/* *------------------------------------------------------------------ * Copyright (c) 2018 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include #include #include #include #include #include #include #include #define AVF_MBOX_LEN 64 #define AVF_MBOX_BUF_SZ 4096 #define AVF_RXQ_SZ 512 #define AVF_TXQ_SZ 512 #define AVF_ITR_INT 250 #define PCI_VENDOR_ID_INTEL 0x8086 #define PCI_DEVICE_ID_INTEL_AVF 0x1889 #define PCI_DEVICE_ID_INTEL_X710_VF 0x154c #define PCI_DEVICE_ID_INTEL_X722_VF 0x37cd VLIB_REGISTER_LOG_CLASS (avf_log) = { .class_name = "avf", }; VLIB_REGISTER_LOG_CLASS (avf_stats_log) = { .class_name = "avf", .subclass_name = "stats", }; avf_main_t avf_main; void avf_delete_if (vlib_main_t * vm, avf_device_t * ad, int with_barrier); static pci_device_id_t avf_pci_device_ids[] = { {.vendor_id = PCI_VENDOR_ID_INTEL,.device_id = PCI_DEVICE_ID_INTEL_AVF}, {.vendor_id = PCI_VENDOR_ID_INTEL,.device_id = PCI_DEVICE_ID_INTEL_X710_VF}, {.vendor_id = PCI_VENDOR_ID_INTEL,.device_id = PCI_DEVICE_ID_INTEL_X722_VF}, {0}, }; const static char *virtchnl_event_names[] = { #define _(v, n) [v] = #n, foreach_virtchnl_event_code #undef _ }; typedef enum { AVF_IRQ_STATE_DISABLED, AVF_IRQ_STATE_ENABLED, AVF_IRQ_STATE_WB_ON_ITR, } avf_irq_state_t; static inline void avf_irq_0_set_state (avf_device_t * ad, avf_irq_state_t state) { u32 dyn_ctl0 = 0, icr0_ena = 0; dyn_ctl0 |= (3 << 3); /* 11b = No ITR update */ avf_reg_write (ad, AVFINT_ICR0_ENA1, icr0_ena); avf_reg_write (ad, AVFINT_DYN_CTL0, dyn_ctl0); avf_reg_flush (ad); if (state == AVF_IRQ_STATE_DISABLED) return; dyn_ctl0 = 0; icr0_ena = 0; icr0_ena |= (1 << 30); /* [30] Admin Queue Enable */ dyn_ctl0 |= (1 << 0); /* [0] Interrupt Enable */ dyn_ctl0 |= (1 << 1); /* [1] Clear PBA */ dyn_ctl0 |= (2 << 3); /* [4:3] ITR Index, 11b = No ITR update */ dyn_ctl0 |= ((AVF_ITR_INT / 2) << 5); /* [16:5] ITR Interval in 2us steps */ avf_reg_write (ad, AVFINT_ICR0_ENA1, icr0_ena); avf_reg_write (ad, AVFINT_DYN_CTL0, dyn_ctl0); avf_reg_flush (ad); } static inline void avf_irq_n_set_state (avf_device_t * ad, u8 line, avf_irq_state_t state) { u32 dyn_ctln = 0; /* disable */ avf_reg_write (ad, AVFINT_DYN_CTLN (line), dyn_ctln); avf_reg_flush (ad); if (state == AVF_IRQ_STATE_DISABLED) return; dyn_ctln |= (1 << 1); /* [1] Clear PBA */ if (state == AVF_IRQ_STATE_WB_ON_ITR) { /* minimal ITR interval, use ITR1 */ dyn_ctln |= (1 << 3); /* [4:3] ITR Index */ dyn_ctln |= ((32 / 2) << 5); /* [16:5] ITR Interval in 2us steps */ dyn_ctln |= (1 << 30); /* [30] Writeback on ITR */ } else { /* configured ITR interval, use ITR0 */ dyn_ctln |= (1 << 0); /* [0] Interrupt Enable */ dyn_ctln |= ((AVF_ITR_INT / 2) << 5); /* [16:5] ITR Interval in 2us steps */ } avf_reg_write (ad, AVFINT_DYN_CTLN (line), dyn_ctln); avf_reg_flush (ad); } clib_error_t * avf_aq_desc_enq (vlib_main_t * vm, avf_device_t * ad, avf_aq_desc_t * dt, void *data, int len) { clib_error_t *err = 0; avf_aq_desc_t *d, dc; f64 t0, suspend_time = AVF_AQ_ENQ_SUSPEND_TIME; d = &ad->atq[ad->atq_next_slot]; clib_memcpy_fast (d, dt, sizeof (avf_aq_desc_t)); d->flags |= AVF_AQ_F_RD | AVF_AQ_F_SI; if (len) d->datalen = len; if (len) { u64 pa; pa = ad->atq_bufs_pa + ad->atq_next_slot * AVF_MBOX_BUF_SZ; d->addr_hi = (u32) (pa >> 32); d->addr_lo = (u32) pa; clib_memcpy_fast (ad->atq_bufs + ad->atq_next_slot * AVF_MBOX_BUF_SZ, data, len); d->flags |= AVF_AQ_F_BUF; } if (ad->flags & AVF_DEVICE_F_ELOG) clib_memcpy_fast (&dc, d, sizeof (avf_aq_desc_t)); ad->atq_next_slot = (ad->atq_next_slot + 1) % AVF_MBOX_LEN; avf_reg_write (ad, AVF_ATQT, ad->atq_next_slot); avf_reg_flush (ad); t0 = vlib_time_now (vm); retry: vlib_process_suspend (vm, suspend_time); if (((d->flags & AVF_AQ_F_DD) == 0) || ((d->flags & AVF_AQ_F_CMP) == 0)) { f64 t = vlib_time_now (vm) - t0; if (t > AVF_AQ_ENQ_MAX_WAIT_TIME) { avf_log_err (ad, "aq_desc_enq failed (timeout %.3fs)", t); err = clib_error_return (0, "adminq enqueue timeout [opcode 0x%x]", d->opcode); goto done; } suspend_time *= 2; goto retry; } clib_memcpy_fast (dt, d, sizeof (avf_aq_desc_t)); if (d->flags & AVF_AQ_F_ERR) return clib_error_return (0, "adminq enqueue error [opcode 0x%x, retval " "%d]", d->opcode, d->retval); done: if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] aq enq: s_flags 0x%x r_flags 0x%x opcode 0x%x " "datalen %d retval %d", .format_args = "i4i2i2i2i2i2", }; struct { u32 dev_instance; u16 s_flags; u16 r_flags; u16 opcode; u16 datalen; u16 retval; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->s_flags = dc.flags; ed->r_flags = d->flags; ed->opcode = dc.opcode; ed->datalen = dc.datalen; ed->retval = d->retval; } return err; } clib_error_t * avf_cmd_rx_ctl_reg_write (vlib_main_t * vm, avf_device_t * ad, u32 reg, u32 val) { clib_error_t *err; avf_aq_desc_t d = {.opcode = 0x207,.param1 = reg,.param3 = val }; err = avf_aq_desc_enq (vm, ad, &d, 0, 0); if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] rx ctl reg write: reg 0x%x val 0x%x ", .format_args = "i4i4i4", }; struct { u32 dev_instance; u32 reg; u32 val; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->reg = reg; ed->val = val; } return err; } clib_error_t * avf_rxq_init (vlib_main_t * vm, avf_device_t * ad, u16 qid, u16 rxq_size) { clib_error_t *err; avf_rxq_t *rxq; u32 n_alloc, i; vec_validate_aligned (ad->rxqs, qid, CLIB_CACHE_LINE_BYTES); rxq = vec_elt_at_index (ad->rxqs, qid); rxq->size = rxq_size; rxq->next = 0; rxq->descs = vlib_physmem_alloc_aligned_on_numa (vm, rxq->size * sizeof (avf_rx_desc_t), 2 * CLIB_CACHE_LINE_BYTES, ad->numa_node); rxq->buffer_pool_index = vlib_buffer_pool_get_default_for_numa (vm, ad->numa_node); if (rxq->descs == 0) return vlib_physmem_last_error (vm); if ((err = vlib_pci_map_dma (vm, ad->pci_dev_handle, (void *) rxq->descs))) return err; clib_memset ((void *) rxq->descs, 0, rxq->size * sizeof (avf_rx_desc_t)); vec_validate_aligned (rxq->bufs, rxq->size, CLIB_CACHE_LINE_BYTES); rxq->qrx_tail = ad->bar0 + AVF_QRX_TAIL (qid); n_alloc = vlib_buffer_alloc_from_pool (vm, rxq->bufs, rxq->size - 8, rxq->buffer_pool_index); if (n_alloc == 0) return clib_error_return (0, "buffer allocation error"); rxq->n_enqueued = n_alloc; avf_rx_desc_t *d = rxq->descs; for (i = 0; i < n_alloc; i++) { vlib_buffer_t *b = vlib_get_buffer (vm, rxq->bufs[i]); if (ad->flags & AVF_DEVICE_F_VA_DMA) d->qword[0] = vlib_buffer_get_va (b); else d->qword[0] = vlib_buffer_get_pa (vm, b); d++; } return 0; } clib_error_t * avf_txq_init (vlib_main_t * vm, avf_device_t * ad, u16 qid, u16 txq_size) { clib_error_t *err; avf_txq_t *txq; u16 n; u8 bpi = vlib_buffer_pool_get_default_for_numa (vm, ad->numa_node); vec_validate_aligned (ad->txqs, qid, CLIB_CACHE_LINE_BYTES); txq = vec_elt_at_index (ad->txqs, qid); txq->size = txq_size; txq->next = 0; clib_spinlock_init (&txq->lock); /* Prepare a placeholder buffer(s) to maintain a 1-1 relationship between * bufs and descs when a context descriptor is added in descs. Worst case * every second descriptor is context descriptor and due to b->ref_count * being u8 we need one for each block of 510 descriptors */ n = (txq->size / 510) + 1; vec_validate_aligned (txq->ph_bufs, n, CLIB_CACHE_LINE_BYTES); if (!vlib_buffer_alloc_from_pool (vm, txq->ph_bufs, n, bpi)) return clib_error_return (0, "buffer allocation error"); txq->descs = vlib_physmem_alloc_aligned_on_numa (vm, txq->size * sizeof (avf_tx_desc_t), 2 * CLIB_CACHE_LINE_BYTES, ad->numa_node); if (txq->descs == 0) return vlib_physmem_last_error (vm); if ((err = vlib_pci_map_dma (vm, ad->pci_dev_handle, (void *) txq->descs))) return err; vec_validate_aligned (txq->bufs, txq->size, CLIB_CACHE_LINE_BYTES); txq->qtx_tail = ad->bar0 + AVF_QTX_TAIL (qid); /* initialize ring of pending RS slots */ clib_ring_new_aligned (txq->rs_slots, 32, CLIB_CACHE_LINE_BYTES); vec_validate_aligned (txq->tmp_descs, txq->size, CLIB_CACHE_LINE_BYTES); vec_validate_aligned (txq->tmp_bufs, txq->size, CLIB_CACHE_LINE_BYTES); return 0; } typedef struct { u16 vsi_id; u16 flags; } virtchnl_promisc_info_t; void avf_arq_slot_init (avf_device_t * ad, u16 slot) { avf_aq_desc_t *d; u64 pa = ad->arq_bufs_pa + slot * AVF_MBOX_BUF_SZ; d = &ad->arq[slot]; clib_memset (d, 0, sizeof (avf_aq_desc_t)); d->flags = AVF_AQ_F_BUF; d->datalen = AVF_MBOX_BUF_SZ; d->addr_hi = (u32) (pa >> 32); d->addr_lo = (u32) pa; } static inline uword avf_dma_addr (vlib_main_t * vm, avf_device_t * ad, void *p) { return (ad->flags & AVF_DEVICE_F_VA_DMA) ? pointer_to_uword (p) : vlib_physmem_get_pa (vm, p); } static void avf_adminq_init (vlib_main_t * vm, avf_device_t * ad) { u64 pa; int i; /* VF MailBox Transmit */ clib_memset (ad->atq, 0, sizeof (avf_aq_desc_t) * AVF_MBOX_LEN); ad->atq_bufs_pa = avf_dma_addr (vm, ad, ad->atq_bufs); pa = avf_dma_addr (vm, ad, ad->atq); avf_reg_write (ad, AVF_ATQT, 0); /* Tail */ avf_reg_write (ad, AVF_ATQH, 0); /* Head */ avf_reg_write (ad, AVF_ATQLEN, AVF_MBOX_LEN | (1ULL << 31)); /* len & ena */ avf_reg_write (ad, AVF_ATQBAL, (u32) pa); /* Base Address Low */ avf_reg_write (ad, AVF_ATQBAH, (u32) (pa >> 32)); /* Base Address High */ /* VF MailBox Receive */ clib_memset (ad->arq, 0, sizeof (avf_aq_desc_t) * AVF_MBOX_LEN); ad->arq_bufs_pa = avf_dma_addr (vm, ad, ad->arq_bufs); for (i = 0; i < AVF_MBOX_LEN; i++) avf_arq_slot_init (ad, i); pa = avf_dma_addr (vm, ad, ad->arq); avf_reg_write (ad, AVF_ARQH, 0); /* Head */ avf_reg_write (ad, AVF_ARQT, 0); /* Head */ avf_reg_write (ad, AVF_ARQLEN, AVF_MBOX_LEN | (1ULL << 31)); /* len & ena */ avf_reg_write (ad, AVF_ARQBAL, (u32) pa); /* Base Address Low */ avf_reg_write (ad, AVF_ARQBAH, (u32) (pa >> 32)); /* Base Address High */ avf_reg_write (ad, AVF_ARQT, AVF_MBOX_LEN - 1); /* Tail */ ad->atq_next_slot = 0; ad->arq_next_slot = 0; } clib_error_t * avf_send_to_pf (vlib_main_t * vm, avf_device_t * ad, virtchnl_ops_t op, void *in, int in_len, void *out, int out_len) { clib_error_t *err; avf_aq_desc_t *d, dt = {.opcode = 0x801,.v_opcode = op }; u32 head; f64 t0, suspend_time = AVF_SEND_TO_PF_SUSPEND_TIME; /* adminq operations should be only done from process node after device * is initialized */ ASSERT ((ad->flags & AVF_DEVICE_F_INITIALIZED) == 0 || vlib_get_current_process_node_index (vm) == avf_process_node.index); /* suppress interrupt in the next adminq receive slot as we are going to wait for response we only need interrupts when event is received */ d = &ad->arq[ad->arq_next_slot]; d->flags |= AVF_AQ_F_SI; if ((err = avf_aq_desc_enq (vm, ad, &dt, in, in_len))) return err; t0 = vlib_time_now (vm); retry: head = avf_get_u32 (ad->bar0, AVF_ARQH); if (ad->arq_next_slot == head) { f64 t = vlib_time_now (vm) - t0; if (t > AVF_SEND_TO_PF_MAX_WAIT_TIME) { avf_log_err (ad, "send_to_pf failed (timeout %.3fs)", t); return clib_error_return (0, "timeout"); } vlib_process_suspend (vm, suspend_time); suspend_time *= 2; goto retry; } d = &ad->arq[ad->arq_next_slot]; if (d->v_opcode == VIRTCHNL_OP_EVENT) { void *buf = ad->arq_bufs + ad->arq_next_slot * AVF_MBOX_BUF_SZ; virtchnl_pf_event_t *e; if ((d->datalen != sizeof (virtchnl_pf_event_t)) || ((d->flags & AVF_AQ_F_BUF) == 0)) return clib_error_return (0, "event message error"); vec_add2 (ad->events, e, 1); clib_memcpy_fast (e, buf, sizeof (virtchnl_pf_event_t)); avf_arq_slot_init (ad, ad->arq_next_slot); ad->arq_next_slot++; /* reset timer */ t0 = vlib_time_now (vm); suspend_time = AVF_SEND_TO_PF_SUSPEND_TIME; goto retry; } if (d->v_opcode != op) { err = clib_error_return (0, "unexpected message received [v_opcode = %u, " "expected %u, v_retval %d]", d->v_opcode, op, d->v_retval); goto done; } if (d->v_retval) { err = clib_error_return (0, "error [v_opcode = %u, v_retval %d]", d->v_opcode, d->v_retval); goto done; } if (out_len && d->flags & AVF_AQ_F_BUF) { void *buf = ad->arq_bufs + ad->arq_next_slot * AVF_MBOX_BUF_SZ; clib_memcpy_fast (out, buf, out_len); } avf_arq_slot_init (ad, ad->arq_next_slot); avf_reg_write (ad, AVF_ARQT, ad->arq_next_slot); avf_reg_flush (ad); ad->arq_next_slot = (ad->arq_next_slot + 1) % AVF_MBOX_LEN; done: if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] send to pf: v_opcode %s (%d) v_retval 0x%x", .format_args = "i4t4i4i4", .n_enum_strings = VIRTCHNL_N_OPS, .enum_strings = { #define _(v, n) [v] = #n, foreach_virtchnl_op #undef _ }, }; struct { u32 dev_instance; u32 v_opcode; u32 v_opcode_val; u32 v_retval; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->v_opcode = op; ed->v_opcode_val = op; ed->v_retval = d->v_retval; } return err; } clib_error_t * avf_op_version (vlib_main_t * vm, avf_device_t * ad, virtchnl_version_info_t * ver) { clib_error_t *err = 0; virtchnl_version_info_t myver = { .major = VIRTCHNL_VERSION_MAJOR, .minor = VIRTCHNL_VERSION_MINOR, }; avf_log_debug (ad, "version: major %u minor %u", myver.major, myver.minor); err = avf_send_to_pf (vm, ad, VIRTCHNL_OP_VERSION, &myver, sizeof (virtchnl_version_info_t), ver, sizeof (virtchnl_version_info_t)); if (err) return err; return err; } clib_error_t * avf_op_get_vf_resources (vlib_main_t * vm, avf_device_t * ad, virtchnl_vf_resource_t * res) { clib_error_t *err = 0; u32 bitmap = (VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_RSS_PF | VIRTCHNL_VF_OFFLOAD_WB_ON_ITR | VIRTCHNL_VF_OFFLOAD_VLAN | VIRTCHNL_VF_OFFLOAD_RX_POLLING | VIRTCHNL_VF_CAP_ADV_LINK_SPEED | VIRTCHNL_VF_OFFLOAD_FDIR_PF | VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF | VIRTCHNL_VF_OFFLOAD_VLAN_V2); avf_log_debug (ad, "get_vf_resources: bitmap 0x%x (%U)", bitmap, format_avf_vf_cap_flags, bitmap); err = avf_send_to_pf (vm, ad, VIRTCHNL_OP_GET_VF_RESOURCES, &bitmap, sizeof (u32), res, sizeof (virtchnl_vf_resource_t)); if (err == 0) { int i; avf_log_debug (ad, "get_vf_resources: num_vsis %u num_queue_pairs %u " "max_vectors %u max_mtu %u vf_cap_flags 0x%x (%U) " "rss_key_size %u rss_lut_size %u", res->num_vsis, res->num_queue_pairs, res->max_vectors, res->max_mtu, res->vf_cap_flags, format_avf_vf_cap_flags, res->vf_cap_flags, res->rss_key_size, res->rss_lut_size); for (i = 0; i < res->num_vsis; i++) avf_log_debug ( ad, "get_vf_resources_vsi[%u]: vsi_id %u num_queue_pairs %u vsi_type %u " "qset_handle %u default_mac_addr %U", i, res->vsi_res[i].vsi_id, res->vsi_res[i].num_queue_pairs, res->vsi_res[i].vsi_type, res->vsi_res[i].qset_handle, format_ethernet_address, res->vsi_res[i].default_mac_addr); } return err; } clib_error_t * avf_op_config_rss_lut (vlib_main_t * vm, avf_device_t * ad) { int msg_len = sizeof (virtchnl_rss_lut_t) + ad->rss_lut_size - 1; int i; u8 msg[msg_len]; virtchnl_rss_lut_t *rl; clib_memset (msg, 0, msg_len); rl = (virtchnl_rss_lut_t *) msg; rl->vsi_id = ad->vsi_id; rl->lut_entries = ad->rss_lut_size; for (i = 0; i < ad->rss_lut_size; i++) rl->lut[i] = i % ad->n_rx_queues; avf_log_debug (ad, "config_rss_lut: vsi_id %u rss_lut_size %u lut 0x%U", rl->vsi_id, rl->lut_entries, format_hex_bytes_no_wrap, rl->lut, rl->lut_entries); return avf_send_to_pf (vm, ad, VIRTCHNL_OP_CONFIG_RSS_LUT, msg, msg_len, 0, 0); } clib_error_t * avf_op_config_rss_key (vlib_main_t * vm, avf_device_t * ad) { /* from DPDK i40e... */ static uint32_t rss_key_default[] = { 0x6b793944, 0x23504cb5, 0x5bea75b6, 0x309f4f12, 0x3dc0a2b8, 0x024ddcdf, 0x339b8ca0, 0x4c4af64a, 0x34fac605, 0x55d85839, 0x3a58997d, 0x2ec938e1, 0x66031581 }; int msg_len = sizeof (virtchnl_rss_key_t) + ad->rss_key_size - 1; u8 msg[msg_len]; virtchnl_rss_key_t *rk; if (sizeof (rss_key_default) != ad->rss_key_size) return clib_error_create ("unsupported RSS key size (expected %d, got %d)", sizeof (rss_key_default), ad->rss_key_size); clib_memset (msg, 0, msg_len); rk = (virtchnl_rss_key_t *) msg; rk->vsi_id = ad->vsi_id; rk->key_len = ad->rss_key_size; memcpy_s (rk->key, rk->key_len, rss_key_default, sizeof (rss_key_default)); avf_log_debug (ad, "config_rss_key: vsi_id %u rss_key_size %u key 0x%U", rk->vsi_id, rk->key_len, format_hex_bytes_no_wrap, rk->key, rk->key_len); return avf_send_to_pf (vm, ad, VIRTCHNL_OP_CONFIG_RSS_KEY, msg, msg_len, 0, 0); } clib_error_t * avf_op_disable_vlan_stripping (vlib_main_t * vm, avf_device_t * ad) { avf_log_debug (ad, "disable_vlan_stripping"); return avf_send_to_pf (vm, ad, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 0, 0, 0, 0); } clib_error_t * avf_op_config_promisc_mode (vlib_main_t * vm, avf_device_t * ad, int is_enable) { virtchnl_promisc_info_t pi = { 0 }; pi.vsi_id = ad->vsi_id; if (is_enable) pi.flags = FLAG_VF_UNICAST_PROMISC | FLAG_VF_MULTICAST_PROMISC; avf_log_debug (ad, "config_promisc_mode: unicast %s multicast %s", pi.flags & FLAG_VF_UNICAST_PROMISC ? "on" : "off", pi.flags & FLAG_VF_MULTICAST_PROMISC ? "on" : "off"); return avf_send_to_pf (vm, ad, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, &pi, sizeof (virtchnl_promisc_info_t), 0, 0); } clib_error_t * avf_op_config_vsi_queues (vlib_main_t * vm, avf_device_t * ad) { int i; int n_qp = clib_max (vec_len (ad->rxqs), vec_len (ad->txqs)); int msg_len = sizeof (virtchnl_vsi_queue_config_info_t) + n_qp * sizeof (virtchnl_queue_pair_info_t); u8 msg[msg_len]; virtchnl_vsi_queue_config_info_t *ci; clib_memset (msg, 0, msg_len); ci = (virtchnl_vsi_queue_config_info_t *) msg; ci->vsi_id = ad->vsi_id; ci->num_queue_pairs = n_qp; avf_log_debug (ad, "config_vsi_queues: vsi_id %u num_queue_pairs %u", ad->vsi_id, ci->num_queue_pairs); for (i = 0; i < n_qp; i++) { virtchnl_txq_info_t *txq = &ci->qpair[i].txq; virtchnl_rxq_info_t *rxq = &ci->qpair[i].rxq; rxq->vsi_id = ad->vsi_id; rxq->queue_id = i; rxq->max_pkt_size = ETHERNET_MAX_PACKET_BYTES; if (i < vec_len (ad->rxqs)) { avf_rxq_t *q = vec_elt_at_index (ad->rxqs, i); rxq->ring_len = q->size; rxq->databuffer_size = vlib_buffer_get_default_data_size (vm); rxq->dma_ring_addr = avf_dma_addr (vm, ad, (void *) q->descs); avf_reg_write (ad, AVF_QRX_TAIL (i), q->size - 1); } avf_log_debug (ad, "config_vsi_queues_rx[%u]: max_pkt_size %u " "ring_len %u databuffer_size %u dma_ring_addr 0x%llx", i, rxq->max_pkt_size, rxq->ring_len, rxq->databuffer_size, rxq->dma_ring_addr); txq->vsi_id = ad->vsi_id; txq->queue_id = i; if (i < vec_len (ad->txqs)) { avf_txq_t *q = vec_elt_at_index (ad->txqs, i); txq->ring_len = q->size; txq->dma_ring_addr = avf_dma_addr (vm, ad, (void *) q->descs); } avf_log_debug (ad, "config_vsi_queues_tx[%u]: ring_len %u " "dma_ring_addr 0x%llx", i, txq->ring_len, txq->dma_ring_addr); } return avf_send_to_pf (vm, ad, VIRTCHNL_OP_CONFIG_VSI_QUEUES, msg, msg_len, 0, 0); } clib_error_t * avf_op_config_irq_map (vlib_main_t * vm, avf_device_t * ad) { int msg_len = sizeof (virtchnl_irq_map_info_t) + (ad->n_rx_irqs) * sizeof (virtchnl_vector_map_t); u8 msg[msg_len]; virtchnl_irq_map_info_t *imi; clib_memset (msg, 0, msg_len); imi = (virtchnl_irq_map_info_t *) msg; imi->num_vectors = ad->n_rx_irqs; for (int i = 0; i < ad->n_rx_irqs; i++) { imi->vecmap[i].vector_id = i + 1; imi->vecmap[i].vsi_id = ad->vsi_id; if (ad->n_rx_irqs == ad->n_rx_queues) imi->vecmap[i].rxq_map = 1 << i; else imi->vecmap[i].rxq_map = pow2_mask (ad->n_rx_queues);; avf_log_debug (ad, "config_irq_map[%u/%u]: vsi_id %u vector_id %u " "rxq_map %u", i, ad->n_rx_irqs - 1, ad->vsi_id, imi->vecmap[i].vector_id, imi->vecmap[i].rxq_map); } return avf_send_to_pf (vm, ad, VIRTCHNL_OP_CONFIG_IRQ_MAP, msg, msg_len, 0, 0); } clib_error_t * avf_op_add_del_eth_addr (vlib_main_t * vm, avf_device_t * ad, u8 count, u8 * macs, int is_add) { int msg_len = sizeof (virtchnl_ether_addr_list_t) + count * sizeof (virtchnl_ether_addr_t); u8 msg[msg_len]; virtchnl_ether_addr_list_t *al; int i; clib_memset (msg, 0, msg_len); al = (virtchnl_ether_addr_list_t *) msg; al->vsi_id = ad->vsi_id; al->num_elements = count; avf_log_debug (ad, "add_del_eth_addr: vsi_id %u num_elements %u is_add %u", ad->vsi_id, al->num_elements, is_add); for (i = 0; i < count; i++) { clib_memcpy_fast (&al->list[i].addr, macs + i * 6, 6); avf_log_debug (ad, "add_del_eth_addr[%u]: %U", i, format_ethernet_address, &al->list[i].addr); } return avf_send_to_pf (vm, ad, is_add ? VIRTCHNL_OP_ADD_ETH_ADDR : VIRTCHNL_OP_DEL_ETH_ADDR, msg, msg_len, 0, 0); } clib_error_t * avf_op_enable_queues (vlib_main_t * vm, avf_device_t * ad, u32 rx, u32 tx) { virtchnl_queue_select_t qs = { 0 }; int i = 0; qs.vsi_id = ad->vsi_id; qs.rx_queues = rx; qs.tx_queues = tx; avf_log_debug (ad, "enable_queues: vsi_id %u rx_queues %u tx_queues %u", ad->vsi_id, qs.rx_queues, qs.tx_queues); while (rx) { if (rx & (1 << i)) { avf_rxq_t *rxq = vec_elt_at_index (ad->rxqs, i); avf_reg_write (ad, AVF_QRX_TAIL (i), rxq->n_enqueued); rx &= ~(1 << i); } i++; } return avf_send_to_pf (vm, ad, VIRTCHNL_OP_ENABLE_QUEUES, &qs, sizeof (virtchnl_queue_select_t), 0, 0); } clib_error_t * avf_op_get_stats (vlib_main_t * vm, avf_device_t * ad, virtchnl_eth_stats_t * es) { virtchnl_queue_select_t qs = { 0 }; clib_error_t *err; qs.vsi_id = ad->vsi_id; err = avf_send_to_pf (vm, ad, VIRTCHNL_OP_GET_STATS, &qs, sizeof (virtchnl_queue_select_t), es, sizeof (virtchnl_eth_stats_t)); avf_stats_log_debug (ad, "get_stats: vsi_id %u\n %U", ad->vsi_id, format_avf_eth_stats, es); return err; } clib_error_t * avf_op_get_offload_vlan_v2_caps (vlib_main_t *vm, avf_device_t *ad, virtchnl_vlan_caps_t *vc) { clib_error_t *err; err = avf_send_to_pf (vm, ad, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 0, 0, vc, sizeof (virtchnl_vlan_caps_t)); avf_log_debug (ad, "get_offload_vlan_v2_caps:\n%U%U", format_white_space, 16, format_avf_vlan_caps, vc); return err; } clib_error_t * avf_op_disable_vlan_stripping_v2 (vlib_main_t *vm, avf_device_t *ad, u32 outer, u32 inner) { virtchnl_vlan_setting_t vs = { .outer_ethertype_setting = outer, .inner_ethertype_setting = inner, .vport_id = ad->vsi_id, }; avf_log_debug (ad, "disable_vlan_stripping_v2: outer: %U, inner %U", format_avf_vlan_support, outer, format_avf_vlan_support, inner); return avf_send_to_pf (vm, ad, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, &vs, sizeof (virtchnl_vlan_setting_t), 0, 0); } clib_error_t * avf_device_reset (vlib_main_t * vm, avf_device_t * ad) { avf_aq_desc_t d = { 0 }; clib_error_t *error; u32 rstat; f64 t0, t = 0, suspend_time = AVF_RESET_SUSPEND_TIME; avf_log_debug (ad, "reset"); d.opcode = 0x801; d.v_opcode = VIRTCHNL_OP_RESET_VF; if ((error = avf_aq_desc_enq (vm, ad, &d, 0, 0))) return error; t0 = vlib_time_now (vm); retry: vlib_process_suspend (vm, suspend_time); rstat = avf_get_u32 (ad->bar0, AVFGEN_RSTAT); if (rstat == 2 || rstat == 3) { avf_log_debug (ad, "reset completed in %.3fs", t); return 0; } t = vlib_time_now (vm) - t0; if (t > AVF_RESET_MAX_WAIT_TIME) { avf_log_err (ad, "reset failed (timeout %.3fs)", t); return clib_error_return (0, "reset failed (timeout)"); } suspend_time *= 2; goto retry; } clib_error_t * avf_request_queues (vlib_main_t * vm, avf_device_t * ad, u16 num_queue_pairs) { virtchnl_vf_res_request_t res_req = { 0 }; clib_error_t *error; u32 rstat; f64 t0, t, suspend_time = AVF_RESET_SUSPEND_TIME; res_req.num_queue_pairs = num_queue_pairs; avf_log_debug (ad, "request_queues: num_queue_pairs %u", num_queue_pairs); error = avf_send_to_pf (vm, ad, VIRTCHNL_OP_REQUEST_QUEUES, &res_req, sizeof (virtchnl_vf_res_request_t), &res_req, sizeof (virtchnl_vf_res_request_t)); /* * if PF responds, the request failed * else PF initializes restart and avf_send_to_pf returns an error */ if (!error) { return clib_error_return (0, "requested more than %u queue pairs", res_req.num_queue_pairs); } t0 = vlib_time_now (vm); retry: vlib_process_suspend (vm, suspend_time); t = vlib_time_now (vm) - t0; rstat = avf_get_u32 (ad->bar0, AVFGEN_RSTAT); if ((rstat == VIRTCHNL_VFR_COMPLETED) || (rstat == VIRTCHNL_VFR_VFACTIVE)) goto done; if (t > AVF_RESET_MAX_WAIT_TIME) { avf_log_err (ad, "request queues failed (timeout %.3f seconds)", t); return clib_error_return (0, "request queues failed (timeout)"); } suspend_time *= 2; goto retry; done: return NULL; } clib_error_t * avf_device_init (vlib_main_t * vm, avf_main_t * am, avf_device_t * ad, avf_create_if_args_t * args) { virtchnl_version_info_t ver = { 0 }; virtchnl_vf_resource_t res = { 0 }; clib_error_t *error; int i, wb_on_itr; u16 rxq_num, txq_num; avf_adminq_init (vm, ad); rxq_num = args->rxq_num ? args->rxq_num : 1; txq_num = args->txq_num ? args->txq_num : vlib_get_n_threads (); if ((error = avf_request_queues (vm, ad, clib_max (txq_num, rxq_num)))) { /* we failed to get more queues, but still we want to proceed */ clib_error_free (error); if ((error = avf_device_reset (vm, ad))) return error; } avf_adminq_init (vm, ad); /* * OP_VERSION */ if ((error = avf_op_version (vm, ad, &ver))) return error; if (ver.major != VIRTCHNL_VERSION_MAJOR || ver.minor != VIRTCHNL_VERSION_MINOR) return clib_error_return (0, "incompatible protocol version " "(remote %d.%d)", ver.major, ver.minor); /* * OP_GET_VF_RESOURCES */ if ((error = avf_op_get_vf_resources (vm, ad, &res))) return error; if (res.num_vsis != 1 || res.vsi_res[0].vsi_type != VIRTCHNL_VSI_SRIOV) return clib_error_return (0, "unexpected GET_VF_RESOURCE reply received"); ad->vsi_id = res.vsi_res[0].vsi_id; ad->cap_flags = res.vf_cap_flags; ad->num_queue_pairs = res.num_queue_pairs; ad->n_rx_queues = clib_min (rxq_num, res.num_queue_pairs); ad->n_tx_queues = clib_min (txq_num, res.num_queue_pairs); ad->max_vectors = res.max_vectors; ad->max_mtu = res.max_mtu; ad->rss_key_size = res.rss_key_size; ad->rss_lut_size = res.rss_lut_size; ad->n_rx_irqs = ad->max_vectors > ad->n_rx_queues ? ad->n_rx_queues : 1; if (ad->max_vectors > ad->n_rx_queues) ad->flags |= AVF_DEVICE_F_RX_INT; wb_on_itr = (ad->cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) != 0; clib_memcpy_fast (ad->hwaddr, res.vsi_res[0].default_mac_addr, 6); if (args->rxq_num != 0 && ad->n_rx_queues != args->rxq_num) return clib_error_return (0, "Number of requested RX queues (%u) is " "higher than mumber of available queues (%u)", args->rxq_num, ad->num_queue_pairs); if (args->txq_num != 0 && ad->n_tx_queues != args->txq_num) return clib_error_return (0, "Number of requested TX queues (%u) is " "higher than mumber of available queues (%u)", args->txq_num, ad->num_queue_pairs); /* * Disable VLAN stripping */ if (ad->cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { virtchnl_vlan_caps_t vc = {}; u32 outer = VIRTCHNL_VLAN_UNSUPPORTED, inner = VIRTCHNL_VLAN_UNSUPPORTED; u32 mask = VIRTCHNL_VLAN_ETHERTYPE_8100; if ((error = avf_op_get_offload_vlan_v2_caps (vm, ad, &vc))) return error; outer = vc.offloads.stripping_support.outer & mask; inner = vc.offloads.stripping_support.inner & mask; /* Check for ability to modify the VLAN setting */ outer = vc.offloads.stripping_support.outer & VIRTCHNL_VLAN_TOGGLE ? outer : 0; inner = vc.offloads.stripping_support.inner & VIRTCHNL_VLAN_TOGGLE ? inner : 0; if ((outer || inner) && (error = avf_op_disable_vlan_stripping_v2 (vm, ad, outer, inner))) return error; } else if ((error = avf_op_disable_vlan_stripping (vm, ad))) return error; /* * Init Queues */ for (i = 0; i < ad->n_rx_queues; i++) if ((error = avf_rxq_init (vm, ad, i, args->rxq_size))) return error; for (i = 0; i < ad->n_tx_queues; i++) if ((error = avf_txq_init (vm, ad, i, args->txq_size))) return error; if ((ad->cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) && (error = avf_op_config_rss_lut (vm, ad))) return error; if ((ad->cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) && (error = avf_op_config_rss_key (vm, ad))) return error; if ((error = avf_op_config_vsi_queues (vm, ad))) return error; if ((error = avf_op_config_irq_map (vm, ad))) return error; avf_irq_0_set_state (ad, AVF_IRQ_STATE_ENABLED); for (i = 0; i < ad->n_rx_irqs; i++) avf_irq_n_set_state (ad, i, wb_on_itr ? AVF_IRQ_STATE_WB_ON_ITR : AVF_IRQ_STATE_ENABLED); if ((error = avf_op_add_del_eth_addr (vm, ad, 1, ad->hwaddr, 1 /* add */ ))) return error; if ((error = avf_op_enable_queues (vm, ad, pow2_mask (ad->n_rx_queues), pow2_mask (ad->n_tx_queues)))) return error; ad->flags |= AVF_DEVICE_F_INITIALIZED; return error; } void avf_process_one_device (vlib_main_t * vm, avf_device_t * ad, int is_irq) { vnet_main_t *vnm = vnet_get_main (); virtchnl_pf_event_t *e; u32 r; if (ad->flags & AVF_DEVICE_F_ERROR) return; if ((ad->flags & AVF_DEVICE_F_INITIALIZED) == 0) return; ASSERT (ad->error == 0); /* do not process device in reset state */ r = avf_get_u32 (ad->bar0, AVFGEN_RSTAT); if (r != VIRTCHNL_VFR_VFACTIVE) return; r = avf_get_u32 (ad->bar0, AVF_ARQLEN); if ((r & 0xf0000000) != (1ULL << 31)) { ad->error = clib_error_return (0, "arq not enabled, arqlen = 0x%x", r); avf_log_err (ad, "error: %U", format_clib_error, ad->error); goto error; } r = avf_get_u32 (ad->bar0, AVF_ATQLEN); if ((r & 0xf0000000) != (1ULL << 31)) { ad->error = clib_error_return (0, "atq not enabled, atqlen = 0x%x", r); avf_log_err (ad, "error: %U", format_clib_error, ad->error); goto error; } if (is_irq == 0) avf_op_get_stats (vm, ad, &ad->eth_stats); vec_foreach (e, ad->events) { avf_log_debug (ad, "event: %s (%u) sev %d", virtchnl_event_names[e->event], e->event, e->severity); if (e->event == VIRTCHNL_EVENT_LINK_CHANGE) { int link_up; virtchnl_link_speed_t speed = e->event_data.link_event.link_speed; u32 flags = 0; u32 mbps = 0; if (ad->cap_flags & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) link_up = e->event_data.link_event_adv.link_status; else link_up = e->event_data.link_event.link_status; if (ad->cap_flags & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) mbps = e->event_data.link_event_adv.link_speed; if (speed == VIRTCHNL_LINK_SPEED_40GB) mbps = 40000; else if (speed == VIRTCHNL_LINK_SPEED_25GB) mbps = 25000; else if (speed == VIRTCHNL_LINK_SPEED_10GB) mbps = 10000; else if (speed == VIRTCHNL_LINK_SPEED_5GB) mbps = 5000; else if (speed == VIRTCHNL_LINK_SPEED_2_5GB) mbps = 2500; else if (speed == VIRTCHNL_LINK_SPEED_1GB) mbps = 1000; else if (speed == VIRTCHNL_LINK_SPEED_100MB) mbps = 100; avf_log_debug (ad, "event_link_change: status %d speed %u mbps", link_up, mbps); if (link_up && (ad->flags & AVF_DEVICE_F_LINK_UP) == 0) { ad->flags |= AVF_DEVICE_F_LINK_UP; flags |= (VNET_HW_INTERFACE_FLAG_FULL_DUPLEX | VNET_HW_INTERFACE_FLAG_LINK_UP); vnet_hw_interface_set_flags (vnm, ad->hw_if_index, flags); vnet_hw_interface_set_link_speed ( vnm, ad->hw_if_index, (mbps == UINT32_MAX) ? UINT32_MAX : mbps * 1000); ad->link_speed = mbps; } else if (!link_up && (ad->flags & AVF_DEVICE_F_LINK_UP) != 0) { ad->flags &= ~AVF_DEVICE_F_LINK_UP; ad->link_speed = 0; } if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] link change: link_status %d " "link_speed %d mbps", .format_args = "i4i1i4", }; struct { u32 dev_instance; u8 link_status; u32 link_speed; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->link_status = link_up; ed->link_speed = mbps; } } else { if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] unknown event: event %d severity %d", .format_args = "i4i4i1i1", }; struct { u32 dev_instance; u32 event; u32 severity; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->event = e->event; ed->severity = e->severity; } } } vec_reset_length (ad->events); return; error: ad->flags |= AVF_DEVICE_F_ERROR; ASSERT (ad->error != 0); vlib_log_err (avf_log.class, "%U", format_clib_error, ad->error); } clib_error_t * avf_op_program_flow (vlib_main_t *vm, avf_device_t *ad, int is_create, enum virthnl_adv_ops vc_op, u8 *rule, u32 rule_len, u8 *program_status, u32 status_len) { virtchnl_ops_t op; avf_log_debug (ad, "avf_op_program_flow: vsi_id %u is_create %u", ad->vsi_id, is_create); switch (vc_op) { case VIRTCHNL_ADV_OP_ADD_FDIR_FILTER: case VIRTCHNL_ADV_OP_DEL_FDIR_FILTER: op = is_create ? VIRTCHNL_OP_ADD_FDIR_FILTER : VIRTCHNL_OP_DEL_FDIR_FILTER; break; case VIRTCHNL_ADV_OP_ADD_RSS_CFG: case VIRTCHNL_ADV_OP_DEL_RSS_CFG: op = is_create ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; break; default: return clib_error_return (0, "invalid virtchnl opcode"); ; } return avf_send_to_pf (vm, ad, op, rule, rule_len, program_status, status_len); } static void avf_process_handle_request (vlib_main_t * vm, avf_process_req_t * req) { avf_device_t *ad = avf_get_device (req->dev_instance); if (req->type == AVF_PROCESS_REQ_ADD_DEL_ETH_ADDR) req->error = avf_op_add_del_eth_addr (vm, ad, 1, req->eth_addr, req->is_add); else if (req->type == AVF_PROCESS_REQ_CONFIG_PROMISC_MDDE) req->error = avf_op_config_promisc_mode (vm, ad, req->is_enable); else if (req->type == AVF_PROCESS_REQ_PROGRAM_FLOW) req->error = avf_op_program_flow (vm, ad, req->is_add, req->vc_op, req->rule, req->rule_len, req->program_status, req->status_len); else clib_panic ("BUG: unknown avf proceess request type"); if (req->calling_process_index != avf_process_node.index) vlib_process_signal_event (vm, req->calling_process_index, 0, 0); } static clib_error_t * avf_process_request (vlib_main_t * vm, avf_process_req_t * req) { uword *event_data = 0; req->calling_process_index = vlib_get_current_process_node_index (vm); if (req->calling_process_index != avf_process_node.index) { vlib_process_signal_event_pointer (vm, avf_process_node.index, AVF_PROCESS_EVENT_REQ, req); vlib_process_wait_for_event_or_clock (vm, 5.0); if (vlib_process_get_events (vm, &event_data) != 0) clib_panic ("avf process node failed to reply in 5 seconds"); vec_free (event_data); } else avf_process_handle_request (vm, req); return req->error; } static u32 avf_flag_change (vnet_main_t * vnm, vnet_hw_interface_t * hw, u32 flags) { avf_process_req_t req; vlib_main_t *vm = vlib_get_main (); avf_device_t *ad = avf_get_device (hw->dev_instance); clib_error_t *err; switch (flags) { case ETHERNET_INTERFACE_FLAG_DEFAULT_L3: ad->flags &= ~AVF_DEVICE_F_PROMISC; break; case ETHERNET_INTERFACE_FLAG_ACCEPT_ALL: ad->flags |= AVF_DEVICE_F_PROMISC; break; default: return ~0; } req.is_enable = ((ad->flags & AVF_DEVICE_F_PROMISC) != 0); req.type = AVF_PROCESS_REQ_CONFIG_PROMISC_MDDE; req.dev_instance = hw->dev_instance; if ((err = avf_process_request (vm, &req))) { avf_log_err (ad, "error: %U", format_clib_error, err); clib_error_free (err); return ~0; } return 0; } static uword avf_process (vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { avf_main_t *am = &avf_main; uword *event_data = 0, event_type; int enabled = 0, irq; f64 last_run_duration = 0; f64 last_periodic_time = 0; avf_device_t **dev_pointers = 0; u32 i; while (1) { if (enabled) vlib_process_wait_for_event_or_clock (vm, 5.0 - last_run_duration); else vlib_process_wait_for_event (vm); event_type = vlib_process_get_events (vm, &event_data); irq = 0; switch (event_type) { case ~0: last_periodic_time = vlib_time_now (vm); break; case AVF_PROCESS_EVENT_START: enabled = 1; break; case AVF_PROCESS_EVENT_DELETE_IF: for (int i = 0; i < vec_len (event_data); i++) { avf_device_t *ad = avf_get_device (event_data[i]); avf_delete_if (vm, ad, /* with_barrier */ 1); } if (pool_elts (am->devices) < 1) enabled = 0; break; case AVF_PROCESS_EVENT_AQ_INT: irq = 1; break; case AVF_PROCESS_EVENT_REQ: for (int i = 0; i < vec_len (event_data); i++) avf_process_handle_request (vm, (void *) event_data[i]); break; default: ASSERT (0); } vec_reset_length (event_data); if (enabled == 0) continue; /* create local list of device pointers as device pool may grow * during suspend */ vec_reset_length (dev_pointers); pool_foreach_index (i, am->devices) { vec_add1 (dev_pointers, avf_get_device (i)); } vec_foreach_index (i, dev_pointers) { avf_process_one_device (vm, dev_pointers[i], irq); }; last_run_duration = vlib_time_now (vm) - last_periodic_time; } return 0; } VLIB_REGISTER_NODE (avf_process_node) = { .function = avf_process, .type = VLIB_NODE_TYPE_PROCESS, .name = "avf-process", }; static void avf_irq_0_handler (vlib_main_t * vm, vlib_pci_dev_handle_t h, u16 line) { uword pd = vlib_pci_get_private_data (vm, h); avf_device_t *ad = avf_get_device (pd); u32 icr0; icr0 = avf_reg_read (ad, AVFINT_ICR0); if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] irq 0: icr0 0x%x", .format_args = "i4i4", }; struct { u32 dev_instance; u32 icr0; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->icr0 = icr0; } avf_irq_0_set_state (ad, AVF_IRQ_STATE_ENABLED); /* bit 30 - Send/Receive Admin queue interrupt indication */ if (icr0 & (1 << 30)) vlib_process_signal_event (vm, avf_process_node.index, AVF_PROCESS_EVENT_AQ_INT, 0); } static void avf_irq_n_handler (vlib_main_t * vm, vlib_pci_dev_handle_t h, u16 line) { vnet_main_t *vnm = vnet_get_main (); uword pd = vlib_pci_get_private_data (vm, h); avf_device_t *ad = avf_get_device (pd); avf_rxq_t *rxq = vec_elt_at_index (ad->rxqs, line - 1); if (ad->flags & AVF_DEVICE_F_ELOG) { ELOG_TYPE_DECLARE (el) = { .format = "avf[%d] irq %d: received", .format_args = "i4i2", }; struct { u32 dev_instance; u16 line; } *ed; ed = ELOG_DATA (&vlib_global_main.elog_main, el); ed->dev_instance = ad->dev_instance; ed->line = line; } line--; if (ad->flags & AVF_DEVICE_F_RX_INT && rxq->int_mode) vnet_hw_if_rx_queue_set_int_pending (vnm, rxq->queue_index); avf_irq_n_set_state (ad, line, AVF_IRQ_STATE_ENABLED); } void avf_delete_if (vlib_main_t * vm, avf_device_t * ad, int with_barrier) { vnet_main_t *vnm = vnet_get_main (); avf_main_t *am = &avf_main; int i; u32 dev_instance; ad->flags &= ~AVF_DEVICE_F_ADMIN_UP; if (ad->hw_if_index) { if (with_barrier) vlib_worker_thread_barrier_sync (vm); vnet_hw_interface_set_flags (vnm, ad->hw_if_index, 0); ethernet_delete_interface (vnm, ad->hw_if_index); if (with_barrier) vlib_worker_thread_barrier_release (vm); } vlib_pci_device_close (vm, ad->pci_dev_handle); vlib_physmem_free (vm, ad->atq); vlib_physmem_free (vm, ad->arq); vlib_physmem_free (vm, ad->atq_bufs); vlib_physmem_free (vm, ad->arq_bufs); vec_foreach_index (i, ad->rxqs) { avf_rxq_t *rxq = vec_elt_at_index (ad->rxqs, i); vlib_physmem_free (vm, (void *) rxq->descs); if (rxq->n_enqueued) vlib_buffer_free_from_ring (vm, rxq->bufs, rxq->next, rxq->size, rxq->n_enqueued); vec_free (rxq->bufs); } vec_free (ad->rxqs); vec_foreach_index (i, ad->txqs) { avf_txq_t *txq = vec_elt_at_index (ad->txqs, i); vlib_physmem_free (vm, (void *) txq->descs); if (txq->n_enqueued) { u16 first = (txq->next - txq->n_enqueued) & (txq->size -1); vlib_buffer_free_from_ring (vm, txq->bufs, first, txq->size, txq->n_enqueued); } /* Free the placeholder buffer */ vlib_buffer_free (vm, txq->ph_bufs, vec_len (txq->ph_bufs)); vec_free (txq->ph_bufs); vec_free (txq->bufs); clib_ring_free (txq->rs_slots); vec_free (txq->tmp_bufs); vec_free (txq->tmp_descs); clib_spinlock_free (&txq->lock); } vec_free (ad->txqs); vec_free (ad->name); clib_error_free (ad->error); dev_instance = ad->dev_instance; clib_memset (ad, 0, sizeof (*ad)); pool_put_index (am->devices, dev_instance); clib_mem_free (ad); } static u8 avf_validate_queue_size (avf_create_if_args_t * args) { clib_error_t *error = 0; args->rxq_size = (args->rxq_size == 0) ? AVF_RXQ_SZ : args->rxq_size; args->txq_size = (args->txq_size == 0) ? AVF_TXQ_SZ : args->txq_size; if ((args->rxq_size > AVF_QUEUE_SZ_MAX) || (args->txq_size > AVF_QUEUE_SZ_MAX)) { args->rv = VNET_API_ERROR_INVALID_VALUE; args->error = clib_error_return (error, "queue size must not be greater than %u", AVF_QUEUE_SZ_MAX); return 1; } if ((args->rxq_size < AVF_QUEUE_SZ_MIN) || (args->txq_size < AVF_QUEUE_SZ_MIN)) { args->rv = VNET_API_ERROR_INVALID_VALUE; args->error = clib_error_return (error, "queue size must not be smaller than %u", AVF_QUEUE_SZ_MIN); return 1; } if ((args->rxq_size & (args->rxq_size - 1)) || (args->txq_size & (args->txq_size - 1))) { args->rv = VNET_API_ERROR_INVALID_VALUE; args->error = clib_error_return (error, "queue size must be a power of two"); return 1; } return 0; } void avf_create_if (vlib_main_t * vm, avf_create_if_args_t * args) { vnet_main_t *vnm = vnet_get_main (); vnet_eth_interface_registration_t eir = {}; avf_main_t *am = &avf_main; avf_device_t *ad, **adp; vlib_pci_dev_handle_t h; clib_error_t *error = 0; int i; /* check input args */ if (avf_validate_queue_size (args) != 0) return; pool_foreach (adp, am->devices) { if ((*adp)->pci_addr.as_u32 == args->addr.as_u32) { args->rv = VNET_API_ERROR_ADDRESS_IN_USE; args->error = clib_error_return (error, "%U: %s", format_vlib_pci_addr, &args->addr, "pci address in use"); return; } } pool_get (am->devices, adp); adp[0] = ad = clib_mem_alloc_aligned (sizeof (avf_device_t), CLIB_CACHE_LINE_BYTES); clib_memset (ad, 0, sizeof (avf_device_t)); ad->dev_instance = adp - am->devices; ad->per_interface_next_index = ~0; ad->name = vec_dup (args->name); if (args->enable_elog) { ad->flags |= AVF_DEVICE_F_ELOG; avf_elog_init (); } if ((error = vlib_pci_device_open (vm, &args->addr, avf_pci_device_ids, &h))) { pool_put (am->devices, adp); clib_mem_free (ad); args->rv = VNET_API_ERROR_INVALID_INTERFACE; args->error = clib_error_return (error, "pci-addr %U", format_vlib_pci_addr, &args->addr); return; } ad->pci_dev_handle = h; ad->pci_addr = args->addr; ad->numa_node = vlib_pci_get_numa_node (vm, h); vlib_pci_set_private_data (vm, h, ad->dev_instance); if ((error = vlib_pci_bus_master_enable (vm, h))) goto error; if ((error = vlib_pci_map_region (vm, h, 0, &ad->bar0))) goto error; ad->atq = vlib_physmem_alloc_aligned_on_numa (vm, sizeof (avf_aq_desc_t) * AVF_MBOX_LEN, CLIB_CACHE_LINE_BYTES, ad->numa_node); if (ad->atq == 0) { error = vlib_physmem_last_error (vm); goto error; } if ((error = vlib_pci_map_dma (vm, h, ad->atq))) goto error; ad->arq = vlib_physmem_alloc_aligned_on_numa (vm, sizeof (avf_aq_desc_t) * AVF_MBOX_LEN, CLIB_CACHE_LINE_BYTES, ad->numa_node); if (ad->arq == 0) { error = vlib_physmem_last_error (vm); goto error; } if ((error = vlib_pci_map_dma (vm, h, ad->arq))) goto error; ad->atq_bufs = vlib_physmem_alloc_aligned_on_numa (vm, AVF_MBOX_BUF_SZ * AVF_MBOX_LEN, CLIB_CACHE_LINE_BYTES, ad->numa_node); if (ad->atq_bufs == 0) { error = vlib_physmem_last_error (vm); goto error; } if ((error = vlib_pci_map_dma (vm, h, ad->atq_bufs))) goto error; ad->arq_bufs = vlib_physmem_alloc_aligned_on_numa (vm, AVF_MBOX_BUF_SZ * AVF_MBOX_LEN, CLIB_CACHE_LINE_BYTES, ad->numa_node); if (ad->arq_bufs == 0) { error = vlib_physmem_last_error (vm); goto error; } if ((error = vlib_pci_map_dma (vm, h, ad->arq_bufs))) goto error; if (vlib_pci_supports_virtual_addr_dma (vm, h)) ad->flags |= AVF_DEVICE_F_VA_DMA; if ((error = avf_device_init (vm, am, ad, args))) goto error; if ((error = vlib_pci_register_msix_handler (vm, h, 0, 1, &avf_irq_0_handler))) goto error; if ((error = vlib_pci_register_msix_handler (vm, h, 1, ad->n_rx_irqs, &avf_irq_n_handler))) goto error; if ((error = vlib_pci_enable_msix_irq (vm, h, 0, ad->n_rx_irqs + 1))) goto error; if ((error = vlib_pci_intr_enable (vm, h))) goto error; /* create interface */ eir.dev_class_index = avf_device_class.index; eir.dev_instance = ad->dev_instance; eir.address = ad->hwaddr; eir.cb.flag_change = avf_flag_change; ad->hw_if_index = vnet_eth_register_interface (vnm, &eir); ethernet_set_flags (vnm, ad->hw_if_index, ETHERNET_INTERFACE_FLAG_DEFAULT_L3); vnet_sw_interface_t *sw = vnet_get_hw_sw_interface (vnm, ad->hw_if_index); args->sw_if_index = ad->sw_if_index = sw->sw_if_index; vnet_hw_if_set_input_node (vnm, ad->hw_if_index, avf_input_node.index); /* set hw interface caps */ vnet_hw_if_set_caps (vnm, ad->hw_if_index, VNET_HW_IF_CAP_INT_MODE | VNET_HW_IF_CAP_MAC_FILTER | VNET_HW_IF_CAP_TX_CKSUM | VNET_HW_IF_CAP_TCP_GSO); for (i = 0; i < ad->n_rx_queues; i++) { u32 qi, fi; qi = vnet_hw_if_register_rx_queue (vnm, ad->hw_if_index, i, VNET_HW_IF_RXQ_THREAD_ANY); if (ad->flags & AVF_DEVICE_F_RX_INT) { fi = vlib_pci_get_msix_file_index (vm, ad->pci_dev_handle, i + 1); vnet_hw_if_set_rx_queue_file_index (vnm, qi, fi); } ad->rxqs[i].queue_index = qi; } for (i = 0; i < ad->n_tx_queues; i++) { u32 qi = vnet_hw_if_register_tx_queue (vnm, ad->hw_if_index, i); ad->txqs[i].queue_index = qi; } for (i = 0; i < vlib_get_n_threads (); i++) { u32 qi = ad->txqs[i % ad->n_tx_queues].queue_index; vnet_hw_if_tx_queue_assign_thread (vnm, qi, i); } vnet_hw_if_update_runtime_data (vnm, ad->hw_if_index); if (pool_elts (am->devices) == 1) vlib_process_signal_event (vm, avf_process_node.index, AVF_PROCESS_EVENT_START, 0); return; error: avf_delete_if (vm, ad, /* with_barrier */ 0); args->rv = VNET_API_ERROR_INVALID_INTERFACE; args->error = clib_error_return (error, "pci-addr %U", format_vlib_pci_addr, &args->addr); avf_log_err (ad, "error: %U", format_clib_error, args->error); } static clib_error_t * avf_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags) { vnet_hw_interface_t *hi = vnet_get_hw_interface (vnm, hw_if_index); avf_device_t *ad = avf_get_device (hi->dev_instance); uword is_up = (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0; if (ad->flags & AVF_DEVICE_F_ERROR) return clib_error_return (0, "device is in error state"); if (is_up) { vnet_hw_interface_set_flags (vnm, ad->hw_if_index, VNET_HW_INTERFACE_FLAG_LINK_UP); ad->flags |= AVF_DEVICE_F_ADMIN_UP; } else { vnet_hw_interface_set_flags (vnm, ad->hw_if_index, 0); ad->flags &= ~AVF_DEVICE_F_ADMIN_UP; } return 0; } static clib_error_t * avf_interface_rx_mode_change (vnet_main_t * vnm, u32 hw_if_index, u32 qid, vnet_hw_if_rx_mode mode) { vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); avf_device_t *ad = avf_get_device (hw->dev_instance); avf_rxq_t *rxq = vec_elt_at_index (ad->rxqs, qid); if (mode == VNET_HW_IF_RX_MODE_POLLING) { if (rxq->int_mode == 0) return 0; if (ad->cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) avf_irq_n_set_state (ad, qid, AVF_IRQ_STATE_WB_ON_ITR); else avf_irq_n_set_state (ad, qid, AVF_IRQ_STATE_ENABLED); rxq->int_mode = 0; } else { if (rxq->int_mode == 1) return 0; if (ad->n_rx_irqs != ad->n_rx_queues) return clib_error_return (0, "not enough interrupt lines"); rxq->int_mode = 1; avf_irq_n_set_state (ad, qid, AVF_IRQ_STATE_ENABLED); } return 0; } static void avf_set_interface_next_node (vnet_main_t * vnm, u32 hw_if_index, u32 node_index) { vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); avf_device_t *ad = avf_get_device (hw->dev_instance); /* Shut off redirection */ if (node_index == ~0) { ad->per_interface_next_index = node_index; return; } ad->per_interface_next_index = vlib_node_add_next (vlib_get_main (), avf_input_node.index, node_index); } static clib_error_t * avf_add_del_mac_address (vnet_hw_interface_t * hw, const u8 * address, u8 is_add) { vlib_main_t *vm = vlib_get_main (); avf_process_req_t req; req.dev_instance = hw->dev_instance; req.type = AVF_PROCESS_REQ_ADD_DEL_ETH_ADDR; req.is_add = is_add; clib_memcpy (req.eth_addr, address, 6); return avf_process_request (vm, &req); } static char *avf_tx_func_error_strings[] = { #define _(n,s) s, foreach_avf_tx_func_error #undef _ }; static void avf_clear_hw_interface_counters (u32 instance) { avf_device_t *ad = avf_get_device (instance); clib_memcpy_fast (&ad->last_cleared_eth_stats, &ad->eth_stats, sizeof (ad->eth_stats)); } clib_error_t * avf_program_flow (u32 dev_instance, int is_add, enum virthnl_adv_ops vc_op, u8 *rule, u32 rule_len, u8 *program_status, u32 status_len) { vlib_main_t *vm = vlib_get_main (); avf_process_req_t req; req.dev_instance = dev_instance; req.type = AVF_PROCESS_REQ_PROGRAM_FLOW; req.is_add = is_add; req.vc_op = vc_op; req.rule = rule; req.rule_len = rule_len; req.program_status = program_status; req.status_len = status_len; return avf_process_request (vm, &req); } VNET_DEVICE_CLASS (avf_device_class, ) = { .name = "Adaptive Virtual Function (AVF) interface", .clear_counters = avf_clear_hw_interface_counters, .format_device = format_avf_device, .format_device_name = format_avf_device_name, .admin_up_down_function = avf_interface_admin_up_down, .rx_mode_change_function = avf_interface_rx_mode_change, .rx_redirect_to_node = avf_set_interface_next_node, .mac_addr_add_del_function = avf_add_del_mac_address, .tx_function_n_errors = AVF_TX_N_ERROR, .tx_function_error_strings = avf_tx_func_error_strings, .flow_ops_function = avf_flow_ops_fn, }; clib_error_t * avf_init (vlib_main_t * vm) { avf_main_t *am = &avf_main; vlib_thread_main_t *tm = vlib_get_thread_main (); vec_validate_aligned (am->per_thread_data, tm->n_vlib_mains - 1, CLIB_CACHE_LINE_BYTES); return 0; } VLIB_INIT_FUNCTION (avf_init);