/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * node_funcs.h: processing nodes global functions/inlines * * Copyright (c) 2008 Eliot Dresselhaus * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** \file vlib node functions */ #ifndef included_vlib_node_funcs_h #define included_vlib_node_funcs_h #include <vppinfra/fifo.h> #include <vppinfra/tw_timer_1t_3w_1024sl_ov.h> #include <vppinfra/interrupt.h> #ifdef CLIB_SANITIZE_ADDR #include <sanitizer/asan_interface.h> #endif static_always_inline void vlib_process_start_switch_stack (vlib_main_t * vm, vlib_process_t * p) { #ifdef CLIB_SANITIZE_ADDR void *stack = p ? (void *) p->stack : vlib_thread_stacks[vm->thread_index]; u32 stack_bytes = p ? p->log2_n_stack_bytes : VLIB_THREAD_STACK_SIZE; __sanitizer_start_switch_fiber (&vm->asan_stack_save, stack, stack_bytes); #endif } static_always_inline void vlib_process_finish_switch_stack (vlib_main_t * vm) { #ifdef CLIB_SANITIZE_ADDR const void *bottom_old; size_t size_old; __sanitizer_finish_switch_fiber (&vm->asan_stack_save, &bottom_old, &size_old); #endif } /** \brief Get vlib node by index. @warning This function will ASSERT if @c i is out of range. @param vm vlib_main_t pointer, varies by thread @param i node index. @return pointer to the requested vlib_node_t. */ always_inline vlib_node_t * vlib_get_node (vlib_main_t * vm, u32 i) { return vec_elt (vm->node_main.nodes, i); } /** \brief Get vlib node by graph arc (next) index. @param vm vlib_main_t pointer, varies by thread @param node_index index of original node @param next_index graph arc index @return pointer to the vlib_node_t at the end of the indicated arc */ always_inline vlib_node_t * vlib_get_next_node (vlib_main_t * vm, u32 node_index, u32 next_index) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n; n = vec_elt (nm->nodes, node_index); ASSERT (next_index < vec_len (n->next_nodes)); return vlib_get_node (vm, n->next_nodes[next_index]); } /** \brief Get node runtime by node index. @param vm vlib_main_t pointer, varies by thread @param node_index index of node @return pointer to the indicated vlib_node_runtime_t */ always_inline vlib_node_runtime_t * vlib_node_get_runtime (vlib_main_t * vm, u32 node_index) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vec_elt (nm->nodes, node_index); vlib_process_t *p; if (n->type != VLIB_NODE_TYPE_PROCESS) return vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index); else { p = vec_elt (nm->processes, n->runtime_index); return &p->node_runtime; } } /** \brief Get node runtime private data by node index. @param vm vlib_main_t pointer, varies by thread @param node_index index of the node @return pointer to the indicated vlib_node_runtime_t private data */ always_inline void * vlib_node_get_runtime_data (vlib_main_t * vm, u32 node_index) { vlib_node_runtime_t *r = vlib_node_get_runtime (vm, node_index); return r->runtime_data; } /** \brief Set node runtime private data. @param vm vlib_main_t pointer, varies by thread @param node_index index of the node @param runtime_data arbitrary runtime private data @param n_runtime_data_bytes size of runtime private data */ always_inline void vlib_node_set_runtime_data (vlib_main_t * vm, u32 node_index, void *runtime_data, u32 n_runtime_data_bytes) { vlib_node_t *n = vlib_get_node (vm, node_index); vlib_node_runtime_t *r = vlib_node_get_runtime (vm, node_index); n->runtime_data_bytes = n_runtime_data_bytes; vec_free (n->runtime_data); vec_add (n->runtime_data, runtime_data, n_runtime_data_bytes); ASSERT (vec_len (n->runtime_data) <= sizeof (vlib_node_runtime_t) - STRUCT_OFFSET_OF (vlib_node_runtime_t, runtime_data)); if (vec_len (n->runtime_data) > 0) clib_memcpy_fast (r->runtime_data, n->runtime_data, vec_len (n->runtime_data)); } /** \brief Set node dispatch state. @param vm vlib_main_t pointer, varies by thread @param node_index index of the node @param new_state new state for node, see vlib_node_state_t */ always_inline void vlib_node_set_state (vlib_main_t * vm, u32 node_index, vlib_node_state_t new_state) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n; vlib_node_runtime_t *r; n = vec_elt (nm->nodes, node_index); if (n->type == VLIB_NODE_TYPE_PROCESS) { vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); r = &p->node_runtime; /* When disabling make sure flags are cleared. */ p->flags &= ~(VLIB_PROCESS_RESUME_PENDING | VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK | VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT); } else r = vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index); ASSERT (new_state < VLIB_N_NODE_STATE); if (n->type == VLIB_NODE_TYPE_INPUT) { ASSERT (nm->input_node_counts_by_state[n->state] > 0); nm->input_node_counts_by_state[n->state] -= 1; nm->input_node_counts_by_state[new_state] += 1; } if (PREDICT_FALSE (r->state == VLIB_NODE_STATE_DISABLED)) vlib_node_runtime_perf_counter (vm, r, 0, 0, 0, VLIB_NODE_RUNTIME_PERF_RESET); n->state = new_state; r->state = new_state; } /** \brief Get node dispatch state. @param vm vlib_main_t pointer, varies by thread @param node_index index of the node @return state for node, see vlib_node_state_t */ always_inline vlib_node_state_t vlib_node_get_state (vlib_main_t * vm, u32 node_index) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n; n = vec_elt (nm->nodes, node_index); return n->state; } always_inline void vlib_node_set_flag (vlib_main_t *vm, u32 node_index, u16 flag, u8 enable) { vlib_node_runtime_t *r; vlib_node_t *n; n = vlib_get_node (vm, node_index); r = vlib_node_get_runtime (vm, node_index); if (enable) { n->flags |= flag; r->flags |= flag; } else { n->flags &= ~flag; r->flags &= ~flag; } } always_inline void vlib_node_set_interrupt_pending (vlib_main_t *vm, u32 node_index) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vec_elt (nm->nodes, node_index); ASSERT (n->type == VLIB_NODE_TYPE_INPUT); if (vm != vlib_get_main ()) clib_interrupt_set_atomic (nm->interrupts, n->runtime_index); else clib_interrupt_set (nm->interrupts, n->runtime_index); __atomic_store_n (nm->pending_interrupts, 1, __ATOMIC_RELEASE); } always_inline vlib_process_t * vlib_get_process_from_node (vlib_main_t * vm, vlib_node_t * node) { vlib_node_main_t *nm = &vm->node_main; ASSERT (node->type == VLIB_NODE_TYPE_PROCESS); return vec_elt (nm->processes, node->runtime_index); } always_inline vlib_frame_t * vlib_get_frame (vlib_main_t * vm, vlib_frame_t * f) { ASSERT (f != NULL); ASSERT (f->frame_flags & VLIB_FRAME_IS_ALLOCATED); return f; } always_inline void vlib_frame_no_append (vlib_frame_t * f) { f->frame_flags |= VLIB_FRAME_NO_APPEND; } /** \brief Get pointer to frame vector data. @param f vlib_frame_t pointer @return pointer to first vector element in frame */ always_inline void * vlib_frame_vector_args (vlib_frame_t * f) { ASSERT (f->vector_offset); return (void *) f + f->vector_offset; } /** \brief Get pointer to frame vector aux data. @param f vlib_frame_t pointer @return pointer to first vector aux data element in frame */ always_inline void * vlib_frame_aux_args (vlib_frame_t *f) { ASSERT (f->aux_offset); return (void *) f + f->aux_offset; } /** \brief Get pointer to frame scalar data. @param f vlib_frame_t pointer @return arbitrary node scalar data @sa vlib_frame_vector_args */ always_inline void * vlib_frame_scalar_args (vlib_frame_t * f) { ASSERT (f->scalar_offset); return (void *) f + f->scalar_offset; } always_inline vlib_next_frame_t * vlib_node_runtime_get_next_frame (vlib_main_t * vm, vlib_node_runtime_t * n, u32 next_index) { vlib_node_main_t *nm = &vm->node_main; vlib_next_frame_t *nf; ASSERT (next_index < n->n_next_nodes); nf = vec_elt_at_index (nm->next_frames, n->next_frame_index + next_index); if (CLIB_DEBUG > 0) { vlib_node_t *node, *next; node = vec_elt (nm->nodes, n->node_index); next = vec_elt (nm->nodes, node->next_nodes[next_index]); ASSERT (nf->node_runtime_index == next->runtime_index); } return nf; } /** \brief Get pointer to frame by (@c node_index, @c next_index). @warning This is not a function that you should call directly. See @ref vlib_get_next_frame instead. @param vm vlib_main_t pointer, varies by thread @param node_index index of the node @param next_index graph arc index @return pointer to the requested vlib_next_frame_t @sa vlib_get_next_frame */ always_inline vlib_next_frame_t * vlib_node_get_next_frame (vlib_main_t * vm, u32 node_index, u32 next_index) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n; vlib_node_runtime_t *r; n = vec_elt (nm->nodes, node_index); r = vec_elt_at_index (nm->nodes_by_type[n->type], n->runtime_index); return vlib_node_runtime_get_next_frame (vm, r, next_index); } vlib_frame_t *vlib_get_next_frame_internal (vlib_main_t * vm, vlib_node_runtime_t * node, u32 next_index, u32 alloc_new_frame); #define vlib_get_next_frame_macro(vm, node, next_index, vectors, \ n_vectors_left, alloc_new_frame) \ do \ { \ vlib_frame_t *_f = vlib_get_next_frame_internal ( \ (vm), (node), (next_index), (alloc_new_frame)); \ u32 _n = _f->n_vectors; \ (vectors) = vlib_frame_vector_args (_f) + _n * sizeof ((vectors)[0]); \ (n_vectors_left) = VLIB_FRAME_SIZE - _n; \ } \ while (0) #define vlib_get_next_frame_macro_with_aux(vm, node, next_index, vectors, \ n_vectors_left, alloc_new_frame, \ aux_data, maybe_no_aux) \ do \ { \ vlib_frame_t *_f = vlib_get_next_frame_internal ( \ (vm), (node), (next_index), (alloc_new_frame)); \ u32 _n = _f->n_vectors; \ (vectors) = vlib_frame_vector_args (_f) + _n * sizeof ((vectors)[0]); \ if ((maybe_no_aux) && (_f)->aux_offset == 0) \ (aux_data) = NULL; \ else \ (aux_data) = vlib_frame_aux_args (_f) + _n * sizeof ((aux_data)[0]); \ (n_vectors_left) = VLIB_FRAME_SIZE - _n; \ } \ while (0) /** \brief Get pointer to next frame vector data by (@c vlib_node_runtime_t, @c next_index). Standard single/dual loop boilerplate element. @attention This is a MACRO, with SIDE EFFECTS. @param vm vlib_main_t pointer, varies by thread @param node current node vlib_node_runtime_t pointer @param next_index requested graph arc index @return @c vectors -- pointer to next available vector slot @return @c n_vectors_left -- number of vector slots available */ #define vlib_get_next_frame(vm, node, next_index, vectors, n_vectors_left) \ vlib_get_next_frame_macro (vm, node, next_index, vectors, n_vectors_left, \ /* alloc new frame */ 0) #define vlib_get_new_next_frame(vm, node, next_index, vectors, \ n_vectors_left) \ vlib_get_next_frame_macro (vm, node, next_index, vectors, n_vectors_left, \ /* alloc new frame */ 1) /** \brief Get pointer to next frame vector data and next frame aux data by (@c vlib_node_runtime_t, @c next_index). Standard single/dual loop boilerplate element. @attention This is a MACRO, with SIDE EFFECTS. @attention This MACRO is unsafe in case the next node does not support aux_data @param vm vlib_main_t pointer, varies by thread @param node current node vlib_node_runtime_t pointer @param next_index requested graph arc index @return @c vectors -- pointer to next available vector slot @return @c aux_data -- pointer to next available aux data slot @return @c n_vectors_left -- number of vector slots available */ #define vlib_get_next_frame_with_aux(vm, node, next_index, vectors, aux_data, \ n_vectors_left) \ vlib_get_next_frame_macro_with_aux ( \ vm, node, next_index, vectors, n_vectors_left, /* alloc new frame */ 0, \ aux_data, /* maybe_no_aux */ 0) #define vlib_get_new_next_frame_with_aux(vm, node, next_index, vectors, \ aux_data, n_vectors_left) \ vlib_get_next_frame_macro_with_aux ( \ vm, node, next_index, vectors, n_vectors_left, /* alloc new frame */ 1, \ aux_data, /* maybe_no_aux */ 0) /** \brief Get pointer to next frame vector data and next frame aux data by (@c vlib_node_runtime_t, @c next_index). Standard single/dual loop boilerplate element. @attention This is a MACRO, with SIDE EFFECTS. @attention This MACRO is safe in case the next node does not support aux_data. In that case aux_data is set to NULL. @param vm vlib_main_t pointer, varies by thread @param node current node vlib_node_runtime_t pointer @param next_index requested graph arc index @return @c vectors -- pointer to next available vector slot @return @c aux_data -- pointer to next available aux data slot @return @c n_vectors_left -- number of vector slots available */ #define vlib_get_next_frame_with_aux_safe(vm, node, next_index, vectors, \ aux_data, n_vectors_left) \ vlib_get_next_frame_macro_with_aux ( \ vm, node, next_index, vectors, n_vectors_left, /* alloc new frame */ 0, \ aux_data, /* maybe_no_aux */ 1) #define vlib_get_new_next_frame_with_aux_safe(vm, node, next_index, vectors, \ aux_data, n_vectors_left) \ vlib_get_next_frame_macro_with_aux ( \ vm, node, next_index, vectors, n_vectors_left, /* alloc new frame */ 1, \ aux_data, /* maybe_no_aux */ 1) /** \brief Release pointer to next frame vector data. Standard single/dual loop boilerplate element. @param vm vlib_main_t pointer, varies by thread @param r current node vlib_node_runtime_t pointer @param next_index graph arc index @param n_packets_left number of slots still available in vector */ void vlib_put_next_frame (vlib_main_t * vm, vlib_node_runtime_t * r, u32 next_index, u32 n_packets_left); /* Combination get plus put. Returns vector argument just added. */ #define vlib_set_next_frame(vm,node,next_index,v) \ ({ \ uword _n_left; \ vlib_get_next_frame ((vm), (node), (next_index), (v), _n_left); \ ASSERT (_n_left > 0); \ vlib_put_next_frame ((vm), (node), (next_index), _n_left - 1); \ (v); \ }) #define vlib_set_next_frame_with_aux_safe(vm, node, next_index, v, aux) \ ({ \ uword _n_left; \ vlib_get_next_frame_with_aux_safe ((vm), (node), (next_index), (v), \ (aux), _n_left); \ ASSERT (_n_left > 0); \ vlib_put_next_frame ((vm), (node), (next_index), _n_left - 1); \ (v); \ }) always_inline void vlib_set_next_frame_buffer (vlib_main_t * vm, vlib_node_runtime_t * node, u32 next_index, u32 buffer_index) { u32 *p; p = vlib_set_next_frame (vm, node, next_index, p); p[0] = buffer_index; } always_inline void vlib_set_next_frame_buffer_with_aux_safe (vlib_main_t *vm, vlib_node_runtime_t *node, u32 next_index, u32 buffer_index, u32 aux) { u32 *p; u32 *a; p = vlib_set_next_frame_with_aux_safe (vm, node, next_index, p, a); p[0] = buffer_index; if (a) a[0] = aux; } vlib_frame_t *vlib_get_frame_to_node (vlib_main_t * vm, u32 to_node_index); void vlib_put_frame_to_node (vlib_main_t * vm, u32 to_node_index, vlib_frame_t * f); always_inline uword vlib_in_process_context (vlib_main_t * vm) { return vm->node_main.current_process_index != ~0; } always_inline vlib_process_t * vlib_get_current_process (vlib_main_t * vm) { vlib_node_main_t *nm = &vm->node_main; if (vlib_in_process_context (vm)) return vec_elt (nm->processes, nm->current_process_index); return 0; } always_inline uword vlib_current_process (vlib_main_t * vm) { return vlib_get_current_process (vm)->node_runtime.node_index; } always_inline u32 vlib_get_current_process_node_index (vlib_main_t * vm) { vlib_process_t *process = vlib_get_current_process (vm); return process->node_runtime.node_index; } /** Returns TRUE if a process suspend time is less than 10us @param dt - remaining poll time in seconds @returns 1 if dt < 10e-6, 0 otherwise */ always_inline uword vlib_process_suspend_time_is_zero (f64 dt) { return dt < 10e-6; } /** Suspend a vlib cooperative multi-tasking thread for a period of time @param vm - vlib_main_t * @param dt - suspend interval in seconds @returns VLIB_PROCESS_RESUME_LONGJMP_RESUME, routinely ignored */ always_inline uword vlib_process_suspend (vlib_main_t * vm, f64 dt) { uword r; vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p = vec_elt (nm->processes, nm->current_process_index); if (vlib_process_suspend_time_is_zero (dt)) return VLIB_PROCESS_RESUME_LONGJMP_RESUME; p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK; r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND); if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND) { /* expiration time in 10us ticks */ p->resume_clock_interval = dt * 1e5; vlib_process_start_switch_stack (vm, 0); clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND); } else vlib_process_finish_switch_stack (vm); return r; } always_inline void vlib_process_free_event_type (vlib_process_t * p, uword t, uword is_one_time_event) { ASSERT (!pool_is_free_index (p->event_type_pool, t)); pool_put_index (p->event_type_pool, t); if (is_one_time_event) p->one_time_event_type_bitmap = clib_bitmap_andnoti (p->one_time_event_type_bitmap, t); } always_inline void vlib_process_maybe_free_event_type (vlib_process_t * p, uword t) { ASSERT (!pool_is_free_index (p->event_type_pool, t)); if (clib_bitmap_get (p->one_time_event_type_bitmap, t)) vlib_process_free_event_type (p, t, /* is_one_time_event */ 1); } always_inline void * vlib_process_get_event_data (vlib_main_t * vm, uword * return_event_type_opaque) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; vlib_process_event_type_t *et; uword t; void *event_data_vector; p = vec_elt (nm->processes, nm->current_process_index); /* Find first type with events ready. Return invalid type when there's nothing there. */ t = clib_bitmap_first_set (p->non_empty_event_type_bitmap); if (t == ~0) return 0; p->non_empty_event_type_bitmap = clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t); ASSERT (_vec_len (p->pending_event_data_by_type_index[t]) > 0); event_data_vector = p->pending_event_data_by_type_index[t]; p->pending_event_data_by_type_index[t] = 0; et = pool_elt_at_index (p->event_type_pool, t); /* Return user's opaque value and possibly index. */ *return_event_type_opaque = et->opaque; vlib_process_maybe_free_event_type (p, t); return event_data_vector; } /* Return event data vector for later reuse. We reuse event data to avoid repeatedly allocating event vectors in cases where we care about speed. */ always_inline void vlib_process_put_event_data (vlib_main_t * vm, void *event_data) { vlib_node_main_t *nm = &vm->node_main; vec_add1 (nm->recycled_event_data_vectors, event_data); } /** Return the first event type which has occurred and a vector of per-event data of that type, or a timeout indication @param vm - vlib_main_t pointer @param data_vector - pointer to a (uword *) vector to receive event data @returns either an event type and a vector of per-event instance data, or ~0 to indicate a timeout. */ always_inline uword vlib_process_get_events (vlib_main_t * vm, uword ** data_vector) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; vlib_process_event_type_t *et; uword r, t, l; p = vec_elt (nm->processes, nm->current_process_index); /* Find first type with events ready. Return invalid type when there's nothing there. */ t = clib_bitmap_first_set (p->non_empty_event_type_bitmap); if (t == ~0) return t; p->non_empty_event_type_bitmap = clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t); l = _vec_len (p->pending_event_data_by_type_index[t]); if (data_vector) vec_add (*data_vector, p->pending_event_data_by_type_index[t], l); vec_set_len (p->pending_event_data_by_type_index[t], 0); et = pool_elt_at_index (p->event_type_pool, t); /* Return user's opaque value. */ r = et->opaque; vlib_process_maybe_free_event_type (p, t); return r; } always_inline uword vlib_process_get_events_helper (vlib_process_t * p, uword t, uword ** data_vector) { uword l; p->non_empty_event_type_bitmap = clib_bitmap_andnoti (p->non_empty_event_type_bitmap, t); l = _vec_len (p->pending_event_data_by_type_index[t]); if (data_vector) vec_add (*data_vector, p->pending_event_data_by_type_index[t], l); vec_set_len (p->pending_event_data_by_type_index[t], 0); vlib_process_maybe_free_event_type (p, t); return l; } /* As above but query as specified type of event. Returns number of events found. */ always_inline uword vlib_process_get_events_with_type (vlib_main_t * vm, uword ** data_vector, uword with_type_opaque) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; uword t, *h; p = vec_elt (nm->processes, nm->current_process_index); h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque); if (!h) /* This can happen when an event has not yet been signaled with given opaque type. */ return 0; t = h[0]; if (!clib_bitmap_get (p->non_empty_event_type_bitmap, t)) return 0; return vlib_process_get_events_helper (p, t, data_vector); } always_inline uword * vlib_process_wait_for_event (vlib_main_t * vm) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; uword r; p = vec_elt (nm->processes, nm->current_process_index); if (clib_bitmap_is_zero (p->non_empty_event_type_bitmap)) { p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT; r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND); if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND) { vlib_process_start_switch_stack (vm, 0); clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND); } else vlib_process_finish_switch_stack (vm); } return p->non_empty_event_type_bitmap; } always_inline uword vlib_process_wait_for_one_time_event (vlib_main_t * vm, uword ** data_vector, uword with_type_index) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; uword r; p = vec_elt (nm->processes, nm->current_process_index); ASSERT (!pool_is_free_index (p->event_type_pool, with_type_index)); while (!clib_bitmap_get (p->non_empty_event_type_bitmap, with_type_index)) { p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT; r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND); if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND) { vlib_process_start_switch_stack (vm, 0); clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND); } else vlib_process_finish_switch_stack (vm); } return vlib_process_get_events_helper (p, with_type_index, data_vector); } always_inline uword vlib_process_wait_for_event_with_type (vlib_main_t * vm, uword ** data_vector, uword with_type_opaque) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; uword r, *h; p = vec_elt (nm->processes, nm->current_process_index); h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque); while (!h || !clib_bitmap_get (p->non_empty_event_type_bitmap, h[0])) { p->flags |= VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT; r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND); if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND) { vlib_process_start_switch_stack (vm, 0); clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND); } else vlib_process_finish_switch_stack (vm); /* See if unknown event type has been signaled now. */ if (!h) h = hash_get (p->event_type_index_by_type_opaque, with_type_opaque); } return vlib_process_get_events_helper (p, h[0], data_vector); } /** Suspend a cooperative multi-tasking thread Waits for an event, or for the indicated number of seconds to elapse @param vm - vlib_main_t pointer @param dt - timeout, in seconds. @returns the remaining time interval */ always_inline f64 vlib_process_wait_for_event_or_clock (vlib_main_t * vm, f64 dt) { vlib_node_main_t *nm = &vm->node_main; vlib_process_t *p; f64 wakeup_time; uword r; p = vec_elt (nm->processes, nm->current_process_index); if (vlib_process_suspend_time_is_zero (dt) || !clib_bitmap_is_zero (p->non_empty_event_type_bitmap)) return dt; wakeup_time = vlib_time_now (vm) + dt; /* Suspend waiting for both clock and event to occur. */ p->flags |= (VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT | VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK); r = clib_setjmp (&p->resume_longjmp, VLIB_PROCESS_RESUME_LONGJMP_SUSPEND); if (r == VLIB_PROCESS_RESUME_LONGJMP_SUSPEND) { p->resume_clock_interval = dt * 1e5; vlib_process_start_switch_stack (vm, 0); clib_longjmp (&p->return_longjmp, VLIB_PROCESS_RETURN_LONGJMP_SUSPEND); } else vlib_process_finish_switch_stack (vm); /* Return amount of time still left to sleep. If <= 0 then we've been waken up by the clock (and not an event). */ return wakeup_time - vlib_time_now (vm); } always_inline vlib_process_event_type_t * vlib_process_new_event_type (vlib_process_t * p, uword with_type_opaque) { vlib_process_event_type_t *et; pool_get (p->event_type_pool, et); et->opaque = with_type_opaque; return et; } always_inline uword vlib_process_create_one_time_event (vlib_main_t * vm, uword node_index, uword with_type_opaque) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vlib_get_node (vm, node_index); vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); vlib_process_event_type_t *et; uword t; et = vlib_process_new_event_type (p, with_type_opaque); t = et - p->event_type_pool; p->one_time_event_type_bitmap = clib_bitmap_ori (p->one_time_event_type_bitmap, t); return t; } always_inline void vlib_process_delete_one_time_event (vlib_main_t * vm, uword node_index, uword t) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vlib_get_node (vm, node_index); vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); ASSERT (clib_bitmap_get (p->one_time_event_type_bitmap, t)); vlib_process_free_event_type (p, t, /* is_one_time_event */ 1); } always_inline void * vlib_process_signal_event_helper (vlib_node_main_t * nm, vlib_node_t * n, vlib_process_t * p, uword t, uword n_data_elts, uword n_data_elt_bytes) { uword p_flags, add_to_pending, delete_from_wheel; u8 *data_to_be_written_by_caller; vec_attr_t va = { .elt_sz = n_data_elt_bytes }; ASSERT (n->type == VLIB_NODE_TYPE_PROCESS); ASSERT (!pool_is_free_index (p->event_type_pool, t)); vec_validate (p->pending_event_data_by_type_index, t); /* Resize data vector and return caller's data to be written. */ { u8 *data_vec = p->pending_event_data_by_type_index[t]; uword l; if (!data_vec && vec_len (nm->recycled_event_data_vectors)) { data_vec = vec_pop (nm->recycled_event_data_vectors); vec_reset_length (data_vec); } l = vec_len (data_vec); data_vec = _vec_realloc_internal (data_vec, l + n_data_elts, &va); p->pending_event_data_by_type_index[t] = data_vec; data_to_be_written_by_caller = data_vec + l * n_data_elt_bytes; } p->non_empty_event_type_bitmap = clib_bitmap_ori (p->non_empty_event_type_bitmap, t); p_flags = p->flags; /* Event was already signalled? */ add_to_pending = (p_flags & VLIB_PROCESS_RESUME_PENDING) == 0; /* Process will resume when suspend time elapses? */ delete_from_wheel = 0; if (p_flags & VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_CLOCK) { /* Waiting for both event and clock? */ if (p_flags & VLIB_PROCESS_IS_SUSPENDED_WAITING_FOR_EVENT) { if (!TW (tw_timer_handle_is_free) ((TWT (tw_timer_wheel) *) nm->timing_wheel, p->stop_timer_handle)) delete_from_wheel = 1; else /* timer just popped so process should already be on the list */ add_to_pending = 0; } else /* Waiting only for clock. Event will be queue and may be handled when timer expires. */ add_to_pending = 0; } /* Never add current process to pending vector since current process is already running. */ add_to_pending &= nm->current_process_index != n->runtime_index; if (add_to_pending) { u32 x = vlib_timing_wheel_data_set_suspended_process (n->runtime_index); p->flags = p_flags | VLIB_PROCESS_RESUME_PENDING; vec_add1 (nm->data_from_advancing_timing_wheel, x); if (delete_from_wheel) TW (tw_timer_stop) ((TWT (tw_timer_wheel) *) nm->timing_wheel, p->stop_timer_handle); } return data_to_be_written_by_caller; } always_inline void * vlib_process_signal_event_data (vlib_main_t * vm, uword node_index, uword type_opaque, uword n_data_elts, uword n_data_elt_bytes) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vlib_get_node (vm, node_index); vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); uword *h, t; /* Must be in main thread */ ASSERT (vlib_get_thread_index () == 0); h = hash_get (p->event_type_index_by_type_opaque, type_opaque); if (!h) { vlib_process_event_type_t *et = vlib_process_new_event_type (p, type_opaque); t = et - p->event_type_pool; hash_set (p->event_type_index_by_type_opaque, type_opaque, t); } else t = h[0]; return vlib_process_signal_event_helper (nm, n, p, t, n_data_elts, n_data_elt_bytes); } always_inline void * vlib_process_signal_event_at_time (vlib_main_t * vm, f64 dt, uword node_index, uword type_opaque, uword n_data_elts, uword n_data_elt_bytes) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vlib_get_node (vm, node_index); vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); uword *h, t; h = hash_get (p->event_type_index_by_type_opaque, type_opaque); if (!h) { vlib_process_event_type_t *et = vlib_process_new_event_type (p, type_opaque); t = et - p->event_type_pool; hash_set (p->event_type_index_by_type_opaque, type_opaque, t); } else t = h[0]; if (vlib_process_suspend_time_is_zero (dt)) return vlib_process_signal_event_helper (nm, n, p, t, n_data_elts, n_data_elt_bytes); else { vlib_signal_timed_event_data_t *te; pool_get_aligned (nm->signal_timed_event_data_pool, te, sizeof (te[0])); te->n_data_elts = n_data_elts; te->n_data_elt_bytes = n_data_elt_bytes; te->n_data_bytes = n_data_elts * n_data_elt_bytes; /* Assert that structure fields are big enough. */ ASSERT (te->n_data_elts == n_data_elts); ASSERT (te->n_data_elt_bytes == n_data_elt_bytes); ASSERT (te->n_data_bytes == n_data_elts * n_data_elt_bytes); te->process_node_index = n->runtime_index; te->event_type_index = t; p->stop_timer_handle = TW (tw_timer_start) ((TWT (tw_timer_wheel) *) nm->timing_wheel, vlib_timing_wheel_data_set_timed_event (te - nm->signal_timed_event_data_pool), 0 /* timer_id */ , (vlib_time_now (vm) + dt) * 1e5); /* Inline data big enough to hold event? */ if (te->n_data_bytes < sizeof (te->inline_event_data)) return te->inline_event_data; else { te->event_data_as_vector = 0; vec_resize (te->event_data_as_vector, te->n_data_bytes); return te->event_data_as_vector; } } } always_inline void * vlib_process_signal_one_time_event_data (vlib_main_t * vm, uword node_index, uword type_index, uword n_data_elts, uword n_data_elt_bytes) { vlib_node_main_t *nm = &vm->node_main; vlib_node_t *n = vlib_get_node (vm, node_index); vlib_process_t *p = vec_elt (nm->processes, n->runtime_index); return vlib_process_signal_event_helper (nm, n, p, type_index, n_data_elts, n_data_elt_bytes); } always_inline void vlib_process_signal_event (vlib_main_t * vm, uword node_index, uword type_opaque, uword data) { uword *d = vlib_process_signal_event_data (vm, node_index, type_opaque, 1 /* elts */ , sizeof (uword)); d[0] = data; } always_inline void vlib_process_signal_event_pointer (vlib_main_t * vm, uword node_index, uword type_opaque, void *data) { void **d = vlib_process_signal_event_data (vm, node_index, type_opaque, 1 /* elts */ , sizeof (data)); d[0] = data; } /** * Signal event to process from any thread. * * When in doubt, use this. */ always_inline void vlib_process_signal_event_mt (vlib_main_t * vm, uword node_index, uword type_opaque, uword data) { if (vlib_get_thread_index () != 0) { vlib_process_signal_event_mt_args_t args = { .node_index = node_index, .type_opaque = type_opaque, .data = data, }; vlib_rpc_call_main_thread (vlib_process_signal_event_mt_helper, (u8 *) & args, sizeof (args)); } else vlib_process_signal_event (vm, node_index, type_opaque, data); } always_inline void vlib_process_signal_one_time_event (vlib_main_t * vm, uword node_index, uword type_index, uword data) { uword *d = vlib_process_signal_one_time_event_data (vm, node_index, type_index, 1 /* elts */ , sizeof (uword)); d[0] = data; } always_inline void vlib_signal_one_time_waiting_process (vlib_main_t * vm, vlib_one_time_waiting_process_t * p) { vlib_process_signal_one_time_event (vm, p->node_index, p->one_time_event, /* data */ ~0); clib_memset (p, ~0, sizeof (p[0])); } always_inline void vlib_signal_one_time_waiting_process_vector (vlib_main_t * vm, vlib_one_time_waiting_process_t ** wps) { vlib_one_time_waiting_process_t *wp; vec_foreach (wp, *wps) vlib_signal_one_time_waiting_process (vm, wp); vec_free (*wps); } always_inline void vlib_current_process_wait_for_one_time_event (vlib_main_t * vm, vlib_one_time_waiting_process_t * p) { p->node_index = vlib_current_process (vm); p->one_time_event = vlib_process_create_one_time_event (vm, p->node_index, /* type opaque */ ~0); vlib_process_wait_for_one_time_event (vm, /* don't care about data */ 0, p->one_time_event); } always_inline void vlib_current_process_wait_for_one_time_event_vector (vlib_main_t * vm, vlib_one_time_waiting_process_t ** wps) { vlib_one_time_waiting_process_t *wp; vec_add2 (*wps, wp, 1); vlib_current_process_wait_for_one_time_event (vm, wp); } always_inline u32 vlib_node_runtime_update_main_loop_vector_stats (vlib_main_t * vm, vlib_node_runtime_t * node, uword n_vectors) { u32 i, d, vi0, vi1; u32 i0, i1; ASSERT (is_pow2 (ARRAY_LEN (node->main_loop_vector_stats))); i = ((vm->main_loop_count >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE) & (ARRAY_LEN (node->main_loop_vector_stats) - 1)); i0 = i ^ 0; i1 = i ^ 1; d = ((vm->main_loop_count >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE) - (node->main_loop_count_last_dispatch >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE)); vi0 = node->main_loop_vector_stats[i0]; vi1 = node->main_loop_vector_stats[i1]; vi0 = d == 0 ? vi0 : 0; vi1 = d <= 1 ? vi1 : 0; vi0 += n_vectors; node->main_loop_vector_stats[i0] = vi0; node->main_loop_vector_stats[i1] = vi1; node->main_loop_count_last_dispatch = vm->main_loop_count; /* Return previous counter. */ return node->main_loop_vector_stats[i1]; } always_inline f64 vlib_node_vectors_per_main_loop_as_float (vlib_main_t * vm, u32 node_index) { vlib_node_runtime_t *rt = vlib_node_get_runtime (vm, node_index); u32 v; v = vlib_node_runtime_update_main_loop_vector_stats (vm, rt, /* n_vectors */ 0); return (f64) v / (1 << VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE); } always_inline u32 vlib_node_vectors_per_main_loop_as_integer (vlib_main_t * vm, u32 node_index) { vlib_node_runtime_t *rt = vlib_node_get_runtime (vm, node_index); u32 v; v = vlib_node_runtime_update_main_loop_vector_stats (vm, rt, /* n_vectors */ 0); return v >> VLIB_LOG2_MAIN_LOOPS_PER_STATS_UPDATE; } void vlib_frame_free (vlib_main_t * vm, vlib_node_runtime_t * r, vlib_frame_t * f); /* Return the edge index if present, ~0 otherwise */ uword vlib_node_get_next (vlib_main_t * vm, uword node, uword next_node); /* Add next node to given node in given slot. */ uword vlib_node_add_next_with_slot (vlib_main_t * vm, uword node, uword next_node, uword slot); /* As above but adds to end of node's next vector. */ always_inline uword vlib_node_add_next (vlib_main_t * vm, uword node, uword next_node) { return vlib_node_add_next_with_slot (vm, node, next_node, ~0); } /* Add next node to given node in given slot. */ uword vlib_node_add_named_next_with_slot (vlib_main_t * vm, uword node, char *next_name, uword slot); /* As above but adds to end of node's next vector. */ always_inline uword vlib_node_add_named_next (vlib_main_t * vm, uword node, char *name) { return vlib_node_add_named_next_with_slot (vm, node, name, ~0); } /** * Get list of nodes */ void vlib_node_get_nodes (vlib_main_t * vm, u32 max_threads, int include_stats, int barrier_sync, vlib_node_t **** node_dupsp, vlib_main_t *** stat_vmsp); /* Query node given name. */ vlib_node_t *vlib_get_node_by_name (vlib_main_t * vm, u8 * name); /* Rename a node. */ void vlib_node_rename (vlib_main_t * vm, u32 node_index, char *fmt, ...); /* Register new packet processing node. Nodes can be registered dynamically via this call or statically via the VLIB_REGISTER_NODE macro. */ u32 vlib_register_node (vlib_main_t *vm, vlib_node_registration_t *r, char *fmt, ...); /* Register all node function variants */ void vlib_register_all_node_march_variants (vlib_main_t *vm); /* Register all static nodes registered via VLIB_REGISTER_NODE. */ void vlib_register_all_static_nodes (vlib_main_t * vm); /* Start a process. */ void vlib_start_process (vlib_main_t * vm, uword process_index); /* Sync up runtime and main node stats. */ void vlib_node_sync_stats (vlib_main_t * vm, vlib_node_t * n); void vlib_node_runtime_sync_stats (vlib_main_t *vm, vlib_node_runtime_t *r, uword n_calls, uword n_vectors, uword n_clocks); void vlib_node_runtime_sync_stats_node (vlib_node_t *n, vlib_node_runtime_t *r, uword n_calls, uword n_vectors, uword n_clocks); /* Node graph initialization function. */ clib_error_t *vlib_node_main_init (vlib_main_t * vm); format_function_t format_vlib_node_graph; format_function_t format_vlib_node_name; format_function_t format_vlib_next_node_name; format_function_t format_vlib_node_and_next; format_function_t format_vlib_cpu_time; format_function_t format_vlib_time; /* Parse node name -> node index. */ unformat_function_t unformat_vlib_node; always_inline void vlib_node_increment_counter (vlib_main_t * vm, u32 node_index, u32 counter_index, u64 increment) { vlib_node_t *n = vlib_get_node (vm, node_index); vlib_error_main_t *em = &vm->error_main; u32 node_counter_base_index = n->error_heap_index; em->counters[node_counter_base_index + counter_index] += increment; } /** @brief Create a vlib process * @param vm &vlib_global_main * @param f the process node function * @param log2_n_stack_bytes size of the process stack, defaults to 16K * @return newly-create node index * @warning call only on the main thread. Barrier sync required */ u32 vlib_process_create (vlib_main_t * vm, char *name, vlib_node_function_t * f, u32 log2_n_stack_bytes); always_inline int vlib_node_set_dispatch_wrapper (vlib_main_t *vm, vlib_node_function_t *fn) { if (fn && vm->dispatch_wrapper_fn) return 1; vm->dispatch_wrapper_fn = fn; return 0; } int vlib_node_set_march_variant (vlib_main_t *vm, u32 node_index, clib_march_variant_type_t march_variant); vlib_node_function_t * vlib_node_get_preferred_node_fn_variant (vlib_main_t *vm, vlib_node_fn_registration_t *regs); /* * vlib_frame_bitmap functions */ #define VLIB_FRAME_BITMAP_N_UWORDS \ (((VLIB_FRAME_SIZE + uword_bits - 1) & ~(uword_bits - 1)) / uword_bits) typedef uword vlib_frame_bitmap_t[VLIB_FRAME_BITMAP_N_UWORDS]; static_always_inline void vlib_frame_bitmap_init (uword *bmp, u32 n_first_bits_set) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; while (n_first_bits_set >= (sizeof (uword) * 8) && n_left) { bmp++[0] = ~0; n_first_bits_set -= sizeof (uword) * 8; n_left--; } if (n_first_bits_set && n_left) { bmp++[0] = pow2_mask (n_first_bits_set); n_left--; } while (n_left--) bmp++[0] = 0; } static_always_inline void vlib_frame_bitmap_clear (uword *bmp) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; while (n_left--) bmp++[0] = 0; } static_always_inline void vlib_frame_bitmap_xor (uword *bmp, uword *bmp2) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; while (n_left--) bmp++[0] ^= bmp2++[0]; } static_always_inline void vlib_frame_bitmap_or (uword *bmp, uword *bmp2) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; while (n_left--) bmp++[0] |= bmp2++[0]; } static_always_inline void vlib_frame_bitmap_and (uword *bmp, uword *bmp2) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; while (n_left--) bmp++[0] &= bmp2++[0]; } static_always_inline u32 vlib_frame_bitmap_count_set_bits (uword *bmp) { u32 n_left = VLIB_FRAME_BITMAP_N_UWORDS; u32 count = 0; while (n_left--) count += count_set_bits (bmp++[0]); return count; } static_always_inline int vlib_frame_bitmap_find_first_set (uword *bmp) { uword *b = bmp; while (b[0] == 0) { ASSERT (b - bmp < VLIB_FRAME_BITMAP_N_UWORDS); b++; } return (b - bmp) * uword_bits + get_lowest_set_bit_index (b[0]); } #define foreach_vlib_frame_bitmap_set_bit_index(i, v) \ for (uword _off = 0; _off < ARRAY_LEN (v); _off++) \ for (uword _tmp = \ (v[_off]) + 0 * (uword) (i = _off * uword_bits + \ get_lowest_set_bit_index (v[_off])); \ _tmp; i = _off * uword_bits + get_lowest_set_bit_index ( \ _tmp = clear_lowest_set_bit (_tmp))) #endif /* included_vlib_node_funcs_h */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */