/* *------------------------------------------------------------------ * Copyright (c) 2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include <vlib/vlib.h> #include <vnet/plugin/plugin.h> #include <vnet/crypto/crypto.h> #include <x86intrin.h> #include <crypto_ia32/crypto_ia32.h> #include <crypto_ia32/aesni.h> typedef struct { __m128i encrypt_key[15]; __m128i decrypt_key[15]; } aes_cbc_key_data_t; static_always_inline void aes_cbc_dec (__m128i * k, u8 * src, u8 * dst, u8 * iv, int count, aesni_key_size_t rounds) { __m128i r0, r1, r2, r3, c0, c1, c2, c3, f; int i; f = _mm_loadu_si128 ((__m128i *) iv); while (count >= 64) { _mm_prefetch (src + 128, _MM_HINT_T0); _mm_prefetch (dst + 128, _MM_HINT_T0); c0 = _mm_loadu_si128 (((__m128i *) src + 0)); c1 = _mm_loadu_si128 (((__m128i *) src + 1)); c2 = _mm_loadu_si128 (((__m128i *) src + 2)); c3 = _mm_loadu_si128 (((__m128i *) src + 3)); r0 = c0 ^ k[0]; r1 = c1 ^ k[0]; r2 = c2 ^ k[0]; r3 = c3 ^ k[0]; for (i = 1; i < rounds; i++) { r0 = _mm_aesdec_si128 (r0, k[i]); r1 = _mm_aesdec_si128 (r1, k[i]); r2 = _mm_aesdec_si128 (r2, k[i]); r3 = _mm_aesdec_si128 (r3, k[i]); } r0 = _mm_aesdeclast_si128 (r0, k[i]); r1 = _mm_aesdeclast_si128 (r1, k[i]); r2 = _mm_aesdeclast_si128 (r2, k[i]); r3 = _mm_aesdeclast_si128 (r3, k[i]); _mm_storeu_si128 ((__m128i *) dst + 0, r0 ^ f); _mm_storeu_si128 ((__m128i *) dst + 1, r1 ^ c0); _mm_storeu_si128 ((__m128i *) dst + 2, r2 ^ c1); _mm_storeu_si128 ((__m128i *) dst + 3, r3 ^ c2); f = c3; count -= 64; src += 64; dst += 64; } while (count > 0) { c0 = _mm_loadu_si128 (((__m128i *) src)); r0 = c0 ^ k[0]; for (i = 1; i < rounds; i++) r0 = _mm_aesdec_si128 (r0, k[i]); r0 = _mm_aesdeclast_si128 (r0, k[i]); _mm_storeu_si128 ((__m128i *) dst, r0 ^ f); f = c0; count -= 16; src += 16; dst += 16; } } static_always_inline u32 aesni_ops_enc_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aesni_key_size_t ks) { crypto_ia32_main_t *cm = &crypto_ia32_main; crypto_ia32_per_thread_data_t *ptd = vec_elt_at_index (cm->per_thread_data, vm->thread_index); int rounds = AESNI_KEY_ROUNDS (ks); u8 dummy[8192]; u8 *src[4] = { }; u8 *dst[4] = { }; vnet_crypto_key_index_t key_index[4] = { ~0, ~0, ~0, ~0 }; u32x4 dummy_mask = { }; u32x4 len = { }; u32 i, j, count, n_left = n_ops; __m128i r[4] = { }, k[4][rounds + 1]; more: for (i = 0; i < 4; i++) if (len[i] == 0) { if (n_left == 0) { /* no more work to enqueue, so we are enqueueing dummy buffer */ src[i] = dst[i] = dummy; len[i] = sizeof (dummy); dummy_mask[i] = 0; } else { if (ops[0]->flags & VNET_CRYPTO_OP_FLAG_INIT_IV) { r[i] = ptd->cbc_iv[i]; _mm_storeu_si128 ((__m128i *) ops[0]->iv, r[i]); ptd->cbc_iv[i] = _mm_aesenc_si128 (r[i], r[i]); } else r[i] = _mm_loadu_si128 ((__m128i *) ops[0]->iv); src[i] = ops[0]->src; dst[i] = ops[0]->dst; len[i] = ops[0]->len; dummy_mask[i] = ~0; if (key_index[i] != ops[0]->key_index) { aes_cbc_key_data_t *kd; key_index[i] = ops[0]->key_index; kd = (aes_cbc_key_data_t *) cm->key_data[key_index[i]]; clib_memcpy_fast (k[i], kd->encrypt_key, (rounds + 1) * sizeof (__m128i)); } ops[0]->status = VNET_CRYPTO_OP_STATUS_COMPLETED; n_left--; ops++; } } count = u32x4_min_scalar (len); ASSERT (count % 16 == 0); for (i = 0; i < count; i += 16) { r[0] ^= _mm_loadu_si128 ((__m128i *) (src[0] + i)) ^ k[0][0]; r[1] ^= _mm_loadu_si128 ((__m128i *) (src[1] + i)) ^ k[1][0]; r[2] ^= _mm_loadu_si128 ((__m128i *) (src[2] + i)) ^ k[2][0]; r[3] ^= _mm_loadu_si128 ((__m128i *) (src[3] + i)) ^ k[3][0]; for (j = 1; j < rounds; j++) { r[0] = _mm_aesenc_si128 (r[0], k[0][j]); r[1] = _mm_aesenc_si128 (r[1], k[1][j]); r[2] = _mm_aesenc_si128 (r[2], k[2][j]); r[3] = _mm_aesenc_si128 (r[3], k[3][j]); } r[0] = _mm_aesenclast_si128 (r[0], k[0][j]); r[1] = _mm_aesenclast_si128 (r[1], k[1][j]); r[2] = _mm_aesenclast_si128 (r[2], k[2][j]); r[3] = _mm_aesenclast_si128 (r[3], k[3][j]); _mm_storeu_si128 ((__m128i *) (dst[0] + i), r[0]); _mm_storeu_si128 ((__m128i *) (dst[1] + i), r[1]); _mm_storeu_si128 ((__m128i *) (dst[2] + i), r[2]); _mm_storeu_si128 ((__m128i *) (dst[3] + i), r[3]); } for (i = 0; i < 4; i++) { src[i] += count; dst[i] += count; len[i] -= count; } if (n_left > 0) goto more; if (!u32x4_is_all_zero (len & dummy_mask)) goto more; return n_ops; } static_always_inline u32 aesni_ops_dec_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aesni_key_size_t ks) { crypto_ia32_main_t *cm = &crypto_ia32_main; int rounds = AESNI_KEY_ROUNDS (ks); vnet_crypto_op_t *op = ops[0]; aes_cbc_key_data_t *kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index]; u32 n_left = n_ops; ASSERT (n_ops >= 1); decrypt: aes_cbc_dec (kd->decrypt_key, op->src, op->dst, op->iv, op->len, rounds); op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; if (--n_left) { op += 1; kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index]; goto decrypt; } return n_ops; } static_always_inline void * aesni_cbc_key_exp (vnet_crypto_key_t * key, aesni_key_size_t ks) { aes_cbc_key_data_t *kd; kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES); aes_key_expand (kd->encrypt_key, key->data, ks); aes_key_expand (kd->decrypt_key, key->data, ks); aes_key_enc_to_dec (kd->decrypt_key, ks); return kd; } #define foreach_aesni_cbc_handler_type _(128) _(192) _(256) #define _(x) \ static u32 aesni_ops_dec_aes_cbc_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aesni_ops_dec_aes_cbc (vm, ops, n_ops, AESNI_KEY_##x); } \ static u32 aesni_ops_enc_aes_cbc_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aesni_ops_enc_aes_cbc (vm, ops, n_ops, AESNI_KEY_##x); } \ static void * aesni_cbc_key_exp_##x (vnet_crypto_key_t *key) \ { return aesni_cbc_key_exp (key, AESNI_KEY_##x); } foreach_aesni_cbc_handler_type; #undef _ #include <fcntl.h> clib_error_t * #ifdef __AVX512F__ crypto_ia32_aesni_cbc_init_avx512 (vlib_main_t * vm) #elif __AVX2__ crypto_ia32_aesni_cbc_init_avx2 (vlib_main_t * vm) #else crypto_ia32_aesni_cbc_init_sse42 (vlib_main_t * vm) #endif { crypto_ia32_main_t *cm = &crypto_ia32_main; crypto_ia32_per_thread_data_t *ptd; clib_error_t *err = 0; int fd; if ((fd = open ("/dev/urandom", O_RDONLY)) < 0) return clib_error_return_unix (0, "failed to open '/dev/urandom'"); /* *INDENT-OFF* */ vec_foreach (ptd, cm->per_thread_data) { for (int i = 0; i < 4; i++) { if (read(fd, ptd->cbc_iv, sizeof (ptd->cbc_iv)) != sizeof (ptd->cbc_iv)) { err = clib_error_return_unix (0, "'/dev/urandom' read failure"); goto error; } } } /* *INDENT-ON* */ #define _(x) \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_CBC_ENC, \ aesni_ops_enc_aes_cbc_##x); \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_CBC_DEC, \ aesni_ops_dec_aes_cbc_##x); \ cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_CBC] = aesni_cbc_key_exp_##x; foreach_aesni_cbc_handler_type; #undef _ error: close (fd); return err; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */