_api_send (api_main.shmem_hdr->vl_input_queue, (u8 *)mp); + +Key points: + +- Use @ref vl_msg_api_alloc to allocate message buffers + +- Allocated message buffers are not initialized, and must be presumed + to contain trash. + +- Don’t forget to set the \_vl_msg_id field! + +- As of this writing, binary API message IDs and data are sent in + network byte order + +- The client-library global data structure @ref api_main keeps track of + sufficient pointers and handles used to communicate with VPP + +Receiving binary API messages from VPP +-------------------------------------- + +Unless you’ve made other arrangements (see @ref +vl_client_connect_to_vlib_no_rx_pthread), *messages are received on a +separate rx pthread*. Synchronization with the client application main +thread is the responsibility of the application! + +Set up message handlers about as follows: + +.. code:: c + + #define vl_typedefs /* define message structures */ + #include + #undef vl_typedefs + + /* declare message handlers for each api */ + + #define vl_endianfun /* define message structures */ + #include + #undef vl_endianfun + + /* instantiate all the print functions we know about */ + #define vl_print(handle, ...) + #define vl_printfun + #include + #undef vl_printfun + + /* Define a list of all message that the client handles */ + #define foreach_vpe_api_reply_msg \ + _(SW_INTERFACE_SET_FLAGS_REPLY, sw_interface_set_flags_reply) + + static clib_error_t * + my_api_hookup (vlib_main_t * vm) + { + api_main_t *am = &api_main; + + #define _(N,n) \ + vl_msg_api_set_handlers(VL_API_##N, #n, \ + vl_api_##n##_t_handler, \ + vl_noop_handler, \ + vl_api_##n##_t_endian, \ + vl_api_##n##_t_print, \ + sizeof(vl_api_##n##_t), 1); + foreach_vpe_api_msg; + #undef _ + + return 0; + } + +The key API used to establish message handlers is @ref +vl_msg_api_set_handlers , which sets values in multiple parallel vectors +in the @ref api_main_t structure. As of this writing: not all vector +element values can be set through the API. You’ll see sporadic API +message registrations followed by minor adjustments of this form: + +.. code:: c + + /* + * Thread-safe API messages + */ + am->is_mp_safe[VL_API_IP_ADD_DEL_ROUTE] = 1; + am->is_mp_safe[VL_API_GET_NODE_GRAPH] = 1; -- cgit 1.2.3-korg