/* *------------------------------------------------------------------ * Copyright (c) 2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ #include #include #include #include #include #include #if __GNUC__ > 4 && !__clang__ && CLIB_DEBUG == 0 #pragma GCC optimize ("O3") #endif #ifdef __VAES__ #define NUM_HI 32 #else #define NUM_HI 8 #endif typedef struct { /* pre-calculated hash key values */ const u8x16 Hi[NUM_HI]; /* extracted AES key */ const u8x16 Ke[15]; #ifdef __VAES__ const u8x64 Ke4[15]; #endif } aes_gcm_key_data_t; typedef struct { u32 counter; union { u32x4 Y; u32x16 Y4; }; } aes_gcm_counter_t; typedef enum { AES_GCM_F_WITH_GHASH = (1 << 0), AES_GCM_F_LAST_ROUND = (1 << 1), AES_GCM_F_ENCRYPT = (1 << 2), AES_GCM_F_DECRYPT = (1 << 3), } aes_gcm_flags_t; static const u32x4 ctr_inv_1 = { 0, 0, 0, 1 << 24 }; static_always_inline void aes_gcm_enc_first_round (u8x16 * r, aes_gcm_counter_t * ctr, u8x16 k, int n_blocks) { if (PREDICT_TRUE ((u8) ctr->counter < (256 - 2 * n_blocks))) { for (int i = 0; i < n_blocks; i++) { r[i] = k ^ (u8x16) ctr->Y; ctr->Y += ctr_inv_1; } ctr->counter += n_blocks; } else { for (int i = 0; i < n_blocks; i++) { r[i] = k ^ (u8x16) ctr->Y; ctr->counter++; ctr->Y[3] = clib_host_to_net_u32 (ctr->counter + 1); } } } static_always_inline void aes_gcm_enc_round (u8x16 * r, u8x16 k, int n_blocks) { for (int i = 0; i < n_blocks; i++) r[i] = aes_enc_round (r[i], k); } static_always_inline void aes_gcm_enc_last_round (u8x16 * r, u8x16 * d, u8x16 const *k, int rounds, int n_blocks) { /* additional ronuds for AES-192 and AES-256 */ for (int i = 10; i < rounds; i++) aes_gcm_enc_round (r, k[i], n_blocks); for (int i = 0; i < n_blocks; i++) d[i] ^= aes_enc_last_round (r[i], k[rounds]); } static_always_inline u8x16 aes_gcm_ghash_blocks (u8x16 T, aes_gcm_key_data_t * kd, u8x16u * in, int n_blocks) { ghash_data_t _gd, *gd = &_gd; u8x16 *Hi = (u8x16 *) kd->Hi + NUM_HI - n_blocks; ghash_mul_first (gd, u8x16_reflect (in[0]) ^ T, Hi[0]); for (int i = 1; i < n_blocks; i++) ghash_mul_next (gd, u8x16_reflect ((in[i])), Hi[i]); ghash_reduce (gd); ghash_reduce2 (gd); return ghash_final (gd); } static_always_inline u8x16 aes_gcm_ghash (u8x16 T, aes_gcm_key_data_t * kd, u8x16u * in, u32 n_left) { while (n_left >= 128) { T = aes_gcm_ghash_blocks (T, kd, in, 8); n_left -= 128; in += 8; } if (n_left >= 64) { T = aes_gcm_ghash_blocks (T, kd, in, 4); n_left -= 64; in += 4; } if (n_left >= 32) { T = aes_gcm_ghash_blocks (T, kd, in, 2); n_left -= 32; in += 2; } if (n_left >= 16) { T = aes_gcm_ghash_blocks (T, kd, in, 1); n_left -= 16; in += 1; } if (n_left) { u8x16 r = aes_load_partial (in, n_left); T = ghash_mul (u8x16_reflect (r) ^ T, kd->Hi[NUM_HI - 1]); } return T; } static_always_inline u8x16 aes_gcm_calc (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d, aes_gcm_counter_t * ctr, u8x16u * inv, u8x16u * outv, int rounds, int n, int last_block_bytes, aes_gcm_flags_t f) { u8x16 r[n]; ghash_data_t _gd = { }, *gd = &_gd; const u8x16 *rk = (u8x16 *) kd->Ke; int ghash_blocks = (f & AES_GCM_F_ENCRYPT) ? 4 : n, gc = 1; u8x16 *Hi = (u8x16 *) kd->Hi + NUM_HI - ghash_blocks; clib_prefetch_load (inv + 4); /* AES rounds 0 and 1 */ aes_gcm_enc_first_round (r, ctr, rk[0], n); aes_gcm_enc_round (r, rk[1], n); /* load data - decrypt round */ if (f & AES_GCM_F_DECRYPT) { for (int i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) d[i] = inv[i]; if (f & AES_GCM_F_LAST_ROUND) d[n - 1] = aes_load_partial (inv + n - 1, last_block_bytes); } /* GHASH multiply block 1 */ if (f & AES_GCM_F_WITH_GHASH) ghash_mul_first (gd, u8x16_reflect (d[0]) ^ T, Hi[0]); /* AES rounds 2 and 3 */ aes_gcm_enc_round (r, rk[2], n); aes_gcm_enc_round (r, rk[3], n); /* GHASH multiply block 2 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash_mul_next (gd, u8x16_reflect (d[1]), Hi[1]); /* AES rounds 4 and 5 */ aes_gcm_enc_round (r, rk[4], n); aes_gcm_enc_round (r, rk[5], n); /* GHASH multiply block 3 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash_mul_next (gd, u8x16_reflect (d[2]), Hi[2]); /* AES rounds 6 and 7 */ aes_gcm_enc_round (r, rk[6], n); aes_gcm_enc_round (r, rk[7], n); /* GHASH multiply block 4 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash_mul_next (gd, u8x16_reflect (d[3]), Hi[3]); /* AES rounds 8 and 9 */ aes_gcm_enc_round (r, rk[8], n); aes_gcm_enc_round (r, rk[9], n); /* GHASH reduce 1st step */ if (f & AES_GCM_F_WITH_GHASH) ghash_reduce (gd); /* load data - encrypt round */ if (f & AES_GCM_F_ENCRYPT) { for (int i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) d[i] = inv[i]; if (f & AES_GCM_F_LAST_ROUND) d[n - 1] = aes_load_partial (inv + n - 1, last_block_bytes); } /* GHASH reduce 2nd step */ if (f & AES_GCM_F_WITH_GHASH) ghash_reduce2 (gd); /* AES last round(s) */ aes_gcm_enc_last_round (r, d, rk, rounds, n); /* store data */ for (int i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) outv[i] = d[i]; if (f & AES_GCM_F_LAST_ROUND) aes_store_partial (outv + n - 1, d[n - 1], last_block_bytes); /* GHASH final step */ if (f & AES_GCM_F_WITH_GHASH) T = ghash_final (gd); return T; } static_always_inline u8x16 aes_gcm_calc_double (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d, aes_gcm_counter_t * ctr, u8x16u * inv, u8x16u * outv, int rounds, aes_gcm_flags_t f) { u8x16 r[4]; ghash_data_t _gd, *gd = &_gd; const u8x16 *rk = (u8x16 *) kd->Ke; u8x16 *Hi = (u8x16 *) kd->Hi + NUM_HI - 8; /* AES rounds 0 and 1 */ aes_gcm_enc_first_round (r, ctr, rk[0], 4); aes_gcm_enc_round (r, rk[1], 4); /* load 4 blocks of data - decrypt round */ if (f & AES_GCM_F_DECRYPT) { d[0] = inv[0]; d[1] = inv[1]; d[2] = inv[2]; d[3] = inv[3]; } /* GHASH multiply block 0 */ ghash_mul_first (gd, u8x16_reflect (d[0]) ^ T, Hi[0]); /* AES rounds 2 and 3 */ aes_gcm_enc_round (r, rk[2], 4); aes_gcm_enc_round (r, rk[3], 4); /* GHASH multiply block 1 */ ghash_mul_next (gd, u8x16_reflect (d[1]), Hi[1]); /* AES rounds 4 and 5 */ aes_gcm_enc_round (r, rk[4], 4); aes_gcm_enc_round (r, rk[5], 4); /* GHASH multiply block 2 */ ghash_mul_next (gd, u8x16_reflect (d[2]), Hi[2]); /* AES rounds 6 and 7 */ aes_gcm_enc_round (r, rk[6], 4); aes_gcm_enc_round (r, rk[7], 4); /* GHASH multiply block 3 */ ghash_mul_next (gd, u8x16_reflect (d[3]), Hi[3]); /* AES rounds 8 and 9 */ aes_gcm_enc_round (r, rk[8], 4); aes_gcm_enc_round (r, rk[9], 4); /* load 4 blocks of data - encrypt round */ if (f & AES_GCM_F_ENCRYPT) { d[0] = inv[0]; d[1] = inv[1]; d[2] = inv[2]; d[3] = inv[3]; } /* AES last round(s) */ aes_gcm_enc_last_round (r, d, rk, rounds, 4); /* store 4 blocks of data */ outv[0] = d[0]; outv[1] = d[1]; outv[2] = d[2]; outv[3] = d[3]; /* load next 4 blocks of data data - decrypt round */ if (f & AES_GCM_F_DECRYPT) { d[0] = inv[4]; d[1] = inv[5]; d[2] = inv[6]; d[3] = inv[7]; } /* GHASH multiply block 4 */ ghash_mul_next (gd, u8x16_reflect (d[0]), Hi[4]); /* AES rounds 0, 1 and 2 */ aes_gcm_enc_first_round (r, ctr, rk[0], 4); aes_gcm_enc_round (r, rk[1], 4); aes_gcm_enc_round (r, rk[2], 4); /* GHASH multiply block 5 */ ghash_mul_next (gd, u8x16_reflect (d[1]), Hi[5]); /* AES rounds 3 and 4 */ aes_gcm_enc_round (r, rk[3], 4); aes_gcm_enc_round (r, rk[4], 4); /* GHASH multiply block 6 */ ghash_mul_next (gd, u8x16_reflect (d[2]), Hi[6]); /* AES rounds 5 and 6 */ aes_gcm_enc_round (r, rk[5], 4); aes_gcm_enc_round (r, rk[6], 4); /* GHASH multiply block 7 */ ghash_mul_next (gd, u8x16_reflect (d[3]), Hi[7]); /* AES rounds 7 and 8 */ aes_gcm_enc_round (r, rk[7], 4); aes_gcm_enc_round (r, rk[8], 4); /* GHASH reduce 1st step */ ghash_reduce (gd); /* AES round 9 */ aes_gcm_enc_round (r, rk[9], 4); /* load data - encrypt round */ if (f & AES_GCM_F_ENCRYPT) { d[0] = inv[4]; d[1] = inv[5]; d[2] = inv[6]; d[3] = inv[7]; } /* GHASH reduce 2nd step */ ghash_reduce2 (gd); /* AES last round(s) */ aes_gcm_enc_last_round (r, d, rk, rounds, 4); /* store data */ outv[4] = d[0]; outv[5] = d[1]; outv[6] = d[2]; outv[7] = d[3]; /* GHASH final step */ return ghash_final (gd); } static_always_inline u8x16 aes_gcm_ghash_last (u8x16 T, aes_gcm_key_data_t * kd, u8x16 * d, int n_blocks, int n_bytes) { ghash_data_t _gd, *gd = &_gd; u8x16 *Hi = (u8x16 *) kd->Hi + NUM_HI - n_blocks; if (n_bytes) d[n_blocks - 1] = aes_byte_mask (d[n_blocks - 1], n_bytes); ghash_mul_first (gd, u8x16_reflect (d[0]) ^ T, Hi[0]); if (n_blocks > 1) ghash_mul_next (gd, u8x16_reflect (d[1]), Hi[1]); if (n_blocks > 2) ghash_mul_next (gd, u8x16_reflect (d[2]), Hi[2]); if (n_blocks > 3) ghash_mul_next (gd, u8x16_reflect (d[3]), Hi[3]); ghash_reduce (gd); ghash_reduce2 (gd); return ghash_final (gd); } #ifdef __VAES__ static const u32x16 ctr_inv_1234 = { 0, 0, 0, 1 << 24, 0, 0, 0, 2 << 24, 0, 0, 0, 3 << 24, 0, 0, 0, 4 << 24, }; static const u32x16 ctr_inv_4444 = { 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24, 0, 0, 0, 4 << 24 }; static const u32x16 ctr_1234 = { 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, }; static_always_inline void aes4_gcm_enc_first_round (u8x64 * r, aes_gcm_counter_t * ctr, u8x64 k, int n) { u8 last_byte = (u8) ctr->counter; int i = 0; /* As counter is stored in network byte order for performance reasons we are incrementing least significant byte only except in case where we overlow. As we are processing four 512-blocks in parallel except the last round, overflow can happen only when n == 4 */ if (n == 4) for (; i < 2; i++) { r[i] = k ^ (u8x64) ctr->Y4; ctr->Y4 += ctr_inv_4444; } if (n == 4 && PREDICT_TRUE (last_byte == 241)) { u32x16 Yc, Yr = (u32x16) u8x64_reflect_u8x16 ((u8x64) ctr->Y4); for (; i < n; i++) { r[i] = k ^ (u8x64) ctr->Y4; Yc = u32x16_splat (ctr->counter + 4 * (i + 1)) + ctr_1234; Yr = (u32x16) u32x16_mask_blend (Yr, Yc, 0x1111); ctr->Y4 = (u32x16) u8x64_reflect_u8x16 ((u8x64) Yr); } } else { for (; i < n; i++) { r[i] = k ^ (u8x64) ctr->Y4; ctr->Y4 += ctr_inv_4444; } } ctr->counter += n * 4; } static_always_inline void aes4_gcm_enc_round (u8x64 * r, u8x64 k, int n_blocks) { for (int i = 0; i < n_blocks; i++) r[i] = aes_enc_round_x4 (r[i], k); } static_always_inline void aes4_gcm_enc_last_round (u8x64 * r, u8x64 * d, u8x64 const *k, int rounds, int n_blocks) { /* additional ronuds for AES-192 and AES-256 */ for (int i = 10; i < rounds; i++) aes4_gcm_enc_round (r, k[i], n_blocks); for (int i = 0; i < n_blocks; i++) d[i] ^= aes_enc_last_round_x4 (r[i], k[rounds]); } static_always_inline u8x16 aes4_gcm_calc (u8x16 T, aes_gcm_key_data_t * kd, u8x64 * d, aes_gcm_counter_t * ctr, u8x16u * in, u8x16u * out, int rounds, int n, int last_4block_bytes, aes_gcm_flags_t f) { ghash4_data_t _gd, *gd = &_gd; const u8x64 *rk = (u8x64 *) kd->Ke4; int i, ghash_blocks, gc = 1; u8x64u *Hi4, *inv = (u8x64u *) in, *outv = (u8x64u *) out; u8x64 r[4]; u64 byte_mask = _bextr_u64 (-1LL, 0, last_4block_bytes); if (f & AES_GCM_F_ENCRYPT) { /* during encryption we either hash four 512-bit blocks from previous round or we don't hash at all */ ghash_blocks = 4; Hi4 = (u8x64u *) (kd->Hi + NUM_HI - ghash_blocks * 4); } else { /* during deccryption we hash 1..4 512-bit blocks from current round */ ghash_blocks = n; int n_128bit_blocks = n * 4; /* if this is last round of decryption, we may have less than 4 128-bit blocks in the last 512-bit data block, so we need to adjust Hi4 pointer accordingly */ if (f & AES_GCM_F_LAST_ROUND) n_128bit_blocks += ((last_4block_bytes + 15) >> 4) - 4; Hi4 = (u8x64u *) (kd->Hi + NUM_HI - n_128bit_blocks); } /* AES rounds 0 and 1 */ aes4_gcm_enc_first_round (r, ctr, rk[0], n); aes4_gcm_enc_round (r, rk[1], n); /* load 4 blocks of data - decrypt round */ if (f & AES_GCM_F_DECRYPT) { for (i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) d[i] = inv[i]; if (f & AES_GCM_F_LAST_ROUND) d[i] = u8x64_mask_load (u8x64_splat (0), inv + i, byte_mask); } /* GHASH multiply block 0 */ if (f & AES_GCM_F_WITH_GHASH) ghash4_mul_first (gd, u8x64_reflect_u8x16 (d[0]) ^ u8x64_insert_u8x16 (u8x64_splat (0), T, 0), Hi4[0]); /* AES rounds 2 and 3 */ aes4_gcm_enc_round (r, rk[2], n); aes4_gcm_enc_round (r, rk[3], n); /* GHASH multiply block 1 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[1]), Hi4[1]); /* AES rounds 4 and 5 */ aes4_gcm_enc_round (r, rk[4], n); aes4_gcm_enc_round (r, rk[5], n); /* GHASH multiply block 2 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[2]), Hi4[2]); /* AES rounds 6 and 7 */ aes4_gcm_enc_round (r, rk[6], n); aes4_gcm_enc_round (r, rk[7], n); /* GHASH multiply block 3 */ if ((f & AES_GCM_F_WITH_GHASH) && gc++ < ghash_blocks) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[3]), Hi4[3]); /* load 4 blocks of data - decrypt round */ if (f & AES_GCM_F_ENCRYPT) { for (i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) d[i] = inv[i]; if (f & AES_GCM_F_LAST_ROUND) d[i] = u8x64_mask_load (u8x64_splat (0), inv + i, byte_mask); } /* AES rounds 8 and 9 */ aes4_gcm_enc_round (r, rk[8], n); aes4_gcm_enc_round (r, rk[9], n); /* AES last round(s) */ aes4_gcm_enc_last_round (r, d, rk, rounds, n); /* store 4 blocks of data */ for (i = 0; i < n - ((f & AES_GCM_F_LAST_ROUND) != 0); i++) outv[i] = d[i]; if (f & AES_GCM_F_LAST_ROUND) u8x64_mask_store (d[i], outv + i, byte_mask); /* GHASH reduce 1st step */ ghash4_reduce (gd); /* GHASH reduce 2nd step */ ghash4_reduce2 (gd); /* GHASH final step */ return ghash4_final (gd); } static_always_inline u8x16 aes4_gcm_calc_double (u8x16 T, aes_gcm_key_data_t * kd, u8x64 * d, aes_gcm_counter_t * ctr, u8x16u * in, u8x16u * out, int rounds, aes_gcm_flags_t f) { u8x64 r[4]; ghash4_data_t _gd, *gd = &_gd; const u8x64 *rk = (u8x64 *) kd->Ke4; u8x64 *Hi4 = (u8x64 *) (kd->Hi + NUM_HI - 32); u8x64u *inv = (u8x64u *) in, *outv = (u8x64u *) out; /* AES rounds 0 and 1 */ aes4_gcm_enc_first_round (r, ctr, rk[0], 4); aes4_gcm_enc_round (r, rk[1], 4); /* load 4 blocks of data - decrypt round */ if (f & AES_GCM_F_DECRYPT) for (int i = 0; i < 4; i++) d[i] = inv[i]; /* GHASH multiply block 0 */ ghash4_mul_first (gd, u8x64_reflect_u8x16 (d[0]) ^ u8x64_insert_u8x16 (u8x64_splat (0), T, 0), Hi4[0]); /* AES rounds 2 and 3 */ aes4_gcm_enc_round (r, rk[2], 4); aes4_gcm_enc_round (r, rk[3], 4); /* GHASH multiply block 1 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[1]), Hi4[1]); /* AES rounds 4 and 5 */ aes4_gcm_enc_round (r, rk[4], 4); aes4_gcm_enc_round (r, rk[5], 4); /* GHASH multiply block 2 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[2]), Hi4[2]); /* AES rounds 6 and 7 */ aes4_gcm_enc_round (r, rk[6], 4); aes4_gcm_enc_round (r, rk[7], 4); /* GHASH multiply block 3 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[3]), Hi4[3]); /* AES rounds 8 and 9 */ aes4_gcm_enc_round (r, rk[8], 4); aes4_gcm_enc_round (r, rk[9], 4); /* load 4 blocks of data - encrypt round */ if (f & AES_GCM_F_ENCRYPT) for (int i = 0; i < 4; i++) d[i] = inv[i]; /* AES last round(s) */ aes4_gcm_enc_last_round (r, d, rk, rounds, 4); /* store 4 blocks of data */ for (int i = 0; i < 4; i++) outv[i] = d[i]; /* load 4 blocks of data - decrypt round */ if (f & AES_GCM_F_DECRYPT) for (int i = 0; i < 4; i++) d[i] = inv[i + 4]; /* GHASH multiply block 3 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[0]), Hi4[4]); /* AES rounds 0 and 1 */ aes4_gcm_enc_first_round (r, ctr, rk[0], 4); aes4_gcm_enc_round (r, rk[1], 4); /* GHASH multiply block 5 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[1]), Hi4[5]); /* AES rounds 2 and 3 */ aes4_gcm_enc_round (r, rk[2], 4); aes4_gcm_enc_round (r, rk[3], 4); /* GHASH multiply block 6 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[2]), Hi4[6]); /* AES rounds 4 and 5 */ aes4_gcm_enc_round (r, rk[4], 4); aes4_gcm_enc_round (r, rk[5], 4); /* GHASH multiply block 7 */ ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[3]), Hi4[7]); /* AES rounds 6 and 7 */ aes4_gcm_enc_round (r, rk[6], 4); aes4_gcm_enc_round (r, rk[7], 4); /* GHASH reduce 1st step */ ghash4_reduce (gd); /* AES rounds 8 and 9 */ aes4_gcm_enc_round (r, rk[8], 4); aes4_gcm_enc_round (r, rk[9], 4); /* GHASH reduce 2nd step */ ghash4_reduce2 (gd); /* load 4 blocks of data - encrypt round */ if (f & AES_GCM_F_ENCRYPT) for (int i = 0; i < 4; i++) d[i] = inv[i + 4]; /* AES last round(s) */ aes4_gcm_enc_last_round (r, d, rk, rounds, 4); /* store 4 blocks of data */ for (int i = 0; i < 4; i++) outv[i + 4] = d[i]; /* GHASH final step */ return ghash4_final (gd); } static_always_inline u8x16 aes4_gcm_ghash_last (u8x16 T, aes_gcm_key_data_t * kd, u8x64 * d, int n, int last_4block_bytes) { ghash4_data_t _gd, *gd = &_gd; u8x64u *Hi4; int n_128bit_blocks; u64 byte_mask = _bextr_u64 (-1LL, 0, last_4block_bytes); n_128bit_blocks = (n - 1) * 4 + ((last_4block_bytes + 15) >> 4); Hi4 = (u8x64u *) (kd->Hi + NUM_HI - n_128bit_blocks); d[n - 1] = u8x64_mask_blend (u8x64_splat (0), d[n - 1], byte_mask); ghash4_mul_first (gd, u8x64_reflect_u8x16 (d[0]) ^ u8x64_insert_u8x16 (u8x64_splat (0), T, 0), Hi4[0]); if (n > 1) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[1]), Hi4[1]); if (n > 2) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[2]), Hi4[2]); if (n > 3) ghash4_mul_next (gd, u8x64_reflect_u8x16 (d[3]), Hi4[3]); ghash4_reduce (gd); ghash4_reduce2 (gd); return ghash4_final (gd); } #endif static_always_inline u8x16 aes_gcm_enc (u8x16 T, aes_gcm_key_data_t * kd, aes_gcm_counter_t * ctr, u8x16u * inv, u8x16u * outv, u32 n_left, int rounds) { u8x16 d[4]; aes_gcm_flags_t f = AES_GCM_F_ENCRYPT; if (n_left == 0) return T; #if __VAES__ u8x64 d4[4]; if (n_left < 256) { f |= AES_GCM_F_LAST_ROUND; if (n_left > 192) { n_left -= 192; aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 4, n_left); } else if (n_left > 128) { n_left -= 128; aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 3, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 3, n_left); } else if (n_left > 64) { n_left -= 64; aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 2, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 2, n_left); } else { aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 1, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 1, n_left); } } aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 256; outv += 16; inv += 16; f |= AES_GCM_F_WITH_GHASH; while (n_left >= 512) { T = aes4_gcm_calc_double (T, kd, d4, ctr, inv, outv, rounds, f); /* next */ n_left -= 512; outv += 32; inv += 32; } while (n_left >= 256) { T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 256; outv += 16; inv += 16; } if (n_left == 0) return aes4_gcm_ghash_last (T, kd, d4, 4, 64); f |= AES_GCM_F_LAST_ROUND; if (n_left > 192) { n_left -= 192; T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 4, n_left); } if (n_left > 128) { n_left -= 128; T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 3, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 3, n_left); } if (n_left > 64) { n_left -= 64; T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 2, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 2, n_left); } T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 1, n_left, f); return aes4_gcm_ghash_last (T, kd, d4, 1, n_left); #endif if (n_left < 64) { f |= AES_GCM_F_LAST_ROUND; if (n_left > 48) { n_left -= 48; aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, n_left, f); return aes_gcm_ghash_last (T, kd, d, 4, n_left); } else if (n_left > 32) { n_left -= 32; aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 3, n_left, f); return aes_gcm_ghash_last (T, kd, d, 3, n_left); } else if (n_left > 16) { n_left -= 16; aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 2, n_left, f); return aes_gcm_ghash_last (T, kd, d, 2, n_left); } else { aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 1, n_left, f); return aes_gcm_ghash_last (T, kd, d, 1, n_left); } } aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 64; outv += 4; inv += 4; f |= AES_GCM_F_WITH_GHASH; while (n_left >= 128) { T = aes_gcm_calc_double (T, kd, d, ctr, inv, outv, rounds, f); /* next */ n_left -= 128; outv += 8; inv += 8; } if (n_left >= 64) { T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 64; outv += 4; inv += 4; } if (n_left == 0) return aes_gcm_ghash_last (T, kd, d, 4, 0); f |= AES_GCM_F_LAST_ROUND; if (n_left > 48) { n_left -= 48; T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, n_left, f); return aes_gcm_ghash_last (T, kd, d, 4, n_left); } if (n_left > 32) { n_left -= 32; T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 3, n_left, f); return aes_gcm_ghash_last (T, kd, d, 3, n_left); } if (n_left > 16) { n_left -= 16; T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 2, n_left, f); return aes_gcm_ghash_last (T, kd, d, 2, n_left); } T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 1, n_left, f); return aes_gcm_ghash_last (T, kd, d, 1, n_left); } static_always_inline u8x16 aes_gcm_dec (u8x16 T, aes_gcm_key_data_t * kd, aes_gcm_counter_t * ctr, u8x16u * inv, u8x16u * outv, u32 n_left, int rounds) { aes_gcm_flags_t f = AES_GCM_F_WITH_GHASH | AES_GCM_F_DECRYPT; #ifdef __VAES__ u8x64 d4[4] = { }; while (n_left >= 512) { T = aes4_gcm_calc_double (T, kd, d4, ctr, inv, outv, rounds, f); /* next */ n_left -= 512; outv += 32; inv += 32; } while (n_left >= 256) { T = aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 256; outv += 16; inv += 16; } if (n_left == 0) return T; f |= AES_GCM_F_LAST_ROUND; if (n_left > 192) return aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 4, n_left - 192, f); if (n_left > 128) return aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 3, n_left - 128, f); if (n_left > 64) return aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 2, n_left - 64, f); return aes4_gcm_calc (T, kd, d4, ctr, inv, outv, rounds, 1, n_left, f); #else u8x16 d[4]; while (n_left >= 128) { T = aes_gcm_calc_double (T, kd, d, ctr, inv, outv, rounds, f); /* next */ n_left -= 128; outv += 8; inv += 8; } if (n_left >= 64) { T = aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, 0, f); /* next */ n_left -= 64; outv += 4; inv += 4; } if (n_left == 0) return T; f |= AES_GCM_F_LAST_ROUND; if (n_left > 48) return aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 4, n_left - 48, f); if (n_left > 32) return aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 3, n_left - 32, f); if (n_left > 16) return aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 2, n_left - 16, f); return aes_gcm_calc (T, kd, d, ctr, inv, outv, rounds, 1, n_left, f); #endif } static_always_inline int aes_gcm (u8x16u * in, u8x16u * out, u8x16u * addt, u8x16u * iv, u8x16u * tag, u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd, int aes_rounds, int is_encrypt) { int i; u8x16 r, T = { }; u32x4 Y0; ghash_data_t _gd, *gd = &_gd; aes_gcm_counter_t _ctr, *ctr = &_ctr; clib_prefetch_load (iv); clib_prefetch_load (in); clib_prefetch_load (in + 4); /* calculate ghash for AAD - optimized for ipsec common cases */ if (aad_bytes == 8) T = aes_gcm_ghash (T, kd, addt, 8); else if (aad_bytes == 12) T = aes_gcm_ghash (T, kd, addt, 12); else T = aes_gcm_ghash (T, kd, addt, aad_bytes); /* initalize counter */ ctr->counter = 1; Y0 = (u32x4) aes_load_partial (iv, 12) + ctr_inv_1; #ifdef __VAES__ ctr->Y4 = u32x16_splat_u32x4 (Y0) + ctr_inv_1234; #else ctr->Y = Y0 + ctr_inv_1; #endif /* ghash and encrypt/edcrypt */ if (is_encrypt) T = aes_gcm_enc (T, kd, ctr, in, out, data_bytes, aes_rounds); else T = aes_gcm_dec (T, kd, ctr, in, out, data_bytes, aes_rounds); clib_prefetch_load (tag); /* Finalize ghash - data bytes and aad bytes converted to bits */ /* *INDENT-OFF* */ r = (u8x16) ((u64x2) {data_bytes, aad_bytes} << 3); /* *INDENT-ON* */ /* interleaved computation of final ghash and E(Y0, k) */ ghash_mul_first (gd, r ^ T, kd->Hi[NUM_HI - 1]); r = kd->Ke[0] ^ (u8x16) Y0; for (i = 1; i < 5; i += 1) r = aes_enc_round (r, kd->Ke[i]); ghash_reduce (gd); ghash_reduce2 (gd); for (; i < 9; i += 1) r = aes_enc_round (r, kd->Ke[i]); T = ghash_final (gd); for (; i < aes_rounds; i += 1) r = aes_enc_round (r, kd->Ke[i]); r = aes_enc_last_round (r, kd->Ke[aes_rounds]); T = u8x16_reflect (T) ^ r; /* tag_len 16 -> 0 */ tag_len &= 0xf; if (is_encrypt) { /* store tag */ if (tag_len) aes_store_partial (tag, T, tag_len); else tag[0] = T; } else { /* check tag */ u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff; if ((u8x16_msb_mask (tag[0] == T) & tag_mask) != tag_mask) return 0; } return 1; } static_always_inline u32 aes_ops_enc_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aes_key_size_t ks) { crypto_native_main_t *cm = &crypto_native_main; vnet_crypto_op_t *op = ops[0]; aes_gcm_key_data_t *kd; u32 n_left = n_ops; next: kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; aes_gcm ((u8x16u *) op->src, (u8x16u *) op->dst, (u8x16u *) op->aad, (u8x16u *) op->iv, (u8x16u *) op->tag, op->len, op->aad_len, op->tag_len, kd, AES_KEY_ROUNDS (ks), /* is_encrypt */ 1); op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; if (--n_left) { op += 1; goto next; } return n_ops; } static_always_inline u32 aes_ops_dec_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops, aes_key_size_t ks) { crypto_native_main_t *cm = &crypto_native_main; vnet_crypto_op_t *op = ops[0]; aes_gcm_key_data_t *kd; u32 n_left = n_ops; int rv; next: kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; rv = aes_gcm ((u8x16u *) op->src, (u8x16u *) op->dst, (u8x16u *) op->aad, (u8x16u *) op->iv, (u8x16u *) op->tag, op->len, op->aad_len, op->tag_len, kd, AES_KEY_ROUNDS (ks), /* is_encrypt */ 0); if (rv) { op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; } else { op->status = VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC; n_ops--; } if (--n_left) { op += 1; goto next; } return n_ops; } static_always_inline void * aes_gcm_key_exp (vnet_crypto_key_t * key, aes_key_size_t ks) { aes_gcm_key_data_t *kd; u8x16 H; kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES); /* expand AES key */ aes_key_expand ((u8x16 *) kd->Ke, key->data, ks); /* pre-calculate H */ H = aes_encrypt_block (u8x16_splat (0), kd->Ke, ks); H = u8x16_reflect (H); ghash_precompute (H, (u8x16 *) kd->Hi, NUM_HI); #ifdef __VAES__ u8x64 *Ke4 = (u8x64 *) kd->Ke4; for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++) Ke4[i] = u8x64_splat_u8x16 (kd->Ke[i]); #endif return kd; } #define foreach_aes_gcm_handler_type _(128) _(192) _(256) #define _(x) \ static u32 aes_ops_dec_aes_gcm_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aes_ops_dec_aes_gcm (vm, ops, n_ops, AES_KEY_##x); } \ static u32 aes_ops_enc_aes_gcm_##x \ (vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ { return aes_ops_enc_aes_gcm (vm, ops, n_ops, AES_KEY_##x); } \ static void * aes_gcm_key_exp_##x (vnet_crypto_key_t *key) \ { return aes_gcm_key_exp (key, AES_KEY_##x); } foreach_aes_gcm_handler_type; #undef _ clib_error_t * #ifdef __VAES__ crypto_native_aes_gcm_init_icl (vlib_main_t * vm) #elif __AVX512F__ crypto_native_aes_gcm_init_skx (vlib_main_t * vm) #elif __AVX2__ crypto_native_aes_gcm_init_hsw (vlib_main_t * vm) #elif __aarch64__ crypto_native_aes_gcm_init_neon (vlib_main_t * vm) #else crypto_native_aes_gcm_init_slm (vlib_main_t * vm) #endif { crypto_native_main_t *cm = &crypto_native_main; #define _(x) \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_GCM_ENC, \ aes_ops_enc_aes_gcm_##x); \ vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ VNET_CRYPTO_OP_AES_##x##_GCM_DEC, \ aes_ops_dec_aes_gcm_##x); \ cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_GCM] = aes_gcm_key_exp_##x; foreach_aes_gcm_handler_type; #undef _ return 0; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */