/* *------------------------------------------------------------------ * Copyright (c) 2020 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #ifndef __aesni_h__ #define __aesni_h__ typedef enum { AES_KEY_128 = 0, AES_KEY_192 = 1, AES_KEY_256 = 2, } aes_key_size_t; #define AES_KEY_ROUNDS(x) (10 + x * 2) #define AES_KEY_BYTES(x) (16 + x * 8) #ifdef __x86_64__ static_always_inline u8x16 aes_block_load (u8 * p) { return (u8x16) _mm_loadu_si128 ((__m128i *) p); } static_always_inline u8x16 aes_enc_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesenc_si128 ((__m128i) a, (__m128i) k); } static_always_inline u8x16 aes_enc_last_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesenclast_si128 ((__m128i) a, (__m128i) k); } static_always_inline u8x16 aes_dec_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesdec_si128 ((__m128i) a, (__m128i) k); } static_always_inline u8x16 aes_dec_last_round (u8x16 a, u8x16 k) { return (u8x16) _mm_aesdeclast_si128 ((__m128i) a, (__m128i) k); } static_always_inline void aes_block_store (u8 * p, u8x16 r) { _mm_storeu_si128 ((__m128i *) p, (__m128i) r); } static_always_inline u8x16 aes_inv_mix_column (u8x16 a) { return (u8x16) _mm_aesimc_si128 ((__m128i) a); } /* AES-NI based AES key expansion based on code samples from Intel(r) Advanced Encryption Standard (AES) New Instructions White Paper (323641-001) */ static_always_inline void aes128_key_assist (__m128i * k, __m128i r) { __m128i t = k[-1]; t ^= _mm_slli_si128 (t, 4); t ^= _mm_slli_si128 (t, 4); t ^= _mm_slli_si128 (t, 4); k[0] = t ^ _mm_shuffle_epi32 (r, 0xff); } static_always_inline void aes128_key_expand (u8x16 * key_schedule, u8 * key) { __m128i *k = (__m128i *) key_schedule; k[0] = _mm_loadu_si128 ((const __m128i *) key); aes128_key_assist (k + 1, _mm_aeskeygenassist_si128 (k[0], 0x01)); aes128_key_assist (k + 2, _mm_aeskeygenassist_si128 (k[1], 0x02)); aes128_key_assist (k + 3, _mm_aeskeygenassist_si128 (k[2], 0x04)); aes128_key_assist (k + 4, _mm_aeskeygenassist_si128 (k[3], 0x08)); aes128_key_assist (k + 5, _mm_aeskeygenassist_si128 (k[4], 0x10)); aes128_key_assist (k + 6, _mm_aeskeygenassist_si128 (k[5], 0x20)); aes128_key_assist (k + 7, _mm_aeskeygenassist_si128 (k[6], 0x40)); aes128_key_assist (k + 8, _mm_aeskeygenassist_si128 (k[7], 0x80)); aes128_key_assist (k + 9, _mm_aeskeygenassist_si128 (k[8], 0x1b)); aes128_key_assist (k + 10, _mm_aeskeygenassist_si128 (k[9], 0x36)); } static_always_inline void aes192_key_assist (__m128i * r1, __m128i * r2, __m128i key_assist) { __m128i t; *r1 ^= t = _mm_slli_si128 (*r1, 0x4); *r1 ^= t = _mm_slli_si128 (t, 0x4); *r1 ^= _mm_slli_si128 (t, 0x4); *r1 ^= _mm_shuffle_epi32 (key_assist, 0x55); *r2 ^= _mm_slli_si128 (*r2, 0x4); *r2 ^= _mm_shuffle_epi32 (*r1, 0xff); } static_always_inline void aes192_key_expand (u8x16 * key_schedule, u8 * key) { __m128i r1, r2, *k = (__m128i *) key_schedule; k[0] = r1 = _mm_loadu_si128 ((__m128i *) key); /* load the 24-bytes key as 2 * 16-bytes (and ignore last 8-bytes) */ k[1] = r2 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) key + 1); aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x1)); k[1] = (__m128i) _mm_shuffle_pd ((__m128d) k[1], (__m128d) r1, 0); k[2] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x2)); k[3] = r1; k[4] = r2; aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x4)); k[4] = (__m128i) _mm_shuffle_pd ((__m128d) k[4], (__m128d) r1, 0); k[5] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x8)); k[6] = r1; k[7] = r2; aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x10)); k[7] = (__m128i) _mm_shuffle_pd ((__m128d) k[7], (__m128d) r1, 0); k[8] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x20)); k[9] = r1; k[10] = r2; aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x40)); k[10] = (__m128i) _mm_shuffle_pd ((__m128d) k[10], (__m128d) r1, 0); k[11] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1); aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x80)); k[12] = r1; } static_always_inline void aes256_key_assist (__m128i * k, int i, __m128i key_assist) { __m128i r, t; k += i; r = k[-2]; r ^= t = _mm_slli_si128 (r, 0x4); r ^= t = _mm_slli_si128 (t, 0x4); r ^= _mm_slli_si128 (t, 0x4); r ^= _mm_shuffle_epi32 (key_assist, 0xff); k[0] = r; if (i >= 14) return; r = k[-1]; r ^= t = _mm_slli_si128 (r, 0x4); r ^= t = _mm_slli_si128 (t, 0x4); r ^= _mm_slli_si128 (t, 0x4); r ^= _mm_shuffle_epi32 (_mm_aeskeygenassist_si128 (k[0], 0x0), 0xaa); k[1] = r; } static_always_inline void aes256_key_expand (u8x16 * key_schedule, u8 * key) { __m128i *k = (__m128i *) key_schedule; k[0] = _mm_loadu_si128 ((__m128i *) key); k[1] = _mm_loadu_si128 ((__m128i *) (key + 16)); aes256_key_assist (k, 2, _mm_aeskeygenassist_si128 (k[1], 0x01)); aes256_key_assist (k, 4, _mm_aeskeygenassist_si128 (k[3], 0x02)); aes256_key_assist (k, 6, _mm_aeskeygenassist_si128 (k[5], 0x04)); aes256_key_assist (k, 8, _mm_aeskeygenassist_si128 (k[7], 0x08)); aes256_key_assist (k, 10, _mm_aeskeygenassist_si128 (k[9], 0x10)); aes256_key_assist (k, 12, _mm_aeskeygenassist_si128 (k[11], 0x20)); aes256_key_assist (k, 14, _mm_aeskeygenassist_si128 (k[13], 0x40)); } #endif #ifdef __aarch64__ static_always_inline u8x16 aes_inv_mix_column (u8x16 a) { return vaesimcq_u8 (a); } static const u8x16 aese_prep_mask1 = { 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12 }; static const u8x16 aese_prep_mask2 = { 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15 }; static inline void aes128_key_expand_round_neon (u8x16 * rk, u32 rcon) { u8x16 r, t, last_round = rk[-1], z = { }; r = vqtbl1q_u8 (last_round, aese_prep_mask1); r = vaeseq_u8 (r, z); r ^= (u8x16) vdupq_n_u32 (rcon); r ^= last_round; r ^= t = vextq_u8 (z, last_round, 12); r ^= t = vextq_u8 (z, t, 12); r ^= vextq_u8 (z, t, 12); rk[0] = r; } void aes128_key_expand (u8x16 * rk, const u8 * k) { rk[0] = vld1q_u8 (k); aes128_key_expand_round_neon (rk + 1, 0x01); aes128_key_expand_round_neon (rk + 2, 0x02); aes128_key_expand_round_neon (rk + 3, 0x04); aes128_key_expand_round_neon (rk + 4, 0x08); aes128_key_expand_round_neon (rk + 5, 0x10); aes128_key_expand_round_neon (rk + 6, 0x20); aes128_key_expand_round_neon (rk + 7, 0x40); aes128_key_expand_round_neon (rk + 8, 0x80); aes128_key_expand_round_neon (rk + 9, 0x1b); aes128_key_expand_round_neon (rk + 10, 0x36); } static inline void aes192_key_expand_round_neon (u8x8 * rk, u32 rcon) { u8x8 r, last_round = rk[-1], z = { }; u8x16 r2, z2 = { }; r2 = (u8x16) vdupq_lane_u64 ((uint64x1_t) last_round, 0); r2 = vqtbl1q_u8 (r2, aese_prep_mask1); r2 = vaeseq_u8 (r2, z2); r2 ^= (u8x16) vdupq_n_u32 (rcon); r = (u8x8) vdup_laneq_u64 ((u64x2) r2, 0); r ^= rk[-3]; r ^= vext_u8 (z, rk[-3], 4); rk[0] = r; r = rk[-2] ^ vext_u8 (r, z, 4); r ^= vext_u8 (z, r, 4); rk[1] = r; if (rcon == 0x80) return; r = rk[-1] ^ vext_u8 (r, z, 4); r ^= vext_u8 (z, r, 4); rk[2] = r; } void aes192_key_expand (u8x16 * ek, const u8 * k) { u8x8 *rk = (u8x8 *) ek; ek[0] = vld1q_u8 (k); rk[2] = vld1_u8 (k + 16); aes192_key_expand_round_neon (rk + 3, 0x01); aes192_key_expand_round_neon (rk + 6, 0x02); aes192_key_expand_round_neon (rk + 9, 0x04); aes192_key_expand_round_neon (rk + 12, 0x08); aes192_key_expand_round_neon (rk + 15, 0x10); aes192_key_expand_round_neon (rk + 18, 0x20); aes192_key_expand_round_neon (rk + 21, 0x40); aes192_key_expand_round_neon (rk + 24, 0x80); } static inline void aes256_key_expand_round_neon (u8x16 * rk, u32 rcon) { u8x16 r, t, z = { }; r = vqtbl1q_u8 (rk[-1], rcon ? aese_prep_mask1 : aese_prep_mask2); r = vaeseq_u8 (r, z); if (rcon) r ^= (u8x16) vdupq_n_u32 (rcon); r ^= rk[-2]; r ^= t = vextq_u8 (z, rk[-2], 12); r ^= t = vextq_u8 (z, t, 12); r ^= vextq_u8 (z, t, 12); rk[0] = r; } void aes256_key_expand (u8x16 * rk, const u8 * k) { rk[0] = vld1q_u8 (k); rk[1] = vld1q_u8 (k + 16); aes256_key_expand_round_neon (rk + 2, 0x01); aes256_key_expand_round_neon (rk + 3, 0); aes256_key_expand_round_neon (rk + 4, 0x02); aes256_key_expand_round_neon (rk + 5, 0); aes256_key_expand_round_neon (rk + 6, 0x04); aes256_key_expand_round_neon (rk + 7, 0); aes256_key_expand_round_neon (rk + 8, 0x08); aes256_key_expand_round_neon (rk + 9, 0); aes256_key_expand_round_neon (rk + 10, 0x10); aes256_key_expand_round_neon (rk + 11, 0); aes256_key_expand_round_neon (rk + 12, 0x20); aes256_key_expand_round_neon (rk + 13, 0); aes256_key_expand_round_neon (rk + 14, 0x40); } #endif static_always_inline void aes_key_expand (u8x16 * key_schedule, u8 * key, aes_key_size_t ks) { switch (ks) { case AES_KEY_128: aes128_key_expand (key_schedule, key); break; case AES_KEY_192: aes192_key_expand (key_schedule, key); break; case AES_KEY_256: aes256_key_expand (key_schedule, key); break; } } static_always_inline void aes_key_enc_to_dec (u8x16 * ke, u8x16 * kd, aes_key_size_t ks) { int rounds = AES_KEY_ROUNDS (ks); kd[rounds] = ke[0]; kd[0] = ke[rounds]; for (int i = 1; i < (rounds / 2); i++) { kd[rounds - i] = aes_inv_mix_column (ke[i]); kd[i] = aes_inv_mix_column (ke[rounds - i]); } kd[rounds / 2] = aes_inv_mix_column (ke[rounds / 2]); } #endif /* __aesni_h__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */