/* * Copyright (c) 2017 Intel and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <vnet/vnet.h> #include <vnet/ip/ip.h> #include <vnet/api_errno.h> #include <vnet/ipsec/ipsec.h> #include <vlib/node_funcs.h> #include <dpdk/device/dpdk.h> #include <dpdk/buffer.h> #include <dpdk/ipsec/ipsec.h> dpdk_crypto_main_t dpdk_crypto_main; #define EMPTY_STRUCT {0} #define NUM_CRYPTO_MBUFS 16384 static void algos_init (u32 n_mains) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *a; vec_validate_aligned (dcm->cipher_algs, IPSEC_CRYPTO_N_ALG - 1, 8); { #define _(v,f,str) \ dcm->cipher_algs[IPSEC_CRYPTO_ALG_##f].name = str; \ dcm->cipher_algs[IPSEC_CRYPTO_ALG_##f].disabled = n_mains; foreach_ipsec_crypto_alg #undef _ } /* Minimum boundary for ciphers is 4B, required by ESP */ a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_NONE]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_NULL; a->boundary = 4; /* 1 */ a->key_len = 0; a->iv_len = 0; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CBC_128]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CBC; a->boundary = 16; a->key_len = 16; a->iv_len = 16; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CBC_192]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CBC; a->boundary = 16; a->key_len = 24; a->iv_len = 16; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CBC_256]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CBC; a->boundary = 16; a->key_len = 32; a->iv_len = 16; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CTR_128]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CTR; a->boundary = 4; /* 1 */ a->key_len = 16; a->iv_len = 8; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CTR_192]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CTR; a->boundary = 4; /* 1 */ a->key_len = 24; a->iv_len = 8; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_CTR_256]; a->type = RTE_CRYPTO_SYM_XFORM_CIPHER; a->alg = RTE_CRYPTO_CIPHER_AES_CTR; a->boundary = 4; /* 1 */ a->key_len = 32; a->iv_len = 8; #define AES_GCM_TYPE RTE_CRYPTO_SYM_XFORM_AEAD #define AES_GCM_ALG RTE_CRYPTO_AEAD_AES_GCM a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_GCM_128]; a->type = AES_GCM_TYPE; a->alg = AES_GCM_ALG; a->boundary = 4; /* 1 */ a->key_len = 16; a->iv_len = 8; a->trunc_size = 16; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_GCM_192]; a->type = AES_GCM_TYPE; a->alg = AES_GCM_ALG; a->boundary = 4; /* 1 */ a->key_len = 24; a->iv_len = 8; a->trunc_size = 16; a = &dcm->cipher_algs[IPSEC_CRYPTO_ALG_AES_GCM_256]; a->type = AES_GCM_TYPE; a->alg = AES_GCM_ALG; a->boundary = 4; /* 1 */ a->key_len = 32; a->iv_len = 8; a->trunc_size = 16; vec_validate (dcm->auth_algs, IPSEC_INTEG_N_ALG - 1); { #define _(v,f,str) \ dcm->auth_algs[IPSEC_INTEG_ALG_##f].name = str; \ dcm->auth_algs[IPSEC_INTEG_ALG_##f].disabled = n_mains; foreach_ipsec_integ_alg #undef _ } a = &dcm->auth_algs[IPSEC_INTEG_ALG_NONE]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_NULL; a->key_len = 0; a->trunc_size = 0; a = &dcm->auth_algs[IPSEC_INTEG_ALG_MD5_96]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_MD5_HMAC; a->key_len = 16; a->trunc_size = 12; a = &dcm->auth_algs[IPSEC_INTEG_ALG_SHA1_96]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_SHA1_HMAC; a->key_len = 20; a->trunc_size = 12; a = &dcm->auth_algs[IPSEC_INTEG_ALG_SHA_256_96]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_SHA256_HMAC; a->key_len = 32; a->trunc_size = 12; a = &dcm->auth_algs[IPSEC_INTEG_ALG_SHA_256_128]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_SHA256_HMAC; a->key_len = 32; a->trunc_size = 16; a = &dcm->auth_algs[IPSEC_INTEG_ALG_SHA_384_192]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_SHA384_HMAC; a->key_len = 48; a->trunc_size = 24; a = &dcm->auth_algs[IPSEC_INTEG_ALG_SHA_512_256]; a->type = RTE_CRYPTO_SYM_XFORM_AUTH; a->alg = RTE_CRYPTO_AUTH_SHA512_HMAC; a->key_len = 64; a->trunc_size = 32; } static u8 cipher_alg_index (const crypto_alg_t * alg) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; return (alg - dcm->cipher_algs); } static u8 auth_alg_index (const crypto_alg_t * alg) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; return (alg - dcm->auth_algs); } static crypto_alg_t * cipher_cap_to_alg (const struct rte_cryptodev_capabilities *cap, u8 key_len) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *alg; if (cap->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) return NULL; /* *INDENT-OFF* */ vec_foreach (alg, dcm->cipher_algs) { if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_CIPHER) && (alg->type == RTE_CRYPTO_SYM_XFORM_CIPHER) && (cap->sym.cipher.algo == alg->alg) && (alg->key_len == key_len)) return alg; if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) && (alg->type == RTE_CRYPTO_SYM_XFORM_AEAD) && (cap->sym.aead.algo == alg->alg) && (alg->key_len == key_len)) return alg; } /* *INDENT-ON* */ return NULL; } static crypto_alg_t * auth_cap_to_alg (const struct rte_cryptodev_capabilities *cap, u8 trunc_size) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *alg; if ((cap->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) || (cap->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)) return NULL; /* *INDENT-OFF* */ vec_foreach (alg, dcm->auth_algs) { if ((cap->sym.auth.algo == alg->alg) && (alg->trunc_size == trunc_size)) return alg; } /* *INDENT-ON* */ return NULL; } static void crypto_set_aead_xform (struct rte_crypto_sym_xform *xform, ipsec_sa_t * sa, u8 is_outbound) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *c; c = vec_elt_at_index (dcm->cipher_algs, sa->crypto_alg); ASSERT (c->type == RTE_CRYPTO_SYM_XFORM_AEAD); xform->type = RTE_CRYPTO_SYM_XFORM_AEAD; xform->aead.algo = c->alg; xform->aead.key.data = sa->crypto_key.data; xform->aead.key.length = c->key_len; xform->aead.iv.offset = crypto_op_get_priv_offset () + offsetof (dpdk_op_priv_t, cb); xform->aead.iv.length = 12; xform->aead.digest_length = c->trunc_size; xform->aead.aad_length = ipsec_sa_is_set_USE_ESN (sa) ? 12 : 8; xform->next = NULL; if (is_outbound) xform->aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT; else xform->aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT; } static void crypto_set_cipher_xform (struct rte_crypto_sym_xform *xform, ipsec_sa_t * sa, u8 is_outbound) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *c; c = vec_elt_at_index (dcm->cipher_algs, sa->crypto_alg); ASSERT (c->type == RTE_CRYPTO_SYM_XFORM_CIPHER); xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER; xform->cipher.algo = c->alg; xform->cipher.key.data = sa->crypto_key.data; xform->cipher.key.length = c->key_len; xform->cipher.iv.offset = crypto_op_get_priv_offset () + offsetof (dpdk_op_priv_t, cb); xform->cipher.iv.length = c->iv_len; xform->next = NULL; if (is_outbound) xform->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT; else xform->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT; } static void crypto_set_auth_xform (struct rte_crypto_sym_xform *xform, ipsec_sa_t * sa, u8 is_outbound) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *a; a = vec_elt_at_index (dcm->auth_algs, sa->integ_alg); ASSERT (a->type == RTE_CRYPTO_SYM_XFORM_AUTH); xform->type = RTE_CRYPTO_SYM_XFORM_AUTH; xform->auth.algo = a->alg; xform->auth.key.data = sa->integ_key.data; xform->auth.key.length = a->key_len; xform->auth.digest_length = a->trunc_size; xform->next = NULL; if (is_outbound) xform->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE; else xform->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY; } clib_error_t * create_sym_session (struct rte_cryptodev_sym_session **session, u32 sa_idx, crypto_resource_t * res, crypto_worker_main_t * cwm, u8 is_outbound) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; ipsec_main_t *im = &ipsec_main; crypto_data_t *data; ipsec_sa_t *sa; struct rte_crypto_sym_xform cipher_xform = { 0 }; struct rte_crypto_sym_xform auth_xform = { 0 }; struct rte_crypto_sym_xform *xfs; struct rte_cryptodev_sym_session **s; clib_error_t *error = 0; sa = pool_elt_at_index (im->sad, sa_idx); if ((sa->crypto_alg == IPSEC_CRYPTO_ALG_AES_GCM_128) | (sa->crypto_alg == IPSEC_CRYPTO_ALG_AES_GCM_192) | (sa->crypto_alg == IPSEC_CRYPTO_ALG_AES_GCM_256)) { crypto_set_aead_xform (&cipher_xform, sa, is_outbound); xfs = &cipher_xform; } else { crypto_set_cipher_xform (&cipher_xform, sa, is_outbound); crypto_set_auth_xform (&auth_xform, sa, is_outbound); if (is_outbound) { cipher_xform.next = &auth_xform; xfs = &cipher_xform; } else { auth_xform.next = &cipher_xform; xfs = &auth_xform; } } data = vec_elt_at_index (dcm->data, res->numa); clib_spinlock_lock_if_init (&data->lockp); /* * DPDK_VER >= 1708: * Multiple worker/threads share the session for an SA * Single session per SA, initialized for each device driver */ s = (void *) hash_get (data->session_by_sa_index, sa_idx); if (!s) { session[0] = rte_cryptodev_sym_session_create (data->session_h); if (!session[0]) { data->session_h_failed += 1; error = clib_error_return (0, "failed to create session header"); goto done; } hash_set (data->session_by_sa_index, sa_idx, session[0]); } else session[0] = s[0]; struct rte_mempool **mp; mp = vec_elt_at_index (data->session_drv, res->drv_id); ASSERT (mp[0] != NULL); i32 ret = rte_cryptodev_sym_session_init (res->dev_id, session[0], xfs, mp[0]); if (ret) { data->session_drv_failed[res->drv_id] += 1; error = clib_error_return (0, "failed to init session for drv %u", res->drv_id); goto done; } add_session_by_drv_and_sa_idx (session[0], data, res->drv_id, sa_idx); done: clib_spinlock_unlock_if_init (&data->lockp); return error; } static void __attribute__ ((unused)) clear_and_free_obj (void *obj) { struct rte_mempool *mp = rte_mempool_from_obj (obj); clib_memset (obj, 0, mp->elt_size); rte_mempool_put (mp, obj); } /* This is from rte_cryptodev_pmd.h */ static inline void * get_session_private_data (const struct rte_cryptodev_sym_session *sess, uint8_t driver_id) { #if RTE_VERSION < RTE_VERSION_NUM(19, 2, 0, 0) return sess->sess_private_data[driver_id]; #else if (unlikely (sess->nb_drivers <= driver_id)) return 0; return sess->sess_data[driver_id].data; #endif } /* This is from rte_cryptodev_pmd.h */ static inline void set_session_private_data (struct rte_cryptodev_sym_session *sess, uint8_t driver_id, void *private_data) { #if RTE_VERSION < RTE_VERSION_NUM(19, 2, 0, 0) sess->sess_private_data[driver_id] = private_data; #else if (unlikely (sess->nb_drivers <= driver_id)) return; sess->sess_data[driver_id].data = private_data; #endif } static clib_error_t * dpdk_crypto_session_disposal (crypto_session_disposal_t * v, u64 ts) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_session_disposal_t *s; void *drv_session; u32 drv_id; i32 ret; /* *INDENT-OFF* */ vec_foreach (s, v) { /* ordered vector by timestamp */ if (!(s->ts + dcm->session_timeout < ts)) break; vec_foreach_index (drv_id, dcm->drv) { drv_session = get_session_private_data (s->session, drv_id); if (!drv_session) continue; /* * Custom clear to avoid finding a dev_id for drv_id: * ret = rte_cryptodev_sym_session_clear (dev_id, drv_session); * ASSERT (!ret); */ clear_and_free_obj (drv_session); set_session_private_data (s->session, drv_id, NULL); } if (rte_mempool_from_obj(s->session)) { ret = rte_cryptodev_sym_session_free (s->session); ASSERT (!ret); } } /* *INDENT-ON* */ if (s < vec_end (v)) vec_delete (v, s - v, 0); else vec_reset_length (v); return 0; } static clib_error_t * add_del_sa_session (u32 sa_index, u8 is_add) { ipsec_main_t *im = &ipsec_main; dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_data_t *data; struct rte_cryptodev_sym_session *s; uword *val; u32 drv_id; if (is_add) { #if 1 ipsec_sa_t *sa = pool_elt_at_index (im->sad, sa_index); u32 seed; switch (sa->crypto_alg) { case IPSEC_CRYPTO_ALG_AES_GCM_128: case IPSEC_CRYPTO_ALG_AES_GCM_192: case IPSEC_CRYPTO_ALG_AES_GCM_256: clib_memcpy (&sa->salt, &sa->crypto_key.data[sa->crypto_key.len - 4], 4); break; default: seed = (u32) clib_cpu_time_now (); sa->salt = random_u32 (&seed); } #endif return 0; } /* *INDENT-OFF* */ vec_foreach (data, dcm->data) { clib_spinlock_lock_if_init (&data->lockp); val = hash_get (data->session_by_sa_index, sa_index); if (val) { s = (struct rte_cryptodev_sym_session *) val[0]; vec_foreach_index (drv_id, dcm->drv) { val = (uword*) get_session_by_drv_and_sa_idx (data, drv_id, sa_index); if (val) add_session_by_drv_and_sa_idx(NULL, data, drv_id, sa_index); } hash_unset (data->session_by_sa_index, sa_index); u64 ts = unix_time_now_nsec (); dpdk_crypto_session_disposal (data->session_disposal, ts); crypto_session_disposal_t sd; sd.ts = ts; sd.session = s; vec_add1 (data->session_disposal, sd); } clib_spinlock_unlock_if_init (&data->lockp); } /* *INDENT-ON* */ return 0; } static clib_error_t * dpdk_ipsec_check_support (ipsec_sa_t * sa) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; if (sa->integ_alg == IPSEC_INTEG_ALG_NONE) switch (sa->crypto_alg) { case IPSEC_CRYPTO_ALG_NONE: case IPSEC_CRYPTO_ALG_AES_GCM_128: case IPSEC_CRYPTO_ALG_AES_GCM_192: case IPSEC_CRYPTO_ALG_AES_GCM_256: break; default: return clib_error_return (0, "unsupported integ-alg %U crypto-alg %U", format_ipsec_integ_alg, sa->integ_alg, format_ipsec_crypto_alg, sa->crypto_alg); } /* XXX do we need the NONE check? */ if (sa->crypto_alg != IPSEC_CRYPTO_ALG_NONE && dcm->cipher_algs[sa->crypto_alg].disabled) return clib_error_return (0, "disabled crypto-alg %U", format_ipsec_crypto_alg, sa->crypto_alg); /* XXX do we need the NONE check? */ if (sa->integ_alg != IPSEC_INTEG_ALG_NONE && dcm->auth_algs[sa->integ_alg].disabled) return clib_error_return (0, "disabled integ-alg %U", format_ipsec_integ_alg, sa->integ_alg); return NULL; } static void crypto_parse_capabilities (crypto_dev_t * dev, const struct rte_cryptodev_capabilities *cap, u32 n_mains) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_alg_t *alg; u8 len, inc; for (; cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; cap++) { /* A single capability maps to multiple cipher/auth algorithms */ switch (cap->sym.xform_type) { case RTE_CRYPTO_SYM_XFORM_AEAD: case RTE_CRYPTO_SYM_XFORM_CIPHER: inc = cap->sym.cipher.key_size.increment; inc = inc ? inc : 1; for (len = cap->sym.cipher.key_size.min; len <= cap->sym.cipher.key_size.max; len += inc) { alg = cipher_cap_to_alg (cap, len); if (!alg) continue; dev->cipher_support[cipher_alg_index (alg)] = 1; alg->resources += vec_len (dev->free_resources); /* At least enough resources to support one algo */ dcm->enabled |= (alg->resources >= n_mains); } break; case RTE_CRYPTO_SYM_XFORM_AUTH: inc = cap->sym.auth.digest_size.increment; inc = inc ? inc : 1; for (len = cap->sym.auth.digest_size.min; len <= cap->sym.auth.digest_size.max; len += inc) { alg = auth_cap_to_alg (cap, len); if (!alg) continue; dev->auth_support[auth_alg_index (alg)] = 1; alg->resources += vec_len (dev->free_resources); /* At least enough resources to support one algo */ dcm->enabled |= (alg->resources >= n_mains); } break; default: ; } } } #define DPDK_CRYPTO_N_QUEUE_DESC 2048 #define DPDK_CRYPTO_NB_SESS_OBJS 20000 static clib_error_t * crypto_dev_conf (u8 dev, u16 n_qp, u8 numa) { struct rte_cryptodev_config dev_conf = { 0 }; struct rte_cryptodev_qp_conf qp_conf = { 0 }; i32 ret; u16 qp; char *error_str; dev_conf.socket_id = numa; dev_conf.nb_queue_pairs = n_qp; error_str = "failed to configure crypto device %u"; ret = rte_cryptodev_configure (dev, &dev_conf); if (ret < 0) return clib_error_return (0, error_str, dev); error_str = "failed to setup crypto device %u queue pair %u"; qp_conf.nb_descriptors = DPDK_CRYPTO_N_QUEUE_DESC; for (qp = 0; qp < n_qp; qp++) { #if RTE_VERSION < RTE_VERSION_NUM(19, 2, 0, 0) ret = rte_cryptodev_queue_pair_setup (dev, qp, &qp_conf, numa, NULL); #else ret = rte_cryptodev_queue_pair_setup (dev, qp, &qp_conf, numa); #endif if (ret < 0) return clib_error_return (0, error_str, dev, qp); } error_str = "failed to start crypto device %u"; if (rte_cryptodev_start (dev)) return clib_error_return (0, error_str, dev); return 0; } static void crypto_scan_devs (u32 n_mains) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; struct rte_cryptodev *cryptodev; struct rte_cryptodev_info info = { 0 }; crypto_dev_t *dev; crypto_resource_t *res; clib_error_t *error; u32 i; u16 max_res_idx, res_idx, j; u8 drv_id; vec_validate_init_empty (dcm->dev, rte_cryptodev_count () - 1, (crypto_dev_t) EMPTY_STRUCT); for (i = 0; i < rte_cryptodev_count (); i++) { dev = vec_elt_at_index (dcm->dev, i); cryptodev = &rte_cryptodevs[i]; rte_cryptodev_info_get (i, &info); dev->id = i; dev->name = cryptodev->data->name; dev->numa = rte_cryptodev_socket_id (i); dev->features = info.feature_flags; dev->max_qp = info.max_nb_queue_pairs; drv_id = info.driver_id; if (drv_id >= vec_len (dcm->drv)) vec_validate_init_empty (dcm->drv, drv_id, (crypto_drv_t) EMPTY_STRUCT); vec_elt_at_index (dcm->drv, drv_id)->name = info.driver_name; dev->drv_id = drv_id; vec_add1 (vec_elt_at_index (dcm->drv, drv_id)->devs, i); if (!(info.feature_flags & RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING)) continue; if ((error = crypto_dev_conf (i, dev->max_qp, dev->numa))) { clib_error_report (error); continue; } max_res_idx = dev->max_qp - 1; vec_validate (dev->free_resources, max_res_idx); res_idx = vec_len (dcm->resource); vec_validate_init_empty_aligned (dcm->resource, res_idx + max_res_idx, (crypto_resource_t) EMPTY_STRUCT, CLIB_CACHE_LINE_BYTES); for (j = 0; j <= max_res_idx; j++) { vec_elt (dev->free_resources, max_res_idx - j) = res_idx + j; res = &dcm->resource[res_idx + j]; res->dev_id = i; res->drv_id = drv_id; res->qp_id = j; res->numa = dev->numa; res->thread_idx = (u16) ~ 0; } crypto_parse_capabilities (dev, info.capabilities, n_mains); } } void crypto_auto_placement (void) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_resource_t *res; crypto_worker_main_t *cwm; crypto_dev_t *dev; u32 thread_idx, skip_master; u16 res_idx, *idx; u8 used; u16 i; skip_master = vlib_num_workers () > 0; /* *INDENT-OFF* */ vec_foreach (dev, dcm->dev) { vec_foreach_index (thread_idx, dcm->workers_main) { if (vec_len (dev->free_resources) == 0) break; if (thread_idx < skip_master) continue; /* Check thread is not already using the device */ vec_foreach (idx, dev->used_resources) if (dcm->resource[idx[0]].thread_idx == thread_idx) continue; cwm = vec_elt_at_index (dcm->workers_main, thread_idx); used = 0; res_idx = vec_pop (dev->free_resources); /* Set device only for supported algos */ for (i = 0; i < IPSEC_CRYPTO_N_ALG; i++) if (dev->cipher_support[i] && cwm->cipher_resource_idx[i] == (u16) ~0) { dcm->cipher_algs[i].disabled--; cwm->cipher_resource_idx[i] = res_idx; used = 1; } for (i = 0; i < IPSEC_INTEG_N_ALG; i++) if (dev->auth_support[i] && cwm->auth_resource_idx[i] == (u16) ~0) { dcm->auth_algs[i].disabled--; cwm->auth_resource_idx[i] = res_idx; used = 1; } if (!used) { vec_add1 (dev->free_resources, res_idx); continue; } vec_add1 (dev->used_resources, res_idx); res = vec_elt_at_index (dcm->resource, res_idx); ASSERT (res->thread_idx == (u16) ~0); res->thread_idx = thread_idx; /* Add device to vector of polling resources */ vec_add1 (cwm->resource_idx, res_idx); } } /* *INDENT-ON* */ } static void crypto_op_init (struct rte_mempool *mempool, void *_arg __attribute__ ((unused)), void *_obj, unsigned i __attribute__ ((unused))) { struct rte_crypto_op *op = _obj; op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; op->phys_addr = rte_mempool_virt2iova (_obj); op->mempool = mempool; } static clib_error_t * crypto_create_crypto_op_pool (vlib_main_t * vm, u8 numa) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; dpdk_config_main_t *conf = &dpdk_config_main; crypto_data_t *data; u8 *pool_name; u32 pool_priv_size = sizeof (struct rte_crypto_op_pool_private); struct rte_crypto_op_pool_private *priv; struct rte_mempool *mp; data = vec_elt_at_index (dcm->data, numa); /* Already allocated */ if (data->crypto_op) return NULL; pool_name = format (0, "crypto_pool_numa%u%c", numa, 0); if (conf->num_crypto_mbufs == 0) conf->num_crypto_mbufs = NUM_CRYPTO_MBUFS; mp = rte_mempool_create ((char *) pool_name, conf->num_crypto_mbufs, crypto_op_len (), 512, pool_priv_size, NULL, NULL, crypto_op_init, NULL, numa, 0); vec_free (pool_name); if (!mp) return clib_error_return (0, "failed to create crypto op mempool"); /* Initialize mempool private data */ priv = rte_mempool_get_priv (mp); priv->priv_size = pool_priv_size; priv->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; data->crypto_op = mp; return NULL; } static clib_error_t * crypto_create_session_h_pool (vlib_main_t * vm, u8 numa) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_data_t *data; u8 *pool_name; struct rte_mempool *mp; u32 elt_size; data = vec_elt_at_index (dcm->data, numa); if (data->session_h) return NULL; pool_name = format (0, "session_h_pool_numa%u%c", numa, 0); elt_size = rte_cryptodev_sym_get_header_session_size (); #if RTE_VERSION < RTE_VERSION_NUM(19, 2, 0, 0) mp = rte_mempool_create ((char *) pool_name, DPDK_CRYPTO_NB_SESS_OBJS, elt_size, 512, 0, NULL, NULL, NULL, NULL, numa, 0); #else /* XXX Experimental tag in DPDK 19.02 */ mp = rte_cryptodev_sym_session_pool_create ((char *) pool_name, DPDK_CRYPTO_NB_SESS_OBJS, elt_size, 512, 0, numa); #endif vec_free (pool_name); if (!mp) return clib_error_return (0, "failed to create crypto session mempool"); data->session_h = mp; return NULL; } static clib_error_t * crypto_create_session_drv_pool (vlib_main_t * vm, crypto_dev_t * dev) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_data_t *data; u8 *pool_name; struct rte_mempool *mp; u32 elt_size; u8 numa = dev->numa; data = vec_elt_at_index (dcm->data, numa); vec_validate (data->session_drv, dev->drv_id); vec_validate (data->session_drv_failed, dev->drv_id); vec_validate_aligned (data->session_by_drv_id_and_sa_index, 32, CLIB_CACHE_LINE_BYTES); if (data->session_drv[dev->drv_id]) return NULL; pool_name = format (0, "session_drv%u_pool_numa%u%c", dev->drv_id, numa, 0); elt_size = rte_cryptodev_sym_get_private_session_size (dev->id); mp = rte_mempool_create ((char *) pool_name, DPDK_CRYPTO_NB_SESS_OBJS, elt_size, 512, 0, NULL, NULL, NULL, NULL, numa, 0); vec_free (pool_name); if (!mp) return clib_error_return (0, "failed to create session drv mempool"); data->session_drv[dev->drv_id] = mp; clib_spinlock_init (&data->lockp); return NULL; } static clib_error_t * crypto_create_pools (vlib_main_t * vm) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; clib_error_t *error = NULL; crypto_dev_t *dev; /* *INDENT-OFF* */ vec_foreach (dev, dcm->dev) { vec_validate_aligned (dcm->data, dev->numa, CLIB_CACHE_LINE_BYTES); error = crypto_create_crypto_op_pool (vm, dev->numa); if (error) return error; error = crypto_create_session_h_pool (vm, dev->numa); if (error) return error; error = crypto_create_session_drv_pool (vm, dev); if (error) return error; } /* *INDENT-ON* */ return NULL; } static void crypto_disable (void) { dpdk_crypto_main_t *dcm = &dpdk_crypto_main; crypto_data_t *data; u8 i; dcm->enabled = 0; /* *INDENT-OFF* */ vec_foreach (data, dcm->data) { rte_mempool_free (data->crypto_op); rte_mempool_free (data->session_h); vec_foreach_index (i, data->session_drv) rte_mempool_free (data->session_drv[i]); vec_free (data->session_drv); clib_spinlock_free (&data->lockp); } /* *INDENT-ON* */ vec_free (dcm->data); vec_free (dcm->workers_main); vec_free (dcm->dev); vec_free (dcm->resource); vec_free (dcm->cipher_algs); vec_free (dcm->auth_algs); } static uword dpdk_ipsec_process (vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { ipsec_main_t *im = &ipsec_main; dpdk_crypto_main_t *dcm = &dpdk_crypto_main; vlib_thread_main_t *tm = vlib_get_thread_main (); crypto_worker_main_t *cwm; clib_error_t *error = NULL; u32 i, skip_master, n_mains; n_mains = tm->n_vlib_mains; skip_master = vlib_num_workers () > 0; algos_init (n_mains - skip_master); crypto_scan_devs (n_mains - skip_master); if (!(dcm->enabled)) { clib_warning ("not enough DPDK crypto resources, default to OpenSSL"); crypto_disable (); return 0; } dcm->session_timeout = 10e9; vec_validate_init_empty_aligned (dcm->workers_main, n_mains - 1, (crypto_worker_main_t) EMPTY_STRUCT, CLIB_CACHE_LINE_BYTES); /* *INDENT-OFF* */ vec_foreach (cwm, dcm->workers_main) { vec_validate_init_empty_aligned (cwm->ops, VLIB_FRAME_SIZE - 1, 0, CLIB_CACHE_LINE_BYTES); clib_memset (cwm->cipher_resource_idx, ~0, IPSEC_CRYPTO_N_ALG * sizeof(*cwm->cipher_resource_idx)); clib_memset (cwm->auth_resource_idx, ~0, IPSEC_INTEG_N_ALG * sizeof(*cwm->auth_resource_idx)); } /* *INDENT-ON* */ crypto_auto_placement (); error = crypto_create_pools (vm); if (error) { clib_error_report (error); crypto_disable (); return 0; } u32 idx = ipsec_register_esp_backend (vm, im, "dpdk backend", "dpdk-esp4-encrypt", "dpdk-esp4-decrypt", "dpdk-esp6-encrypt", "dpdk-esp6-decrypt", dpdk_ipsec_check_support, add_del_sa_session); int rv = ipsec_select_esp_backend (im, idx); ASSERT (rv == 0); vlib_node_t *node = vlib_get_node_by_name (vm, (u8 *) "dpdk-crypto-input"); ASSERT (node); for (i = skip_master; i < n_mains; i++) vlib_node_set_state (vlib_mains[i], node->index, VLIB_NODE_STATE_POLLING); return 0; } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (dpdk_ipsec_process_node,static) = { .function = dpdk_ipsec_process, .type = VLIB_NODE_TYPE_PROCESS, .name = "dpdk-ipsec-process", .process_log2_n_stack_bytes = 17, }; /* *INDENT-ON* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */