/* * Copyright (c) 2018 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #ifdef HAVE_OPENSSL_ASYNC #include #endif #include #include #include #include #include #include #include #define MAX_CRYPTO_LEN 64 openssl_main_t openssl_main; static u32 openssl_ctx_alloc_w_thread (u32 thread_index) { openssl_main_t *om = &openssl_main; openssl_ctx_t **ctx; pool_get (om->ctx_pool[thread_index], ctx); if (!(*ctx)) *ctx = clib_mem_alloc (sizeof (openssl_ctx_t)); clib_memset (*ctx, 0, sizeof (openssl_ctx_t)); (*ctx)->ctx.c_thread_index = thread_index; (*ctx)->ctx.tls_ctx_engine = CRYPTO_ENGINE_OPENSSL; (*ctx)->ctx.app_session_handle = SESSION_INVALID_HANDLE; (*ctx)->openssl_ctx_index = ctx - om->ctx_pool[thread_index]; return ((*ctx)->openssl_ctx_index); } static u32 openssl_ctx_alloc (void) { return openssl_ctx_alloc_w_thread (vlib_get_thread_index ()); } static void openssl_ctx_free (tls_ctx_t * ctx) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; /* Cleanup ssl ctx unless migrated */ if (!ctx->is_migrated) { if (SSL_is_init_finished (oc->ssl) && !ctx->is_passive_close) SSL_shutdown (oc->ssl); SSL_free (oc->ssl); vec_free (ctx->srv_hostname); #ifdef HAVE_OPENSSL_ASYNC openssl_evt_free (ctx->evt_index, ctx->c_thread_index); #endif } pool_put_index (openssl_main.ctx_pool[ctx->c_thread_index], oc->openssl_ctx_index); } static void * openssl_ctx_detach (tls_ctx_t *ctx) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx, *oc_copy; oc_copy = clib_mem_alloc (sizeof (*oc_copy)); clib_memcpy (oc_copy, oc, sizeof (*oc)); return oc_copy; } static u32 openssl_ctx_attach (u32 thread_index, void *ctx_ptr) { openssl_main_t *om = &openssl_main; session_handle_t sh; openssl_ctx_t **oc; pool_get (om->ctx_pool[thread_index], oc); /* Free the old instance instead of looking for an empty spot */ if (*oc) clib_mem_free (*oc); *oc = ctx_ptr; (*oc)->openssl_ctx_index = oc - om->ctx_pool[thread_index]; (*oc)->ctx.c_thread_index = thread_index; sh = (*oc)->ctx.tls_session_handle; BIO_set_data ((*oc)->rbio, uword_to_pointer (sh, void *)); BIO_set_data ((*oc)->wbio, uword_to_pointer (sh, void *)); return ((*oc)->openssl_ctx_index); } tls_ctx_t * openssl_ctx_get (u32 ctx_index) { openssl_ctx_t **ctx; ctx = pool_elt_at_index (openssl_main.ctx_pool[vlib_get_thread_index ()], ctx_index); return &(*ctx)->ctx; } tls_ctx_t * openssl_ctx_get_w_thread (u32 ctx_index, u8 thread_index) { openssl_ctx_t **ctx; ctx = pool_elt_at_index (openssl_main.ctx_pool[thread_index], ctx_index); return &(*ctx)->ctx; } static u32 openssl_listen_ctx_alloc (void) { openssl_main_t *om = &openssl_main; openssl_listen_ctx_t *lctx; pool_get (om->lctx_pool, lctx); clib_memset (lctx, 0, sizeof (openssl_listen_ctx_t)); lctx->openssl_lctx_index = lctx - om->lctx_pool; return lctx->openssl_lctx_index; } static void openssl_listen_ctx_free (openssl_listen_ctx_t * lctx) { pool_put_index (openssl_main.lctx_pool, lctx->openssl_lctx_index); } openssl_listen_ctx_t * openssl_lctx_get (u32 lctx_index) { return pool_elt_at_index (openssl_main.lctx_pool, lctx_index); } static int openssl_read_from_ssl_into_fifo (svm_fifo_t * f, SSL * ssl) { int read, rv, n_fs, i; const int n_segs = 2; svm_fifo_seg_t fs[n_segs]; u32 max_enq; max_enq = svm_fifo_max_enqueue_prod (f); if (!max_enq) return 0; n_fs = svm_fifo_provision_chunks (f, fs, n_segs, max_enq); if (n_fs < 0) return 0; /* Return early if we can't read anything */ read = SSL_read (ssl, fs[0].data, fs[0].len); if (read <= 0) return 0; for (i = 1; i < n_fs; i++) { rv = SSL_read (ssl, fs[i].data, fs[i].len); read += rv > 0 ? rv : 0; if (rv < (int) fs[i].len) break; } svm_fifo_enqueue_nocopy (f, read); return read; } static int openssl_write_from_fifo_into_ssl (svm_fifo_t *f, SSL *ssl, u32 max_len) { int wrote = 0, rv, i = 0, len; const int n_segs = 2; svm_fifo_seg_t fs[n_segs]; len = svm_fifo_segments (f, 0, fs, n_segs, max_len); if (len <= 0) return 0; while (wrote < len && i < n_segs) { rv = SSL_write (ssl, fs[i].data, fs[i].len); wrote += (rv > 0) ? rv : 0; if (rv < (int) fs[i].len) break; i++; } if (wrote) svm_fifo_dequeue_drop (f, wrote); return wrote; } #ifdef HAVE_OPENSSL_ASYNC static int openssl_check_async_status (tls_ctx_t * ctx, openssl_resume_handler * handler, session_t * session) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; int estatus; SSL_get_async_status (oc->ssl, &estatus); if (estatus == ASYNC_STATUS_EAGAIN) { vpp_tls_async_update_event (ctx, 1); } else { vpp_tls_async_update_event (ctx, 0); } return 1; } #endif static void openssl_handle_handshake_failure (tls_ctx_t * ctx) { session_t *app_session; if (SSL_is_server (((openssl_ctx_t *) ctx)->ssl)) { /* * Cleanup pre-allocated app session and close transport */ app_session = session_get_if_valid (ctx->c_s_index, ctx->c_thread_index); if (app_session) { session_free (app_session); ctx->no_app_session = 1; ctx->c_s_index = SESSION_INVALID_INDEX; tls_disconnect_transport (ctx); } } else { /* * Also handles cleanup of the pre-allocated session */ tls_notify_app_connected (ctx, SESSION_E_TLS_HANDSHAKE); } } int openssl_ctx_handshake_rx (tls_ctx_t * ctx, session_t * tls_session) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; int rv = 0, err; while (SSL_in_init (oc->ssl)) { if (ctx->resume) { ctx->resume = 0; } else if (!svm_fifo_max_dequeue_cons (tls_session->rx_fifo)) break; rv = SSL_do_handshake (oc->ssl); err = SSL_get_error (oc->ssl, rv); #ifdef HAVE_OPENSSL_ASYNC if (err == SSL_ERROR_WANT_ASYNC) { openssl_check_async_status (ctx, openssl_ctx_handshake_rx, tls_session); } #endif if (err == SSL_ERROR_SSL) { char buf[512]; ERR_error_string (ERR_get_error (), buf); clib_warning ("Err: %s", buf); openssl_handle_handshake_failure (ctx); return -1; } if (err != SSL_ERROR_WANT_WRITE && err != SSL_ERROR_WANT_READ) break; } TLS_DBG (2, "tls state for %u is %s", oc->openssl_ctx_index, SSL_state_string_long (oc->ssl)); if (SSL_in_init (oc->ssl)) return -1; /* * Handshake complete */ if (!SSL_is_server (oc->ssl)) { /* * Verify server certificate */ if ((rv = SSL_get_verify_result (oc->ssl)) != X509_V_OK) { TLS_DBG (1, " failed verify: %s\n", X509_verify_cert_error_string (rv)); /* * Presence of hostname enforces strict certificate verification */ if (ctx->srv_hostname) { tls_notify_app_connected (ctx, SESSION_E_TLS_HANDSHAKE); return -1; } } tls_notify_app_connected (ctx, SESSION_E_NONE); } else { /* Need to check transport status */ if (ctx->is_passive_close) { openssl_handle_handshake_failure (ctx); return -1; } /* Accept failed, cleanup */ if (tls_notify_app_accept (ctx)) { ctx->c_s_index = SESSION_INVALID_INDEX; tls_disconnect_transport (ctx); return -1; } } TLS_DBG (1, "Handshake for %u complete. TLS cipher is %s", oc->openssl_ctx_index, SSL_get_cipher (oc->ssl)); return rv; } static void openssl_confirm_app_close (tls_ctx_t * ctx) { tls_disconnect_transport (ctx); session_transport_closed_notify (&ctx->connection); } static int openssl_ctx_write_tls (tls_ctx_t *ctx, session_t *app_session, transport_send_params_t *sp) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; u32 deq_max, space, enq_buf; session_t *ts; int wrote = 0; svm_fifo_t *f; ts = session_get_from_handle (ctx->tls_session_handle); space = svm_fifo_max_enqueue_prod (ts->tx_fifo); /* Leave a bit of extra space for tls ctrl data, if any needed */ space = clib_max ((int) space - TLSO_CTRL_BYTES, 0); f = app_session->tx_fifo; deq_max = svm_fifo_max_dequeue_cons (f); deq_max = clib_min (deq_max, space); if (!deq_max) goto check_tls_fifo; deq_max = clib_min (deq_max, sp->max_burst_size); /* Make sure tcp's tx fifo can actually buffer all bytes to be dequeued. * If under memory pressure, tls's fifo segment might not be able to * allocate the chunks needed. This also avoids errors from the underlying * custom bio to the ssl infra which at times can get stuck. */ if (svm_fifo_provision_chunks (ts->tx_fifo, 0, 0, deq_max + TLSO_CTRL_BYTES)) goto check_tls_fifo; wrote = openssl_write_from_fifo_into_ssl (f, oc->ssl, deq_max); if (!wrote) goto check_tls_fifo; if (svm_fifo_needs_deq_ntf (f, wrote)) session_dequeue_notify (app_session); check_tls_fifo: if (PREDICT_FALSE (ctx->app_closed && BIO_ctrl_pending (oc->rbio) <= 0)) openssl_confirm_app_close (ctx); /* Deschedule and wait for deq notification if fifo is almost full */ enq_buf = clib_min (svm_fifo_size (ts->tx_fifo) / 2, TLSO_MIN_ENQ_SPACE); if (space < wrote + enq_buf) { svm_fifo_add_want_deq_ntf (ts->tx_fifo, SVM_FIFO_WANT_DEQ_NOTIF); transport_connection_deschedule (&ctx->connection); sp->flags |= TRANSPORT_SND_F_DESCHED; } else /* Request tx reschedule of the app session */ app_session->flags |= SESSION_F_CUSTOM_TX; return wrote; } static int openssl_ctx_write_dtls (tls_ctx_t *ctx, session_t *app_session, transport_send_params_t *sp) { openssl_main_t *om = &openssl_main; openssl_ctx_t *oc = (openssl_ctx_t *) ctx; u32 read = 0, to_deq, dgram_sz, enq_max; session_dgram_pre_hdr_t hdr; session_t *us; int wrote, rv; u8 *buf; us = session_get_from_handle (ctx->tls_session_handle); to_deq = svm_fifo_max_dequeue_cons (app_session->tx_fifo); buf = om->tx_bufs[ctx->c_thread_index]; while (to_deq > 0) { /* Peeking only pre-header dgram because the session is connected */ rv = svm_fifo_peek (app_session->tx_fifo, 0, sizeof (hdr), (u8 *) &hdr); ASSERT (rv == sizeof (hdr) && hdr.data_length < vec_len (buf)); ASSERT (to_deq >= hdr.data_length + SESSION_CONN_HDR_LEN); dgram_sz = hdr.data_length + SESSION_CONN_HDR_LEN; enq_max = dgram_sz + TLSO_CTRL_BYTES; if (svm_fifo_max_enqueue_prod (us->tx_fifo) < enq_max || svm_fifo_provision_chunks (us->tx_fifo, 0, 0, enq_max)) { svm_fifo_add_want_deq_ntf (us->tx_fifo, SVM_FIFO_WANT_DEQ_NOTIF); transport_connection_deschedule (&ctx->connection); sp->flags |= TRANSPORT_SND_F_DESCHED; goto done; } rv = svm_fifo_peek (app_session->tx_fifo, SESSION_CONN_HDR_LEN, hdr.data_length, buf); ASSERT (rv == hdr.data_length); svm_fifo_dequeue_drop (app_session->tx_fifo, dgram_sz); wrote = SSL_write (oc->ssl, buf, rv); ASSERT (wrote > 0); read += rv; to_deq -= dgram_sz; } done: if (svm_fifo_needs_deq_ntf (app_session->tx_fifo, read)) session_dequeue_notify (app_session); if (read) tls_add_vpp_q_tx_evt (us); if (PREDICT_FALSE (ctx->app_closed && !svm_fifo_max_enqueue_prod (us->rx_fifo))) openssl_confirm_app_close (ctx); return read; } static inline int openssl_ctx_write (tls_ctx_t *ctx, session_t *app_session, transport_send_params_t *sp) { if (ctx->tls_type == TRANSPORT_PROTO_TLS) return openssl_ctx_write_tls (ctx, app_session, sp); else return openssl_ctx_write_dtls (ctx, app_session, sp); } static inline int openssl_ctx_read_tls (tls_ctx_t *ctx, session_t *tls_session) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; session_t *app_session; int read; svm_fifo_t *f; if (PREDICT_FALSE (SSL_in_init (oc->ssl))) { if (openssl_ctx_handshake_rx (ctx, tls_session) < 0) return 0; } app_session = session_get_from_handle (ctx->app_session_handle); f = app_session->rx_fifo; read = openssl_read_from_ssl_into_fifo (f, oc->ssl); /* If handshake just completed, session may still be in accepting state */ if (read && app_session->session_state >= SESSION_STATE_READY) tls_notify_app_enqueue (ctx, app_session); if ((SSL_pending (oc->ssl) > 0) || svm_fifo_max_dequeue_cons (tls_session->rx_fifo)) tls_add_vpp_q_builtin_rx_evt (tls_session); return read; } static inline int openssl_ctx_read_dtls (tls_ctx_t *ctx, session_t *us) { openssl_main_t *om = &openssl_main; openssl_ctx_t *oc = (openssl_ctx_t *) ctx; session_dgram_hdr_t hdr; session_t *app_session; u32 wrote = 0; int read, rv; u8 *buf; if (PREDICT_FALSE (SSL_in_init (oc->ssl))) { u32 us_index = us->session_index; if (openssl_ctx_handshake_rx (ctx, us) < 0) return 0; /* Session pool might grow when allocating the app's session */ us = session_get (us_index, ctx->c_thread_index); } buf = om->rx_bufs[ctx->c_thread_index]; app_session = session_get_from_handle (ctx->app_session_handle); svm_fifo_fill_chunk_list (app_session->rx_fifo); while (svm_fifo_max_dequeue_cons (us->rx_fifo) > 0) { if (svm_fifo_max_enqueue_prod (app_session->rx_fifo) < DTLSO_MAX_DGRAM) { tls_add_vpp_q_builtin_rx_evt (us); goto done; } read = SSL_read (oc->ssl, buf, vec_len (buf)); if (PREDICT_FALSE (read <= 0)) { if (read < 0) tls_add_vpp_q_builtin_rx_evt (us); goto done; } wrote += read; hdr.data_length = read; hdr.data_offset = 0; svm_fifo_seg_t segs[2] = { { (u8 *) &hdr, sizeof (hdr) }, { buf, read } }; rv = svm_fifo_enqueue_segments (app_session->rx_fifo, segs, 2, 0 /* allow partial */); ASSERT (rv > 0); } done: /* If handshake just completed, session may still be in accepting state */ if (app_session->session_state >= SESSION_STATE_READY) tls_notify_app_enqueue (ctx, app_session); return wrote; } static inline int openssl_ctx_read (tls_ctx_t *ctx, session_t *ts) { if (ctx->tls_type == TRANSPORT_PROTO_TLS) return openssl_ctx_read_tls (ctx, ts); else return openssl_ctx_read_dtls (ctx, ts); } static int openssl_ctx_init_client (tls_ctx_t * ctx) { long flags = SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_COMPRESSION; openssl_ctx_t *oc = (openssl_ctx_t *) ctx; openssl_main_t *om = &openssl_main; const SSL_METHOD *method; int rv, err; method = ctx->tls_type == TRANSPORT_PROTO_TLS ? SSLv23_client_method () : DTLS_client_method (); if (method == NULL) { TLS_DBG (1, "(D)TLS_method returned null"); return -1; } oc->ssl_ctx = SSL_CTX_new (method); if (oc->ssl_ctx == NULL) { TLS_DBG (1, "SSL_CTX_new returned null"); return -1; } SSL_CTX_set_ecdh_auto (oc->ssl_ctx, 1); SSL_CTX_set_mode (oc->ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE); #ifdef HAVE_OPENSSL_ASYNC if (om->async) SSL_CTX_set_mode (oc->ssl_ctx, SSL_MODE_ASYNC); #endif rv = SSL_CTX_set_cipher_list (oc->ssl_ctx, (const char *) om->ciphers); if (rv != 1) { TLS_DBG (1, "Couldn't set cipher"); return -1; } SSL_CTX_set_options (oc->ssl_ctx, flags); SSL_CTX_set_cert_store (oc->ssl_ctx, om->cert_store); oc->ssl = SSL_new (oc->ssl_ctx); if (oc->ssl == NULL) { TLS_DBG (1, "Couldn't initialize ssl struct"); return -1; } if (ctx->tls_type == TRANSPORT_PROTO_TLS) { oc->rbio = BIO_new_tls (ctx->tls_session_handle); oc->wbio = BIO_new_tls (ctx->tls_session_handle); } else { oc->rbio = BIO_new_dtls (ctx->tls_session_handle); oc->wbio = BIO_new_dtls (ctx->tls_session_handle); } SSL_set_bio (oc->ssl, oc->wbio, oc->rbio); SSL_set_connect_state (oc->ssl); rv = SSL_set_tlsext_host_name (oc->ssl, ctx->srv_hostname); if (rv != 1) { TLS_DBG (1, "Couldn't set hostname"); return -1; } /* * 2. Do the first steps in the handshake. */ TLS_DBG (1, "Initiating handshake for [%u]%u", ctx->c_thread_index, oc->openssl_ctx_index); #ifdef HAVE_OPENSSL_ASYNC session_t *tls_session = session_get_from_handle (ctx->tls_session_handle); vpp_tls_async_init_event (ctx, openssl_ctx_handshake_rx, tls_session); #endif while (1) { rv = SSL_do_handshake (oc->ssl); err = SSL_get_error (oc->ssl, rv); #ifdef HAVE_OPENSSL_ASYNC if (err == SSL_ERROR_WANT_ASYNC) { openssl_check_async_status (ctx, openssl_ctx_handshake_rx, tls_session); break; } #endif if (err != SSL_ERROR_WANT_WRITE) break; } TLS_DBG (2, "tls state for [%u]%u is su", ctx->c_thread_index, oc->openssl_ctx_index, SSL_state_string_long (oc->ssl)); return 0; } static int openssl_start_listen (tls_ctx_t * lctx) { const SSL_METHOD *method; SSL_CTX *ssl_ctx; int rv; BIO *cert_bio; X509 *srvcert; EVP_PKEY *pkey; u32 olc_index; openssl_listen_ctx_t *olc; app_cert_key_pair_t *ckpair; long flags = SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_COMPRESSION; openssl_main_t *om = &openssl_main; ckpair = app_cert_key_pair_get_if_valid (lctx->ckpair_index); if (!ckpair) return -1; if (!ckpair->cert || !ckpair->key) { TLS_DBG (1, "tls cert and/or key not configured %d", lctx->parent_app_wrk_index); return -1; } method = lctx->tls_type == TRANSPORT_PROTO_TLS ? SSLv23_server_method () : DTLS_server_method (); ssl_ctx = SSL_CTX_new (method); if (!ssl_ctx) { clib_warning ("Unable to create SSL context"); return -1; } SSL_CTX_set_mode (ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE); #ifdef HAVE_OPENSSL_ASYNC if (om->async) { SSL_CTX_set_mode (ssl_ctx, SSL_MODE_ASYNC); SSL_CTX_set_async_callback (ssl_ctx, tls_async_openssl_callback); } #endif SSL_CTX_set_options (ssl_ctx, flags); SSL_CTX_set_ecdh_auto (ssl_ctx, 1); rv = SSL_CTX_set_cipher_list (ssl_ctx, (const char *) om->ciphers); if (rv != 1) { TLS_DBG (1, "Couldn't set cipher"); return -1; } /* use the default OpenSSL built-in DH parameters */ rv = SSL_CTX_set_dh_auto (ssl_ctx, 1); if (rv != 1) { TLS_DBG (1, "Couldn't set temp DH parameters"); return -1; } /* * Set the key and cert */ cert_bio = BIO_new (BIO_s_mem ()); if (!cert_bio) { clib_warning ("unable to allocate memory"); return -1; } BIO_write (cert_bio, ckpair->cert, vec_len (ckpair->cert)); srvcert = PEM_read_bio_X509 (cert_bio, NULL, NULL, NULL); if (!srvcert) { clib_warning ("unable to parse certificate"); goto err; } rv = SSL_CTX_use_certificate (ssl_ctx, srvcert); if (rv != 1) { clib_warning ("unable to use SSL certificate"); goto err; } BIO_free (cert_bio); cert_bio = BIO_new (BIO_s_mem ()); if (!cert_bio) { clib_warning ("unable to allocate memory"); return -1; } BIO_write (cert_bio, ckpair->key, vec_len (ckpair->key)); pkey = PEM_read_bio_PrivateKey (cert_bio, NULL, NULL, NULL); if (!pkey) { clib_warning ("unable to parse pkey"); goto err; } rv = SSL_CTX_use_PrivateKey (ssl_ctx, pkey); if (rv != 1) { clib_warning ("unable to use SSL PrivateKey"); goto err; } BIO_free (cert_bio); olc_index = openssl_listen_ctx_alloc (); olc = openssl_lctx_get (olc_index); olc->ssl_ctx = ssl_ctx; olc->srvcert = srvcert; olc->pkey = pkey; /* store SSL_CTX into TLS level structure */ lctx->tls_ssl_ctx = olc_index; return 0; err: if (cert_bio) BIO_free (cert_bio); return -1; } static int openssl_stop_listen (tls_ctx_t * lctx) { u32 olc_index; openssl_listen_ctx_t *olc; olc_index = lctx->tls_ssl_ctx; olc = openssl_lctx_get (olc_index); X509_free (olc->srvcert); EVP_PKEY_free (olc->pkey); SSL_CTX_free (olc->ssl_ctx); openssl_listen_ctx_free (olc); return 0; } static int openssl_ctx_init_server (tls_ctx_t * ctx) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; u32 olc_index = ctx->tls_ssl_ctx; openssl_listen_ctx_t *olc; int rv, err; /* Start a new connection */ olc = openssl_lctx_get (olc_index); oc->ssl = SSL_new (olc->ssl_ctx); if (oc->ssl == NULL) { TLS_DBG (1, "Couldn't initialize ssl struct"); return -1; } if (ctx->tls_type == TRANSPORT_PROTO_TLS) { oc->rbio = BIO_new_tls (ctx->tls_session_handle); oc->wbio = BIO_new_tls (ctx->tls_session_handle); } else { oc->rbio = BIO_new_dtls (ctx->tls_session_handle); oc->wbio = BIO_new_dtls (ctx->tls_session_handle); } SSL_set_bio (oc->ssl, oc->wbio, oc->rbio); SSL_set_accept_state (oc->ssl); TLS_DBG (1, "Initiating handshake for [%u]%u", ctx->c_thread_index, oc->openssl_ctx_index); #ifdef HAVE_OPENSSL_ASYNC session_t *tls_session = session_get_from_handle (ctx->tls_session_handle); vpp_tls_async_init_event (ctx, openssl_ctx_handshake_rx, tls_session); #endif while (1) { rv = SSL_do_handshake (oc->ssl); err = SSL_get_error (oc->ssl, rv); #ifdef HAVE_OPENSSL_ASYNC if (err == SSL_ERROR_WANT_ASYNC) { openssl_check_async_status (ctx, openssl_ctx_handshake_rx, tls_session); break; } #endif if (err != SSL_ERROR_WANT_WRITE) break; } TLS_DBG (2, "tls state for [%u]%u is su", ctx->c_thread_index, oc->openssl_ctx_index, SSL_state_string_long (oc->ssl)); return 0; } static u8 openssl_handshake_is_over (tls_ctx_t * ctx) { openssl_ctx_t *mc = (openssl_ctx_t *) ctx; if (!mc->ssl) return 0; return SSL_is_init_finished (mc->ssl); } static int openssl_transport_close (tls_ctx_t * ctx) { #ifdef HAVE_OPENSSL_ASYNC if (vpp_openssl_is_inflight (ctx)) return 0; #endif if (!openssl_handshake_is_over (ctx)) { openssl_handle_handshake_failure (ctx); return 0; } session_transport_closing_notify (&ctx->connection); return 0; } static int openssl_app_close (tls_ctx_t * ctx) { openssl_ctx_t *oc = (openssl_ctx_t *) ctx; session_t *app_session; /* Wait for all data to be written to tcp */ app_session = session_get_from_handle (ctx->app_session_handle); if (BIO_ctrl_pending (oc->rbio) <= 0 && !svm_fifo_max_dequeue_cons (app_session->tx_fifo)) openssl_confirm_app_close (ctx); else ctx->app_closed = 1; return 0; } const static tls_engine_vft_t openssl_engine = { .ctx_alloc = openssl_ctx_alloc, .ctx_alloc_w_thread = openssl_ctx_alloc_w_thread, .ctx_free = openssl_ctx_free, .ctx_attach = openssl_ctx_attach, .ctx_detach = openssl_ctx_detach, .ctx_get = openssl_ctx_get, .ctx_get_w_thread = openssl_ctx_get_w_thread, .ctx_init_server = openssl_ctx_init_server, .ctx_init_client = openssl_ctx_init_client, .ctx_write = openssl_ctx_write, .ctx_read = openssl_ctx_read, .ctx_handshake_is_over = openssl_handshake_is_over, .ctx_start_listen = openssl_start_listen, .ctx_stop_listen = openssl_stop_listen, .ctx_transport_close = openssl_transport_close, .ctx_app_close = openssl_app_close, }; int tls_init_ca_chain (void) { openssl_main_t *om = &openssl_main; tls_main_t *tm = vnet_tls_get_main (); BIO *cert_bio; X509 *testcert; int rv; if (access (tm->ca_cert_path, F_OK | R_OK) == -1) { clib_warning ("Could not initialize TLS CA certificates"); return -1; } if (!(om->cert_store = X509_STORE_new ())) { clib_warning ("failed to create cert store"); return -1; } #if OPENSSL_VERSION_NUMBER >= 0x30000000L rv = X509_STORE_load_file (om->cert_store, tm->ca_cert_path); #else rv = X509_STORE_load_locations (om->cert_store, tm->ca_cert_path, 0); #endif if (rv < 0) { clib_warning ("failed to load ca certificate"); } if (tm->use_test_cert_in_ca) { cert_bio = BIO_new (BIO_s_mem ()); BIO_write (cert_bio, test_srv_crt_rsa, test_srv_crt_rsa_len); testcert = PEM_read_bio_X509 (cert_bio, NULL, NULL, NULL); if (!testcert) { clib_warning ("unable to parse certificate"); return -1; } X509_STORE_add_cert (om->cert_store, testcert); rv = 0; } return (rv < 0 ? -1 : 0); } int tls_openssl_set_ciphers (char *ciphers) { openssl_main_t *om = &openssl_main; int i; if (!ciphers) { return -1; } vec_validate (om->ciphers, strlen (ciphers) - 1); for (i = 0; i < vec_len (om->ciphers); i++) { om->ciphers[i] = toupper (ciphers[i]); } return 0; } static clib_error_t * tls_openssl_init (vlib_main_t * vm) { vlib_thread_main_t *vtm = vlib_get_thread_main (); openssl_main_t *om = &openssl_main; clib_error_t *error = 0; u32 num_threads, i; error = tls_openssl_api_init (vm); num_threads = 1 /* main thread */ + vtm->n_threads; SSL_library_init (); SSL_load_error_strings (); if (tls_init_ca_chain ()) { clib_warning ("failed to initialize TLS CA chain"); return 0; } vec_validate (om->ctx_pool, num_threads - 1); vec_validate (om->rx_bufs, num_threads - 1); vec_validate (om->tx_bufs, num_threads - 1); for (i = 0; i < num_threads; i++) { vec_validate (om->rx_bufs[i], DTLSO_MAX_DGRAM); vec_validate (om->tx_bufs[i], DTLSO_MAX_DGRAM); } tls_register_engine (&openssl_engine, CRYPTO_ENGINE_OPENSSL); om->engine_init = 0; /* default ciphers */ tls_openssl_set_ciphers ("ALL:!ADH:!LOW:!EXP:!MD5:!RC4-SHA:!DES-CBC3-SHA:@STRENGTH"); return error; } /* *INDENT-OFF* */ VLIB_INIT_FUNCTION (tls_openssl_init) = { .runs_after = VLIB_INITS("tls_init"), }; /* *INDENT-ON* */ #ifdef HAVE_OPENSSL_ASYNC static clib_error_t * tls_openssl_set_command_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { openssl_main_t *om = &openssl_main; char *engine_name = NULL; char *engine_alg = NULL; char *ciphers = NULL; u8 engine_name_set = 0; int i, async = 0; /* By present, it is not allowed to configure engine again after running */ if (om->engine_init) { clib_warning ("engine has started!\n"); return clib_error_return (0, "engine has started, and no config is accepted"); } while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) { if (unformat (input, "engine %s", &engine_name)) { engine_name_set = 1; } else if (unformat (input, "async")) { async = 1; } else if (unformat (input, "alg %s", &engine_alg)) { for (i = 0; i < strnlen (engine_alg, MAX_CRYPTO_LEN); i++) engine_alg[i] = toupper (engine_alg[i]); } else if (unformat (input, "ciphers %s", &ciphers)) { tls_openssl_set_ciphers (ciphers); } else return clib_error_return (0, "failed: unknown input `%U'", format_unformat_error, input); } /* reset parameters if engine is not configured */ if (!engine_name_set) { clib_warning ("No engine provided! \n"); async = 0; } else { vnet_session_enable_disable (vm, 1); if (openssl_engine_register (engine_name, engine_alg, async) < 0) { return clib_error_return (0, "Failed to register %s polling", engine_name); } else { vlib_cli_output (vm, "Successfully register engine %s\n", engine_name); } } om->async = async; return 0; } /* *INDENT-OFF* */ VLIB_CLI_COMMAND (tls_openssl_set_command, static) = { .path = "tls openssl set", .short_help = "tls openssl set [engine ] [alg [algorithm] [async]", .function = tls_openssl_set_command_fn, }; /* *INDENT-ON* */ #endif /* *INDENT-OFF* */ VLIB_PLUGIN_REGISTER () = { .version = VPP_BUILD_VER, .description = "Transport Layer Security (TLS) Engine, OpenSSL Based", }; /* *INDENT-ON* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */