/* *------------------------------------------------------------------ * Copyright (c) 2020 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #ifndef __aesni_h__ #define __aesni_h__ typedef enum { AES_KEY_128 = 0, AES_KEY_192 = 1, AES_KEY_256 = 2, } aes_key_size_t; #define AES_KEY_ROUNDS(x) (10 + x * 2) #define AES_KEY_BYTES(x) (16 + x * 8) static const u8x16 byte_mask_scale = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; static_always_inline u8x16 aes_block_load (u8 * p) { return *(u8x16u *) p; } static_always_inline u8x16 aes_enc_round (u8x16 a, u8x16 k) { #if defined (__AES__) return (u8x16) _mm_aesenc_si128 ((__m128i) a, (__m128i) k); #elif defined (__ARM_FEATURE_CRYPTO) return vaesmcq_u8 (vaeseq_u8 (a, u8x16_splat (0))) ^ k; #endif } #if defined (__VAES__) static_always_inline u8x64 aes_enc_round_x4 (u8x64 a, u8x64 k) { return (u8x64) _mm512_aesenc_epi128 ((__m512i) a, (__m512i) k); } static_always_inline u8x64 aes_enc_last_round_x4 (u8x64 a, u8x64 k) { return (u8x64) _mm512_aesenclast_epi128 ((__m512i) a, (__m512i) k); } static_always_inline u8x64 aes_dec_round_x4 (u8x64 a, u8x64 k) { return (u8x64) _mm512_aesdec_epi128 ((__m512i) a, (__m512i) k); } static_always_inline u8x64 aes_dec_last_round_x4 (u8x64 a, u8x64 k) { return (u8x64) _mm512_aesdeclast_epi128 ((__m512i) a, (__m512i) k); } #endif static_always_inline u8x16 aes_enc_last_round (u8x16 a, u8x16 k) { #if defined (__AES__) return (u8x16) _mm_aesenclast_si128 ((__m128i) a, (__m128i) k); #elif defined (__ARM_FEATURE_CRYPTO) return vaeseq_u8 (a, u8x16_splat (0)) ^ k; #endif } #ifdef __x86_64__ static_always_inline u8x16 aes_dec_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesdec_si128 ((__m128i) a, (__m128i) k); } static_always_inline u8x16 aes_dec_last_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesdeclast_si128 ((__m128i) a, (__m128i) k); } #endif static_always_inline void aes_block_store (u8 * p, u8x16 r) { *(u8x16u *) p = r; } static_always_inline u8x16 aes_byte_mask (u8x16 x, u8 n_bytes) { return x & u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); } static_always_inline u8x16 aes_load_partial (u8x16u * p, int n_bytes) { ASSERT (n_bytes <= 16); #ifdef __AVX512F__ __m128i zero = { }; return (u8x16) _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p); #else return aes_byte_mask (CLIB_MEM_OVERFLOW_LOAD (*, p), n_bytes); #endif } static_always_inline void aes_store_partial (void *p, u8x16 r, int n_bytes) { #if __aarch64__ clib_memcpy_fast (p, &r, n_bytes); #else #ifdef __AVX512F__ _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, (__m128i) r); #else u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); _mm_maskmoveu_si128 ((__m128i) r, (__m128i) mask, p); #endif #endif } static_always_inline u8x16 aes_encrypt_block (u8x16 block, const u8x16 * round_keys, aes_key_size_t ks) { int rounds = AES_KEY_ROUNDS (ks); block ^= round_keys[0]; for (int i = 1; i < rounds; i += 1) block = aes_enc_round (block, round_keys[i]); return aes_enc_last_round (block, round_keys[rounds]); } static_always_inline u8x16 aes_inv_mix_column (u8x16 a) { #if defined (__AES__) return (u8x16) _mm_aesimc_si128 ((__m128i) a); #elif defined (__ARM_FEATURE_CRYPTO) return vaesimcq_u8 (a); #endif } #ifdef __x86_64__ #define aes_keygen_assist(a, b) \ (u8x16) _mm_aeskeygenassist_si128((__m128i) a, b) /* AES-NI based AES key expansion based on code samples from Intel(r) Advanced Encryption Standard (AES) New Instructions White Paper (323641-001) */ static_always_inline void aes128_key_assist (u8x16 * rk, u8x16 r) { u8x16 t = rk[-1]; t ^= u8x16_word_shift_left (t, 4); t ^= u8x16_word_shift_left (t, 4); t ^= u8x16_word_shift_left (t, 4); rk[0] = t ^ (u8x16) u32x4_shuffle ((u32x4) r, 3, 3, 3, 3); } static_always_inline void aes128_key_expand (u8x16 * rk, u8x16 const *k) { rk[0] = k[0]; aes128_key_assist (rk + 1, aes_keygen_assist (rk[0], 0x01)); aes128_key_assist (rk + 2, aes_keygen_assist (rk[1], 0x02)); aes128_key_assist (rk + 3, aes_keygen_assist (rk[2], 0x04)); aes128_key_assist (rk + 4, aes_keygen_assist (rk[3], 0x08)); aes128_key_assist (rk + 5, aes_keygen_assist (rk[4], 0x10)); aes128_key_assist (rk + 6, aes_keygen_assist (rk[5], 0x20)); aes128_key_assist (rk + 7, aes_keygen_assist (rk[6], 0x40)); aes128_key_assist (rk + 8, aes_keygen_assist (rk[7], 0x80)); aes128_key_assist (rk + 9, aes_keygen_assist (rk[8], 0x1b)); aes128_key_assist (rk + 10, aes_keygen_assist (rk[9], 0x36)); } static_always_inline void aes192_key_assist (u8x16 * r1, u8x16 * r2, u8x16 key_assist) { u8x16 t; r1[0] ^= t = u8x16_word_shift_left (r1[0], 4); r1[0] ^= t = u8x16_word_shift_left (t, 4); r1[0] ^= u8x16_word_shift_left (t, 4); r1[0] ^= (u8x16) _mm_shuffle_epi32 ((__m128i) key_assist, 0x55); r2[0] ^= u8x16_word_shift_left (r2[0], 4); r2[0] ^= (u8x16) _mm_shuffle_epi32 ((__m128i) r1[0], 0xff); } static_always_inline void aes192_key_expand (u8x16 * rk, u8x16u const *k) { u8x16 r1, r2; rk[0] = r1 = k[0]; /* *INDENT-OFF* */ rk[1] = r2 = (u8x16) (u64x2) { *(u64 *) (k + 1), 0 }; /* *INDENT-ON* */ aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x1)); rk[1] = (u8x16) _mm_shuffle_pd ((__m128d) rk[1], (__m128d) r1, 0); rk[2] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x2)); rk[3] = r1; rk[4] = r2; aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x4)); rk[4] = (u8x16) _mm_shuffle_pd ((__m128d) rk[4], (__m128d) r1, 0); rk[5] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x8)); rk[6] = r1; rk[7] = r2; aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x10)); rk[7] = (u8x16) _mm_shuffle_pd ((__m128d) rk[7], (__m128d) r1, 0); rk[8] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x20)); rk[9] = r1; rk[10] = r2; aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x40)); rk[10] = (u8x16) _mm_shuffle_pd ((__m128d) rk[10], (__m128d) r1, 0); rk[11] = (u8x16) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, aes_keygen_assist (r2, 0x80)); rk[12] = r1; } static_always_inline void aes256_key_assist (u8x16 * rk, int i, u8x16 key_assist) { u8x16 r, t; rk += i; r = rk[-2]; r ^= t = u8x16_word_shift_left (r, 4); r ^= t = u8x16_word_shift_left (t, 4); r ^= u8x16_word_shift_left (t, 4); r ^= (u8x16) u32x4_shuffle ((u32x4) key_assist, 3, 3, 3, 3); rk[0] = r; if (i >= 14) return; key_assist = aes_keygen_assist (rk[0], 0x0); r = rk[-1]; r ^= t = u8x16_word_shift_left (r, 4); r ^= t = u8x16_word_shift_left (t, 4); r ^= u8x16_word_shift_left (t, 4); r ^= (u8x16) u32x4_shuffle ((u32x4) key_assist, 2, 2, 2, 2); rk[1] = r; } static_always_inline void aes256_key_expand (u8x16 * rk, u8x16u const *k) { rk[0] = k[0]; rk[1] = k[1]; aes256_key_assist (rk, 2, aes_keygen_assist (rk[1], 0x01)); aes256_key_assist (rk, 4, aes_keygen_assist (rk[3], 0x02)); aes256_key_assist (rk, 6, aes_keygen_assist (rk[5], 0x04)); aes256_key_assist (rk, 8, aes_keygen_assist (rk[7], 0x08)); aes256_key_assist (rk, 10, aes_keygen_assist (rk[9], 0x10)); aes256_key_assist (rk, 12, aes_keygen_assist (rk[11], 0x20)); aes256_key_assist (rk, 14, aes_keygen_assist (rk[13], 0x40)); } #endif #ifdef __aarch64__ static const u8x16 aese_prep_mask1 = { 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12 }; static const u8x16 aese_prep_mask2 = { 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15 }; static_always_inline void aes128_key_expand_round_neon (u8x16 * rk, u32 rcon) { u8x16 r, t, last_round = rk[-1], z = { }; r = vqtbl1q_u8 (last_round, aese_prep_mask1); r = vaeseq_u8 (r, z); r ^= (u8x16) vdupq_n_u32 (rcon); r ^= last_round; r ^= t = vextq_u8 (z, last_round, 12); r ^= t = vextq_u8 (z, t, 12); r ^= vextq_u8 (z, t, 12); rk[0] = r; } static_always_inline void aes128_key_expand (u8x16 * rk, const u8x16 * k) { rk[0] = k[0]; aes128_key_expand_round_neon (rk + 1, 0x01); aes128_key_expand_round_neon (rk + 2, 0x02); aes128_key_expand_round_neon (rk + 3, 0x04); aes128_key_expand_round_neon (rk + 4, 0x08); aes128_key_expand_round_neon (rk + 5, 0x10); aes128_key_expand_round_neon (rk + 6, 0x20); aes128_key_expand_round_neon (rk + 7, 0x40); aes128_key_expand_round_neon (rk + 8, 0x80); aes128_key_expand_round_neon (rk + 9, 0x1b); aes128_key_expand_round_neon (rk + 10, 0x36); } static_always_inline void aes192_key_expand_round_neon (u8x8 * rk, u32 rcon) { u8x8 r, last_round = rk[-1], z = { }; u8x16 r2, z2 = { }; r2 = (u8x16) vdupq_lane_u64 ((uint64x1_t) last_round, 0); r2 = vqtbl1q_u8 (r2, aese_prep_mask1); r2 = vaeseq_u8 (r2, z2); r2 ^= (u8x16) vdupq_n_u32 (rcon); r = (u8x8) vdup_laneq_u64 ((u64x2) r2, 0); r ^= rk[-3]; r ^= vext_u8 (z, rk[-3], 4); rk[0] = r; r = rk[-2] ^ vext_u8 (r, z, 4); r ^= vext_u8 (z, r, 4); rk[1] = r; if (rcon == 0x80) return; r = rk[-1] ^ vext_u8 (r, z, 4); r ^= vext_u8 (z, r, 4); rk[2] = r; } static_always_inline void aes192_key_expand (u8x16 * ek, const u8x16u * k) { u8x8 *rk = (u8x8 *) ek; ek[0] = k[0]; rk[2] = *(u8x8u *) (k + 1); aes192_key_expand_round_neon (rk + 3, 0x01); aes192_key_expand_round_neon (rk + 6, 0x02); aes192_key_expand_round_neon (rk + 9, 0x04); aes192_key_expand_round_neon (rk + 12, 0x08); aes192_key_expand_round_neon (rk + 15, 0x10); aes192_key_expand_round_neon (rk + 18, 0x20); aes192_key_expand_round_neon (rk + 21, 0x40); aes192_key_expand_round_neon (rk + 24, 0x80); } static_always_inline void aes256_key_expand_round_neon (u8x16 * rk, u32 rcon) { u8x16 r, t, z = { }; r = vqtbl1q_u8 (rk[-1], rcon ? aese_prep_mask1 : aese_prep_mask2); r = vaeseq_u8 (r, z); if (rcon) r ^= (u8x16) vdupq_n_u32 (rcon); r ^= rk[-2]; r ^= t = vextq_u8 (z, rk[-2], 12); r ^= t = vextq_u8 (z, t, 12); r ^= vextq_u8 (z, t, 12); rk[0] = r; } static_always_inline void aes256_key_expand (u8x16 * rk, u8x16 const *k) { rk[0] = k[0]; rk[1] = k[1]; aes256_key_expand_round_neon (rk + 2, 0x01); aes256_key_expand_round_neon (rk + 3, 0); aes256_key_expand_round_neon (rk + 4, 0x02); aes256_key_expand_round_neon (rk + 5, 0); aes256_key_expand_round_neon (rk + 6, 0x04); aes256_key_expand_round_neon (rk + 7, 0); aes256_key_expand_round_neon (rk + 8, 0x08); aes256_key_expand_round_neon (rk + 9, 0); aes256_key_expand_round_neon (rk + 10, 0x10); aes256_key_expand_round_neon (rk + 11, 0); aes256_key_expand_round_neon (rk + 12, 0x20); aes256_key_expand_round_neon (rk + 13, 0); aes256_key_expand_round_neon (rk + 14, 0x40); } #endif static_always_inline void aes_key_expand (u8x16 * key_schedule, u8 const *key, aes_key_size_t ks) { switch (ks) { case AES_KEY_128: aes128_key_expand (key_schedule, (u8x16u const *) key); break; case AES_KEY_192: aes192_key_expand (key_schedule, (u8x16u const *) key); break; case AES_KEY_256: aes256_key_expand (key_schedule, (u8x16u const *) key); break; } } static_always_inline void aes_key_enc_to_dec (u8x16 * ke, u8x16 * kd, aes_key_size_t ks) { int rounds = AES_KEY_ROUNDS (ks); kd[rounds] = ke[0]; kd[0] = ke[rounds]; for (int i = 1; i < (rounds / 2); i++) { kd[rounds - i] = aes_inv_mix_column (ke[i]); kd[i] = aes_inv_mix_column (ke[rounds - i]); } kd[rounds / 2] = aes_inv_mix_column (ke[rounds / 2]); } #endif /* __aesni_h__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */