/* *------------------------------------------------------------------ * Copyright (c) 2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include #include #include #include #include #if __GNUC__ > 4 && !__clang__ && CLIB_DEBUG == 0 #pragma GCC optimize ("O3") #endif typedef struct { u8x16 encrypt_key[15]; #if __VAES__ u8x64 decrypt_key[15]; #else u8x16 decrypt_key[15]; #endif } aes_cbc_key_data_t; static_always_inline void __clib_unused aes_cbc_dec (u8x16 * k, u8x16u * src, u8x16u * dst, u8x16u * iv, int count, int rounds) { u8x16 r[4], c[4], f; f = iv[0]; while (count >= 64) { clib_prefetch_load (src + 8); clib_prefetch_load (dst + 8); c[0] = r[0] = src[0]; c[1] = r[1] = src[1]; c[2] = r[2] = src[2]; c[3] = r[3] = src[3]; #if __x86_64__ r[0] ^= k[0]; r[1] ^= k[0]; r[2] ^= k[0]; r[3] ^= k[0]; for (int i = 1; i < rounds; i++) { r[0] = aes_dec_round (r[0], k[i]); r[1] = aes_dec_round (r[1], k[i]); r[2] = aes_dec_round (r[2], k[i]); r[3] = aes_dec_round (r[3], k[i]); } r[0] = aes_dec_last_round (r[0], k[rounds]); r[1] = aes_dec_last_round (r[1], k[rounds]); r[2] = aes_dec_last_round (r[2], k[rounds]); r[3] = aes_dec_last_round (r[3], k[rounds]); #else for (int i = 0; i < rounds - 1; i++) { r[0] = vaesimcq_u8 (vaesdq_u8 (r[0], k[i])); r[1] = vaesimcq_u8 (vaesdq_u8 (r[1], k[i])); r[2] = vaesimcq_u8 (vaesdq_u8 (r[2], k[i])); r[3] = vaesimcq_u8 (vaesdq_u8 (r[3], k[i])); } r[0] = vaesdq_u8 (r[0], k[rounds - 1]) ^ k[rounds]; r[1] = vaesdq_u8 (r[1], k[rounds - 1]) ^ k[rounds]; r[2] = vaesdq_u8 (r[2], k[rounds - 1]) ^ k[rounds]; r[3] = vaesdq_u8 (r[3], k[rounds - 1]) ^ k[rounds]; #endif dst[0] = r[0] ^ f; dst[1] = r[1] ^ c[0]; dst[2] = r[2] ^ c[1]; dst[3] = r[3] ^ c[2]; f = c[3]; count -= 64; src += 4; dst += 4; } while (count > 0) { c[0] = r[0] = src[0]; #if __x86_64__ r[0] ^= k[0]; for (int i = 1; i < rounds; i++) r[0] = aes_dec_round (r[0], k[i]); r[0] = aes_dec_last_round (r[0], k[rounds]); #else c[0] = r[0] = src[0]; for (int i = 0; i < rounds - 1; i++) r[0] = vaesimcq_u8 (vaesdq_u8 (r[0], k[i])); r[0] = vaesdq_u8 (r[0], k[rounds - 1]) ^ k[rounds]; #endif dst[0] = r[0] ^ f; f = c[0]; count -= 16; src += 1; dst += 1; } } #if __x86_64__ #ifdef __VAES__ static_always_inline u8x64 aes_block_load_x4 (u8 * src[], int i) { u8x64 r = { }; r = u8x64_insert_u8x16 (r, aes_block_load (src[0] + i), 0); r = u8x64_insert_u8x16 (r, aes_block_load (src[1] + i), 1); r = u8x64_insert_u8x16 (r, aes_block_load (src[2] + i), 2); r = u8x64_insert_u8x16 (r, aes_block_load (src[3] + i), 3); return r; } static_always_inline void aes_block_store_x4 (u8 * dst[], int i, u8x64 r) { aes_block_store (dst[0] + i, u8x64_extract_u8x16 (r, 0)); aes_block_store (dst[1] + i, u8x64_extract_u8x16 (r, 1)); aes_block_store (dst[2] + i, u8x64_extract_u8x16 (r, 2)); aes_block_store (dst[3] + i, u8x64_extract_u8x16 (r, 3)); } static_always_inline u8x64 aes_cbc_dec_permute (u8x64 a, u8x64 b) { __m512i perm = { 6, 7, 8, 9, 10, 11, 12, 13 }; return (u8x64) _mm512_permutex2var_epi64 ((__m512i) a, perm, (__m512i) b); } static_always_inline void vaes_cbc_dec (u8x64 * k, u8x64u * src, u8x64u * dst, u8x16 * iv, int count, aes_key_size_t rounds) { u8x64 f, r[4], c[4] = { }; __mmask8 m; int i, n_blocks = count >> 4; f = (u8x64) _mm512_mask_loadu_epi64 (_mm512_setzero_si512 (), 0xc0, (__m512i *) (iv - 3)); while (n_blocks >= 16) { c[0] = src[0]; c[1] = src[1]; c[2] = src[2]; c[3] = src[3]; r[0] = c[0] ^ k[0]; r[1] = c[1] ^ k[0]; r[2] = c[2] ^ k[0]; r[3] = c[3] ^ k[0]; for (i = 1; i < rounds; i++) { r[0] = aes_dec_round_x4 (r[0], k[i]); r[1] = aes_dec_round_x4 (r[1], k[i]); r[2] = aes_dec_round_x4 (r[2], k[i]); r[3] = aes_dec_round_x4 (r[3], k[i]); } r[0] = aes_dec_last_round_x4 (r[0], k[i]); r[1] = aes_dec_last_round_x4 (r[1], k[i]); r[2] = aes_dec_last_round_x4 (r[2], k[i]); r[3] = aes_dec_last_round_x4 (r[3], k[i]); dst[0] = r[0] ^= aes_cbc_dec_permute (f, c[0]); dst[1] = r[1] ^= aes_cbc_dec_permute (c[0], c[1]); dst[2] = r[2] ^= aes_cbc_dec_permute (c[1], c[2]); dst[4] = r[3] ^= aes_cbc_dec_permute (c[2], c[3]); f = c[3]; n_blocks -= 16; src += 4; dst += 4; } while (n_blocks > 0) { m = (1 << (n_blocks * 2)) - 1; c[0] = (u8x64) _mm512_mask_loadu_epi64 ((__m512i) c[0], m, (__m512i *) src); f = aes_cbc_dec_permute (f, c[0]); r[0] = c[0] ^ k[0]; for (i = 1; i < rounds; i++) r[0] = aes_dec_round_x4 (r[0], k[i]); r[0] = aes_dec_last_round_x4 (r[0], k[i]); _mm512_mask_storeu_epi64 ((__m512i *) dst, m, (__m512i) (r[0] ^ f)); f = c[0]; n_blocks -= 4; src += 1; dst += 1; } } #endif #endif #ifdef __VAES__ #define N 16 #define u32xN u32x16 #define u32xN_min_scalar u32x16_min_scalar #define u32xN_is_all_zero u32x16_is_all_zero #define u32xN_splat u32x16_splat #else #define N 4 #define u32xN u32x4 #define u32xN_min_scalar u32x4_min_scalar #define u32xN_is_all_zero u32x4_is_all_zero #define u32xN_splat u32x4_splat #endif static_always_inline u32 aes_ops_enc_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aes_key_size_t ks) { crypto_native_main_t *cm = &crypto_native_main; crypto_native_per_thread_data_t *ptd = vec_elt_at_index (cm->per_thread_data, vm->thread_index); int rounds = AES_KEY_ROUNDS (ks); u8 dummy[8192]; u32 i, j, count, n_left = n_ops; u32xN dummy_mask = { }; u32xN len = { }; vnet_crypto_key_index_t key_index[N]; u8 *src[N] = { }; u8 *dst[N] = { }; #if __VAES__ u8x64 r[N / 4] = { }; u8x64 k[15][N / 4] = { }; u8x16 *kq, *rq = (u8x16 *) r; #else u8x16 r[N] = { }; u8x16 k[15][N] = { }; #endif for (i = 0; i < N; i++) key_index[i] = ~0; more: for (i = 0; i < N; i++) if (len[i] == 0) { if (n_left == 0) { /* no more work to enqueue, so we are enqueueing dummy buffer */ src[i] = dst[i] = dummy; len[i] = sizeof (dummy); dummy_mask[i] = 0; } else { u8x16 t; if (ops[0]->flags & VNET_CRYPTO_OP_FLAG_INIT_IV) { t = ptd->cbc_iv[i]; *(u8x16u *) ops[0]->iv = t; ptd->cbc_iv[i] = aes_enc_round (t, t); } else t = aes_block_load (ops[0]->iv); #if __VAES__ rq[i] = t; #else r[i] = t; #endif src[i] = ops[0]->src; dst[i] = ops[0]->dst; len[i] = ops[0]->len; dummy_mask[i] = ~0; if (key_index[i] != ops[0]->key_index) { aes_cbc_key_data_t *kd; key_index[i] = ops[0]->key_index; kd = (aes_cbc_key_data_t *) cm->key_data[key_index[i]]; for (j = 0; j < rounds + 1; j++) { #if __VAES__ kq = (u8x16 *) k[j]; kq[i] = kd->encrypt_key[j]; #else k[j][i] = kd->encrypt_key[j]; #endif } } ops[0]->status = VNET_CRYPTO_OP_STATUS_COMPLETED; n_left--; ops++; } } count = u32xN_min_scalar (len); ASSERT (count % 16 == 0); for (i = 0; i < count; i += 16) { #ifdef __VAES__ r[0] = u8x64_xor3 (r[0], aes_block_load_x4 (src, i), k[0][0]); r[1] = u8x64_xor3 (r[1], aes_block_load_x4 (src, i), k[0][1]); r[2] = u8x64_xor3 (r[2], aes_block_load_x4 (src, i), k[0][2]); r[3] = u8x64_xor3 (r[3], aes_block_load_x4 (src, i), k[0][3]); for (j = 1; j < rounds; j++) { r[0] = aes_enc_round_x4 (r[0], k[j][0]); r[1] = aes_enc_round_x4 (r[1], k[j][1]); r[2] = aes_enc_round_x4 (r[2], k[j][2]); r[3] = aes_enc_round_x4 (r[3], k[j][3]); } r[0] = aes_enc_last_round_x4 (r[0], k[j][0]); r[1] = aes_enc_last_round_x4 (r[1], k[j][1]); r[2] = aes_enc_last_round_x4 (r[2], k[j][2]); r[3] = aes_enc_last_round_x4 (r[3], k[j][3]); aes_block_store_x4 (dst, i, r[0]); aes_block_store_x4 (dst + 4, i, r[1]); aes_block_store_x4 (dst + 8, i, r[2]); aes_block_store_x4 (dst + 12, i, r[3]); #else #if __x86_64__ r[0] = u8x16_xor3 (r[0], aes_block_load (src[0] + i), k[0][0]); r[1] = u8x16_xor3 (r[1], aes_block_load (src[1] + i), k[0][1]); r[2] = u8x16_xor3 (r[2], aes_block_load (src[2] + i), k[0][2]); r[3] = u8x16_xor3 (r[3], aes_block_load (src[3] + i), k[0][3]); for (j = 1; j < rounds; j++) { r[0] = aes_enc_round (r[0], k[j][0]); r[1] = aes_enc_round (r[1], k[j][1]); r[2] = aes_enc_round (r[2], k[j][2]); r[3] = aes_enc_round (r[3], k[j][3]); } r[0] = aes_enc_last_round (r[0], k[j][0]); r[1] = aes_enc_last_round (r[1], k[j][1]); r[2] = aes_enc_last_round (r[2], k[j][2]); r[3] = aes_enc_last_round (r[3], k[j][3]); aes_block_store (dst[0] + i, r[0]); aes_block_store (dst[1] + i, r[1]); aes_block_store (dst[2] + i, r[2]); aes_block_store (dst[3] + i, r[3]); #else r[0] ^= aes_block_load (src[0] + i); r[1] ^= aes_block_load (src[1] + i); r[2] ^= aes_block_load (src[2] + i); r[3] ^= aes_block_load (src[3] + i); for (j = 0; j < rounds - 1; j++) { r[0] = vaesmcq_u8 (vaeseq_u8 (r[0], k[j][0])); r[1] = vaesmcq_u8 (vaeseq_u8 (r[1], k[j][1])); r[2] = vaesmcq_u8 (vaeseq_u8 (r[2], k[j][2])); r[3] = vaesmcq_u8 (vaeseq_u8 (r[3], k[j][3])); } r[0] = vaeseq_u8 (r[0], k[j][0]) ^ k[rounds][0]; r[1] = vaeseq_u8 (r[1], k[j][1]) ^ k[rounds][1]; r[2] = vaeseq_u8 (r[2], k[j][2]) ^ k[rounds][2]; r[3] = vaeseq_u8 (r[3], k[j][3]) ^ k[rounds][3]; aes_block_store (dst[0] + i, r[0]); aes_block_store (dst[1] + i, r[1]); aes_block_store (dst[2] + i, r[2]); aes_block_store (dst[3] + i, r[3]); #endif #endif } len -= u32xN_splat (count); for (i = 0; i < N; i++) { src[i] += count; dst[i] += count; } if (n_left > 0) goto more; if (!u32xN_is_all_zero (len & dummy_mask)) goto more; return n_ops; } static_always_inline u32 aes_ops_dec_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aes_key_size_t ks) { crypto_native_main_t *cm = &crypto_native_main; int rounds = AES_KEY_ROUNDS (ks); vnet_crypto_op_t *op = ops[0]; aes_cbc_key_data_t *kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index]; u32 n_left = n_ops; ASSERT (n_ops >= 1); decrypt: #ifdef __VAES__ vaes_cbc_dec (kd->decrypt_key, (u8x64u *) op->src, (u8x64u *) op->dst, (u8x16u *) op->iv, op->len, rounds); #else aes_cbc_dec (kd->decrypt_key, (u8x16u *) op->src, (u8x16u *) op->dst, (u8x16u *) op->iv, op->len, rounds); #endif op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; if (--n_left) { op += 1; kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index]; goto decrypt; } return n_ops; } static_always_inline void * aes_cbc_key_exp (vnet_crypto_key_t * key, aes_key_size_t ks) { u8x16 e[15], d[15]; aes_cbc_key_data_t *kd; kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES); aes_key_expand (e, key->data, ks); aes_key_enc_to_dec (e, d, ks); for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++) { #if __VAES__ kd->decrypt_key[i] = (u8x64) _mm512_broadcast_i64x2 ((__m128i) d[i]); #else kd->decrypt_key[i] = d[i]; #endif kd->encrypt_key[i] = e[i]; } return kd; } #define foreach_aes_cbc_handler_type _(128) _(192) _(256) #define _(x) \ static u32 aes_ops_dec_aes_cbc_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aes_ops_dec_aes_cbc (vm, ops, n_ops, AES_KEY_##x); } \ static u32 aes_ops_enc_aes_cbc_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aes_ops_enc_aes_cbc (vm, ops, n_ops, AES_KEY_##x); } \ static void * aes_cbc_key_exp_##x (vnet_crypto_key_t *key) \ { return aes_cbc_key_exp (key, AES_KEY_##x); } foreach_aes_cbc_handler_type; #undef _ #include clib_error_t * #ifdef __VAES__ crypto_native_aes_cbc_init_icl (vlib_main_t * vm) #elif __AVX512F__ crypto_native_aes_cbc_init_skx (vlib_main_t * vm) #elif __aarch64__ crypto_native_aes_cbc_init_neon (vlib_main_t * vm) #elif __AVX2__ crypto_native_aes_cbc_init_hsw (vlib_main_t * vm) #else crypto_native_aes_cbc_init_slm (vlib_main_t * vm) #endif { crypto_native_main_t *cm = &crypto_native_main; crypto_native_per_thread_data_t *ptd; clib_error_t *err = 0; int fd; if ((fd = open ("/dev/urandom", O_RDONLY)) < 0) return clib_error_return_unix (0, "failed to open '/dev/urandom'"); /* *INDENT-OFF* */ vec_foreach (ptd, cm->per_thread_data) { for (int i = 0; i < 4; i++) { if (read(fd, ptd->cbc_iv, sizeof (ptd->cbc_iv)) != sizeof (ptd->cbc_iv)) { err = clib_error_return_unix (0, "'/dev/urandom' read failure"); goto error; } } } /* *INDENT-ON* */ #define _(x) \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_CBC_ENC, \ aes_ops_enc_aes_cbc_##x); \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_CBC_DEC, \ aes_ops_dec_aes_cbc_##x); \ cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_CBC] = aes_cbc_key_exp_##x; foreach_aes_cbc_handler_type; #undef _ error: close (fd); return err; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */