/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define _GNU_SOURCE #include <signal.h> #include <math.h> #include <vppinfra/format.h> #include <vppinfra/time_range.h> #include <vppinfra/interrupt.h> #include <vppinfra/linux/sysfs.h> #include <vlib/vlib.h> #include <vlib/threads.h> #include <vlib/stat_weak_inlines.h> u32 vl (void *p) { return vec_len (p); } vlib_worker_thread_t *vlib_worker_threads; vlib_thread_main_t vlib_thread_main; /* * Barrier tracing can be enabled on a normal build to collect information * on barrier use, including timings and call stacks. Deliberately not * keyed off CLIB_DEBUG, because that can add significant overhead which * imapacts observed timings. */ static inline void barrier_trace_sync (f64 t_entry, f64 t_open, f64 t_closed) { if (!vlib_worker_threads->barrier_elog_enabled) return; ELOG_TYPE_DECLARE (e) = { .format = "bar-trace-%s-#%d", .format_args = "T4i4", }; struct { u32 caller, count, t_entry, t_open, t_closed; } *ed = 0; ed = ELOG_DATA (&vlib_global_main.elog_main, e); ed->count = (int) vlib_worker_threads[0].barrier_sync_count; ed->caller = elog_string (&vlib_global_main.elog_main, (char *) vlib_worker_threads[0].barrier_caller); ed->t_entry = (int) (1000000.0 * t_entry); ed->t_open = (int) (1000000.0 * t_open); ed->t_closed = (int) (1000000.0 * t_closed); } static inline void barrier_trace_sync_rec (f64 t_entry) { if (!vlib_worker_threads->barrier_elog_enabled) return; ELOG_TYPE_DECLARE (e) = { .format = "bar-syncrec-%s-#%d", .format_args = "T4i4", }; struct { u32 caller, depth; } *ed = 0; ed = ELOG_DATA (&vlib_global_main.elog_main, e); ed->depth = (int) vlib_worker_threads[0].recursion_level - 1; ed->caller = elog_string (&vlib_global_main.elog_main, (char *) vlib_worker_threads[0].barrier_caller); } static inline void barrier_trace_release_rec (f64 t_entry) { if (!vlib_worker_threads->barrier_elog_enabled) return; ELOG_TYPE_DECLARE (e) = { .format = "bar-relrrec-#%d", .format_args = "i4", }; struct { u32 depth; } *ed = 0; ed = ELOG_DATA (&vlib_global_main.elog_main, e); ed->depth = (int) vlib_worker_threads[0].recursion_level; } static inline void barrier_trace_release (f64 t_entry, f64 t_closed_total, f64 t_update_main) { if (!vlib_worker_threads->barrier_elog_enabled) return; ELOG_TYPE_DECLARE (e) = { .format = "bar-rel-#%d-e%d-u%d-t%d", .format_args = "i4i4i4i4", }; struct { u32 count, t_entry, t_update_main, t_closed_total; } *ed = 0; ed = ELOG_DATA (&vlib_global_main.elog_main, e); ed->t_entry = (int) (1000000.0 * t_entry); ed->t_update_main = (int) (1000000.0 * t_update_main); ed->t_closed_total = (int) (1000000.0 * t_closed_total); ed->count = (int) vlib_worker_threads[0].barrier_sync_count; /* Reset context for next trace */ vlib_worker_threads[0].barrier_context = NULL; } uword os_get_nthreads (void) { return vec_len (vlib_thread_stacks); } void vlib_set_thread_name (char *name) { int pthread_setname_np (pthread_t __target_thread, const char *__name); int rv; pthread_t thread = pthread_self (); if (thread) { rv = pthread_setname_np (thread, name); if (rv) clib_warning ("pthread_setname_np returned %d", rv); } } static int sort_registrations_by_no_clone (void *a0, void *a1) { vlib_thread_registration_t **tr0 = a0; vlib_thread_registration_t **tr1 = a1; return ((i32) ((*tr0)->no_data_structure_clone) - ((i32) ((*tr1)->no_data_structure_clone))); } /* Called early in the init sequence */ clib_error_t * vlib_thread_init (vlib_main_t * vm) { vlib_thread_main_t *tm = &vlib_thread_main; vlib_worker_thread_t *w; vlib_thread_registration_t *tr; u32 n_vlib_mains = 1; u32 first_index = 1; u32 i; uword *avail_cpu; /* get bitmaps of active cpu cores and sockets */ tm->cpu_core_bitmap = clib_sysfs_list_to_bitmap ("/sys/devices/system/cpu/online"); tm->cpu_socket_bitmap = clib_sysfs_list_to_bitmap ("/sys/devices/system/node/online"); avail_cpu = clib_bitmap_dup (tm->cpu_core_bitmap); /* skip cores */ for (i = 0; i < tm->skip_cores; i++) { uword c = clib_bitmap_first_set (avail_cpu); if (c == ~0) return clib_error_return (0, "no available cpus to skip"); avail_cpu = clib_bitmap_set (avail_cpu, c, 0); } /* grab cpu for main thread */ if (tm->main_lcore == ~0) { /* if main-lcore is not set, we try to use lcore 1 */ if (clib_bitmap_get (avail_cpu, 1)) tm->main_lcore = 1; else tm->main_lcore = clib_bitmap_first_set (avail_cpu); if (tm->main_lcore == (u8) ~ 0) return clib_error_return (0, "no available cpus to be used for the" " main thread"); } else { if (clib_bitmap_get (avail_cpu, tm->main_lcore) == 0) return clib_error_return (0, "cpu %u is not available to be used" " for the main thread", tm->main_lcore); } avail_cpu = clib_bitmap_set (avail_cpu, tm->main_lcore, 0); /* assume that there is socket 0 only if there is no data from sysfs */ if (!tm->cpu_socket_bitmap) tm->cpu_socket_bitmap = clib_bitmap_set (0, 0, 1); /* pin main thread to main_lcore */ if (tm->cb.vlib_thread_set_lcore_cb) { tm->cb.vlib_thread_set_lcore_cb (0, tm->main_lcore); } else { cpu_set_t cpuset; CPU_ZERO (&cpuset); CPU_SET (tm->main_lcore, &cpuset); pthread_setaffinity_np (pthread_self (), sizeof (cpu_set_t), &cpuset); } /* Set up thread 0 */ vec_validate_aligned (vlib_worker_threads, 0, CLIB_CACHE_LINE_BYTES); _vec_len (vlib_worker_threads) = 1; w = vlib_worker_threads; w->thread_mheap = clib_mem_get_heap (); w->thread_stack = vlib_thread_stacks[0]; w->cpu_id = tm->main_lcore; w->lwp = syscall (SYS_gettid); w->thread_id = pthread_self (); tm->n_vlib_mains = 1; vlib_get_thread_core_numa (w, w->cpu_id); if (tm->sched_policy != ~0) { struct sched_param sched_param; if (!sched_getparam (w->lwp, &sched_param)) { if (tm->sched_priority != ~0) sched_param.sched_priority = tm->sched_priority; sched_setscheduler (w->lwp, tm->sched_policy, &sched_param); } } /* assign threads to cores and set n_vlib_mains */ tr = tm->next; while (tr) { vec_add1 (tm->registrations, tr); tr = tr->next; } vec_sort_with_function (tm->registrations, sort_registrations_by_no_clone); for (i = 0; i < vec_len (tm->registrations); i++) { int j; tr = tm->registrations[i]; tr->first_index = first_index; first_index += tr->count; n_vlib_mains += (tr->no_data_structure_clone == 0) ? tr->count : 0; /* construct coremask */ if (tr->use_pthreads || !tr->count) continue; if (tr->coremask) { uword c; /* *INDENT-OFF* */ clib_bitmap_foreach (c, tr->coremask) { if (clib_bitmap_get(avail_cpu, c) == 0) return clib_error_return (0, "cpu %u is not available to be used" " for the '%s' thread",c, tr->name); avail_cpu = clib_bitmap_set(avail_cpu, c, 0); } /* *INDENT-ON* */ } else { for (j = 0; j < tr->count; j++) { /* Do not use CPU 0 by default - leave it to the host and IRQs */ uword avail_c0 = clib_bitmap_get (avail_cpu, 0); avail_cpu = clib_bitmap_set (avail_cpu, 0, 0); uword c = clib_bitmap_first_set (avail_cpu); /* Use CPU 0 as a last resort */ if (c == ~0 && avail_c0) { c = 0; avail_c0 = 0; } if (c == ~0) return clib_error_return (0, "no available cpus to be used for" " the '%s' thread", tr->name); avail_cpu = clib_bitmap_set (avail_cpu, 0, avail_c0); avail_cpu = clib_bitmap_set (avail_cpu, c, 0); tr->coremask = clib_bitmap_set (tr->coremask, c, 1); } } } clib_bitmap_free (avail_cpu); tm->n_vlib_mains = n_vlib_mains; /* * Allocate the remaining worker threads, and thread stack vector slots * from now on, calls to os_get_nthreads() will return the correct * answer. */ vec_validate_aligned (vlib_worker_threads, first_index - 1, CLIB_CACHE_LINE_BYTES); vec_validate (vlib_thread_stacks, vec_len (vlib_worker_threads) - 1); return 0; } vlib_frame_queue_t * vlib_frame_queue_alloc (int nelts) { vlib_frame_queue_t *fq; fq = clib_mem_alloc_aligned (sizeof (*fq), CLIB_CACHE_LINE_BYTES); clib_memset (fq, 0, sizeof (*fq)); fq->nelts = nelts; fq->vector_threshold = 2 * VLIB_FRAME_SIZE; vec_validate_aligned (fq->elts, nelts - 1, CLIB_CACHE_LINE_BYTES); if (nelts & (nelts - 1)) { fformat (stderr, "FATAL: nelts MUST be a power of 2\n"); abort (); } return (fq); } void vl_msg_api_handler_no_free (void *) __attribute__ ((weak)); void vl_msg_api_handler_no_free (void *v) { } /* To be called by vlib worker threads upon startup */ void vlib_worker_thread_init (vlib_worker_thread_t * w) { vlib_thread_main_t *tm = vlib_get_thread_main (); /* * Note: disabling signals in worker threads as follows * prevents the api post-mortem dump scheme from working * { * sigset_t s; * sigfillset (&s); * pthread_sigmask (SIG_SETMASK, &s, 0); * } */ clib_mem_set_heap (w->thread_mheap); if (vec_len (tm->thread_prefix) && w->registration->short_name) { w->name = format (0, "%v_%s_%d%c", tm->thread_prefix, w->registration->short_name, w->instance_id, '\0'); vlib_set_thread_name ((char *) w->name); } if (!w->registration->use_pthreads) { /* Initial barrier sync, for both worker and i/o threads */ clib_atomic_fetch_add (vlib_worker_threads->workers_at_barrier, 1); while (*vlib_worker_threads->wait_at_barrier) ; clib_atomic_fetch_add (vlib_worker_threads->workers_at_barrier, -1); } } void * vlib_worker_thread_bootstrap_fn (void *arg) { void *rv; vlib_worker_thread_t *w = arg; vlib_main_t *vm = 0; w->lwp = syscall (SYS_gettid); w->thread_id = pthread_self (); __os_thread_index = w - vlib_worker_threads; vm = vlib_global_main.vlib_mains[__os_thread_index]; vlib_process_start_switch_stack (vm, 0); rv = (void *) clib_calljmp ((uword (*)(uword)) w->thread_function, (uword) arg, w->thread_stack + VLIB_THREAD_STACK_SIZE); /* NOTREACHED, we hope */ return rv; } void vlib_get_thread_core_numa (vlib_worker_thread_t * w, unsigned cpu_id) { const char *sys_cpu_path = "/sys/devices/system/cpu/cpu"; const char *sys_node_path = "/sys/devices/system/node/node"; clib_bitmap_t *nbmp = 0, *cbmp = 0; u32 node; u8 *p = 0; int core_id = -1, numa_id = -1; p = format (p, "%s%u/topology/core_id%c", sys_cpu_path, cpu_id, 0); clib_sysfs_read ((char *) p, "%d", &core_id); vec_reset_length (p); /* *INDENT-OFF* */ clib_sysfs_read ("/sys/devices/system/node/online", "%U", unformat_bitmap_list, &nbmp); clib_bitmap_foreach (node, nbmp) { p = format (p, "%s%u/cpulist%c", sys_node_path, node, 0); clib_sysfs_read ((char *) p, "%U", unformat_bitmap_list, &cbmp); if (clib_bitmap_get (cbmp, cpu_id)) numa_id = node; vec_reset_length (cbmp); vec_reset_length (p); } /* *INDENT-ON* */ vec_free (nbmp); vec_free (cbmp); vec_free (p); w->core_id = core_id; w->numa_id = numa_id; } static clib_error_t * vlib_launch_thread_int (void *fp, vlib_worker_thread_t * w, unsigned cpu_id) { clib_mem_main_t *mm = &clib_mem_main; vlib_thread_main_t *tm = &vlib_thread_main; void *(*fp_arg) (void *) = fp; void *numa_heap; w->cpu_id = cpu_id; vlib_get_thread_core_numa (w, cpu_id); /* Set up NUMA-bound heap if indicated */ if (mm->per_numa_mheaps[w->numa_id] == 0) { /* If the user requested a NUMA heap, create it... */ if (tm->numa_heap_size) { clib_mem_set_numa_affinity (w->numa_id, 1 /* force */ ); numa_heap = clib_mem_create_heap (0 /* DIY */ , tm->numa_heap_size, 1 /* is_locked */ , "numa %u heap", w->numa_id); clib_mem_set_default_numa_affinity (); mm->per_numa_mheaps[w->numa_id] = numa_heap; } else { /* Or, use the main heap */ mm->per_numa_mheaps[w->numa_id] = w->thread_mheap; } } if (tm->cb.vlib_launch_thread_cb && !w->registration->use_pthreads) return tm->cb.vlib_launch_thread_cb (fp, (void *) w, cpu_id); else { pthread_t worker; cpu_set_t cpuset; CPU_ZERO (&cpuset); CPU_SET (cpu_id, &cpuset); if (pthread_create (&worker, NULL /* attr */ , fp_arg, (void *) w)) return clib_error_return_unix (0, "pthread_create"); if (pthread_setaffinity_np (worker, sizeof (cpu_set_t), &cpuset)) return clib_error_return_unix (0, "pthread_setaffinity_np"); return 0; } } static clib_error_t * start_workers (vlib_main_t * vm) { vlib_global_main_t *vgm = vlib_get_global_main (); int i, j; vlib_worker_thread_t *w; vlib_main_t *vm_clone; void *oldheap; vlib_thread_main_t *tm = &vlib_thread_main; vlib_thread_registration_t *tr; vlib_node_runtime_t *rt; u32 n_vlib_mains = tm->n_vlib_mains; u32 worker_thread_index; clib_mem_heap_t *main_heap = clib_mem_get_per_cpu_heap (); vlib_stats_register_mem_heap (main_heap); vec_reset_length (vlib_worker_threads); /* Set up the main thread */ vec_add2_aligned (vlib_worker_threads, w, 1, CLIB_CACHE_LINE_BYTES); w->elog_track.name = "main thread"; elog_track_register (vlib_get_elog_main (), &w->elog_track); if (vec_len (tm->thread_prefix)) { w->name = format (0, "%v_main%c", tm->thread_prefix, '\0'); vlib_set_thread_name ((char *) w->name); } vgm->elog_main.lock = clib_mem_alloc_aligned (CLIB_CACHE_LINE_BYTES, CLIB_CACHE_LINE_BYTES); vgm->elog_main.lock[0] = 0; clib_callback_data_init (&vm->vlib_node_runtime_perf_callbacks, &vm->worker_thread_main_loop_callback_lock); vec_validate_aligned (vgm->vlib_mains, n_vlib_mains - 1, CLIB_CACHE_LINE_BYTES); _vec_len (vgm->vlib_mains) = 0; vec_add1_aligned (vgm->vlib_mains, vm, CLIB_CACHE_LINE_BYTES); if (n_vlib_mains > 1) { vlib_worker_threads->wait_at_barrier = clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES); vlib_worker_threads->workers_at_barrier = clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES); vlib_worker_threads->node_reforks_required = clib_mem_alloc_aligned (sizeof (u32), CLIB_CACHE_LINE_BYTES); /* We'll need the rpc vector lock... */ clib_spinlock_init (&vm->pending_rpc_lock); /* Ask for an initial barrier sync */ *vlib_worker_threads->workers_at_barrier = 0; *vlib_worker_threads->wait_at_barrier = 1; /* Without update or refork */ *vlib_worker_threads->node_reforks_required = 0; vgm->need_vlib_worker_thread_node_runtime_update = 0; /* init timing */ vm->barrier_epoch = 0; vm->barrier_no_close_before = 0; worker_thread_index = 1; clib_spinlock_init (&vm->worker_thread_main_loop_callback_lock); for (i = 0; i < vec_len (tm->registrations); i++) { vlib_node_main_t *nm, *nm_clone; int k; tr = tm->registrations[i]; if (tr->count == 0) continue; for (k = 0; k < tr->count; k++) { vlib_node_t *n; vec_add2 (vlib_worker_threads, w, 1); /* Currently unused, may not really work */ if (tr->mheap_size) w->thread_mheap = clib_mem_create_heap (0, tr->mheap_size, /* unlocked */ 0, "%s%d heap", tr->name, k); else w->thread_mheap = main_heap; w->thread_stack = vlib_thread_stack_init (w - vlib_worker_threads); w->thread_function = tr->function; w->thread_function_arg = w; w->instance_id = k; w->registration = tr; w->elog_track.name = (char *) format (0, "%s %d", tr->name, k + 1); vec_add1 (w->elog_track.name, 0); elog_track_register (vlib_get_elog_main (), &w->elog_track); if (tr->no_data_structure_clone) continue; /* Fork vlib_global_main et al. Look for bugs here */ oldheap = clib_mem_set_heap (w->thread_mheap); vm_clone = clib_mem_alloc_aligned (sizeof (*vm_clone), CLIB_CACHE_LINE_BYTES); clib_memcpy (vm_clone, vlib_get_first_main (), sizeof (*vm_clone)); vm_clone->thread_index = worker_thread_index; vm_clone->heap_base = w->thread_mheap; vm_clone->heap_aligned_base = (void *) (((uword) w->thread_mheap) & ~(VLIB_FRAME_ALIGN - 1)); vm_clone->pending_rpc_requests = 0; vec_validate (vm_clone->pending_rpc_requests, 0); _vec_len (vm_clone->pending_rpc_requests) = 0; clib_memset (&vm_clone->random_buffer, 0, sizeof (vm_clone->random_buffer)); clib_spinlock_init (&vm_clone->worker_thread_main_loop_callback_lock); clib_callback_data_init (&vm_clone->vlib_node_runtime_perf_callbacks, &vm_clone->worker_thread_main_loop_callback_lock); nm = &vlib_get_first_main ()->node_main; nm_clone = &vm_clone->node_main; /* fork next frames array, preserving node runtime indices */ nm_clone->next_frames = vec_dup_aligned (nm->next_frames, CLIB_CACHE_LINE_BYTES); for (j = 0; j < vec_len (nm_clone->next_frames); j++) { vlib_next_frame_t *nf = &nm_clone->next_frames[j]; u32 save_node_runtime_index; u32 save_flags; save_node_runtime_index = nf->node_runtime_index; save_flags = nf->flags & VLIB_FRAME_NO_FREE_AFTER_DISPATCH; vlib_next_frame_init (nf); nf->node_runtime_index = save_node_runtime_index; nf->flags = save_flags; } /* fork the frame dispatch queue */ nm_clone->pending_frames = 0; vec_validate (nm_clone->pending_frames, 10); _vec_len (nm_clone->pending_frames) = 0; /* fork nodes */ nm_clone->nodes = 0; /* Allocate all nodes in single block for speed */ n = clib_mem_alloc_no_fail (vec_len (nm->nodes) * sizeof (*n)); for (j = 0; j < vec_len (nm->nodes); j++) { clib_memcpy (n, nm->nodes[j], sizeof (*n)); /* none of the copied nodes have enqueue rights given out */ n->owner_node_index = VLIB_INVALID_NODE_INDEX; clib_memset (&n->stats_total, 0, sizeof (n->stats_total)); clib_memset (&n->stats_last_clear, 0, sizeof (n->stats_last_clear)); vec_add1 (nm_clone->nodes, n); n++; } nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INTERNAL], CLIB_CACHE_LINE_BYTES); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy initial runtime_data from node */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INPUT], CLIB_CACHE_LINE_BYTES); clib_interrupt_init ( &nm_clone->interrupts, vec_len (nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT])); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy initial runtime_data from node */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT], CLIB_CACHE_LINE_BYTES); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy initial runtime_data from node */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } nm_clone->processes = vec_dup_aligned (nm->processes, CLIB_CACHE_LINE_BYTES); /* Create per-thread frame freelist */ nm_clone->frame_sizes = vec_new (vlib_frame_size_t, 1); #ifdef VLIB_SUPPORTS_ARBITRARY_SCALAR_SIZES nm_clone->frame_size_hash = hash_create (0, sizeof (uword)); #endif nm_clone->node_by_error = nm->node_by_error; /* Packet trace buffers are guaranteed to be empty, nothing to do here */ clib_mem_set_heap (oldheap); vec_add1_aligned (vgm->vlib_mains, vm_clone, CLIB_CACHE_LINE_BYTES); /* Switch to the stats segment ... */ void *oldheap = vlib_stats_push_heap (0); vm_clone->error_main.counters = vec_dup_aligned (vlib_get_first_main ()->error_main.counters, CLIB_CACHE_LINE_BYTES); vlib_stats_pop_heap2 (vm_clone->error_main.counters, worker_thread_index, oldheap, 1); vm_clone->error_main.counters_last_clear = vec_dup_aligned ( vlib_get_first_main ()->error_main.counters_last_clear, CLIB_CACHE_LINE_BYTES); worker_thread_index++; } } } else { /* only have non-data-structure copy threads to create... */ for (i = 0; i < vec_len (tm->registrations); i++) { tr = tm->registrations[i]; for (j = 0; j < tr->count; j++) { vec_add2 (vlib_worker_threads, w, 1); if (tr->mheap_size) { w->thread_mheap = clib_mem_create_heap (0, tr->mheap_size, /* locked */ 0, "%s%d heap", tr->name, j); } else w->thread_mheap = main_heap; w->thread_stack = vlib_thread_stack_init (w - vlib_worker_threads); w->thread_function = tr->function; w->thread_function_arg = w; w->instance_id = j; w->elog_track.name = (char *) format (0, "%s %d", tr->name, j + 1); w->registration = tr; vec_add1 (w->elog_track.name, 0); elog_track_register (vlib_get_elog_main (), &w->elog_track); } } } worker_thread_index = 1; for (i = 0; i < vec_len (tm->registrations); i++) { clib_error_t *err; int j; tr = tm->registrations[i]; if (tr->use_pthreads || tm->use_pthreads) { for (j = 0; j < tr->count; j++) { w = vlib_worker_threads + worker_thread_index++; err = vlib_launch_thread_int (vlib_worker_thread_bootstrap_fn, w, 0); if (err) clib_error_report (err); } } else { uword c; /* *INDENT-OFF* */ clib_bitmap_foreach (c, tr->coremask) { w = vlib_worker_threads + worker_thread_index++; err = vlib_launch_thread_int (vlib_worker_thread_bootstrap_fn, w, c); if (err) clib_error_report (err); } /* *INDENT-ON* */ } } vlib_worker_thread_barrier_sync (vm); vlib_worker_thread_barrier_release (vm); return 0; } VLIB_MAIN_LOOP_ENTER_FUNCTION (start_workers); static inline void worker_thread_node_runtime_update_internal (void) { int i, j; vlib_main_t *vm; vlib_node_main_t *nm, *nm_clone; vlib_main_t *vm_clone; vlib_node_runtime_t *rt; ASSERT (vlib_get_thread_index () == 0); vm = vlib_get_first_main (); nm = &vm->node_main; ASSERT (*vlib_worker_threads->wait_at_barrier == 1); /* * Scrape all runtime stats, so we don't lose node runtime(s) with * pending counts, or throw away worker / io thread counts. */ for (j = 0; j < vec_len (nm->nodes); j++) { vlib_node_t *n; n = nm->nodes[j]; vlib_node_sync_stats (vm, n); } for (i = 1; i < vlib_get_n_threads (); i++) { vlib_node_t *n; vm_clone = vlib_get_main_by_index (i); nm_clone = &vm_clone->node_main; for (j = 0; j < vec_len (nm_clone->nodes); j++) { n = nm_clone->nodes[j]; rt = vlib_node_get_runtime (vm_clone, n->index); vlib_node_runtime_sync_stats (vm_clone, rt, 0, 0, 0); } } /* Per-worker clone rebuilds are now done on each thread */ } void vlib_worker_thread_node_refork (void) { vlib_main_t *vm, *vm_clone; vlib_node_main_t *nm, *nm_clone; vlib_node_t **old_nodes_clone; vlib_node_runtime_t *rt, *old_rt; vlib_node_t *new_n_clone; int j; vm = vlib_get_first_main (); nm = &vm->node_main; vm_clone = vlib_get_main (); nm_clone = &vm_clone->node_main; /* Re-clone error heap */ u64 *old_counters = vm_clone->error_main.counters; u64 *old_counters_all_clear = vm_clone->error_main.counters_last_clear; clib_memcpy_fast (&vm_clone->error_main, &vm->error_main, sizeof (vm->error_main)); j = vec_len (vm->error_main.counters) - 1; /* Switch to the stats segment ... */ void *oldheap = vlib_stats_push_heap (0); vec_validate_aligned (old_counters, j, CLIB_CACHE_LINE_BYTES); vm_clone->error_main.counters = old_counters; vlib_stats_pop_heap2 (vm_clone->error_main.counters, vm_clone->thread_index, oldheap, 0); vec_validate_aligned (old_counters_all_clear, j, CLIB_CACHE_LINE_BYTES); vm_clone->error_main.counters_last_clear = old_counters_all_clear; nm_clone = &vm_clone->node_main; vec_free (nm_clone->next_frames); nm_clone->next_frames = vec_dup_aligned (nm->next_frames, CLIB_CACHE_LINE_BYTES); for (j = 0; j < vec_len (nm_clone->next_frames); j++) { vlib_next_frame_t *nf = &nm_clone->next_frames[j]; u32 save_node_runtime_index; u32 save_flags; save_node_runtime_index = nf->node_runtime_index; save_flags = nf->flags & VLIB_FRAME_NO_FREE_AFTER_DISPATCH; vlib_next_frame_init (nf); nf->node_runtime_index = save_node_runtime_index; nf->flags = save_flags; } old_nodes_clone = nm_clone->nodes; nm_clone->nodes = 0; /* re-fork nodes */ /* Allocate all nodes in single block for speed */ new_n_clone = clib_mem_alloc_no_fail (vec_len (nm->nodes) * sizeof (*new_n_clone)); for (j = 0; j < vec_len (nm->nodes); j++) { vlib_node_t *new_n = nm->nodes[j]; clib_memcpy_fast (new_n_clone, new_n, sizeof (*new_n)); /* none of the copied nodes have enqueue rights given out */ new_n_clone->owner_node_index = VLIB_INVALID_NODE_INDEX; if (j >= vec_len (old_nodes_clone)) { /* new node, set to zero */ clib_memset (&new_n_clone->stats_total, 0, sizeof (new_n_clone->stats_total)); clib_memset (&new_n_clone->stats_last_clear, 0, sizeof (new_n_clone->stats_last_clear)); } else { vlib_node_t *old_n_clone = old_nodes_clone[j]; /* Copy stats if the old data is valid */ clib_memcpy_fast (&new_n_clone->stats_total, &old_n_clone->stats_total, sizeof (new_n_clone->stats_total)); clib_memcpy_fast (&new_n_clone->stats_last_clear, &old_n_clone->stats_last_clear, sizeof (new_n_clone->stats_last_clear)); /* keep previous node state */ new_n_clone->state = old_n_clone->state; new_n_clone->flags = old_n_clone->flags; } vec_add1 (nm_clone->nodes, new_n_clone); new_n_clone++; } /* Free the old node clones */ clib_mem_free (old_nodes_clone[0]); vec_free (old_nodes_clone); /* re-clone internal nodes */ old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL]; nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INTERNAL], CLIB_CACHE_LINE_BYTES); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INTERNAL]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy runtime_data, will be overwritten later for existing rt */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy_fast (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } for (j = 0; j < vec_len (old_rt); j++) { rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index); rt->state = old_rt[j].state; rt->flags = old_rt[j].flags; clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data, VLIB_NODE_RUNTIME_DATA_SIZE); } vec_free (old_rt); /* re-clone input nodes */ old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT]; nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_INPUT], CLIB_CACHE_LINE_BYTES); clib_interrupt_resize ( &nm_clone->interrupts, vec_len (nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT])); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_INPUT]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy runtime_data, will be overwritten later for existing rt */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy_fast (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } for (j = 0; j < vec_len (old_rt); j++) { rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index); rt->state = old_rt[j].state; rt->flags = old_rt[j].flags; clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data, VLIB_NODE_RUNTIME_DATA_SIZE); } vec_free (old_rt); /* re-clone pre-input nodes */ old_rt = nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT]; nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT] = vec_dup_aligned (nm->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT], CLIB_CACHE_LINE_BYTES); vec_foreach (rt, nm_clone->nodes_by_type[VLIB_NODE_TYPE_PRE_INPUT]) { vlib_node_t *n = vlib_get_node (vm, rt->node_index); rt->thread_index = vm_clone->thread_index; /* copy runtime_data, will be overwritten later for existing rt */ if (n->runtime_data && n->runtime_data_bytes > 0) clib_memcpy_fast (rt->runtime_data, n->runtime_data, clib_min (VLIB_NODE_RUNTIME_DATA_SIZE, n->runtime_data_bytes)); } for (j = 0; j < vec_len (old_rt); j++) { rt = vlib_node_get_runtime (vm_clone, old_rt[j].node_index); rt->state = old_rt[j].state; rt->flags = old_rt[j].flags; clib_memcpy_fast (rt->runtime_data, old_rt[j].runtime_data, VLIB_NODE_RUNTIME_DATA_SIZE); } vec_free (old_rt); nm_clone->processes = vec_dup_aligned (nm->processes, CLIB_CACHE_LINE_BYTES); nm_clone->node_by_error = nm->node_by_error; } void vlib_worker_thread_node_runtime_update (void) { /* * Make a note that we need to do a node runtime update * prior to releasing the barrier. */ vlib_global_main.need_vlib_worker_thread_node_runtime_update = 1; } u32 unformat_sched_policy (unformat_input_t * input, va_list * args) { u32 *r = va_arg (*args, u32 *); if (0); #define _(v,f,s) else if (unformat (input, s)) *r = SCHED_POLICY_##f; foreach_sched_policy #undef _ else return 0; return 1; } static clib_error_t * cpu_config (vlib_main_t * vm, unformat_input_t * input) { vlib_thread_registration_t *tr; uword *p; vlib_thread_main_t *tm = &vlib_thread_main; u8 *name; uword *bitmap; u32 count; tm->thread_registrations_by_name = hash_create_string (0, sizeof (uword)); tm->n_thread_stacks = 1; /* account for main thread */ tm->sched_policy = ~0; tm->sched_priority = ~0; tm->main_lcore = ~0; tr = tm->next; while (tr) { hash_set_mem (tm->thread_registrations_by_name, tr->name, (uword) tr); tr = tr->next; } while (unformat_check_input (input) != UNFORMAT_END_OF_INPUT) { if (unformat (input, "use-pthreads")) tm->use_pthreads = 1; else if (unformat (input, "thread-prefix %v", &tm->thread_prefix)) ; else if (unformat (input, "main-core %u", &tm->main_lcore)) ; else if (unformat (input, "skip-cores %u", &tm->skip_cores)) ; else if (unformat (input, "numa-heap-size %U", unformat_memory_size, &tm->numa_heap_size)) ; else if (unformat (input, "coremask-%s %U", &name, unformat_bitmap_mask, &bitmap) || unformat (input, "corelist-%s %U", &name, unformat_bitmap_list, &bitmap)) { p = hash_get_mem (tm->thread_registrations_by_name, name); if (p == 0) return clib_error_return (0, "no such thread type '%s'", name); tr = (vlib_thread_registration_t *) p[0]; if (tr->use_pthreads) return clib_error_return (0, "corelist cannot be set for '%s' threads", name); if (tr->count) return clib_error_return (0, "core placement of '%s' threads is already configured", name); tr->coremask = bitmap; tr->count = clib_bitmap_count_set_bits (tr->coremask); } else if (unformat (input, "scheduler-policy %U", unformat_sched_policy, &tm->sched_policy)) ; else if (unformat (input, "scheduler-priority %u", &tm->sched_priority)) ; else if (unformat (input, "%s %u", &name, &count)) { p = hash_get_mem (tm->thread_registrations_by_name, name); if (p == 0) return clib_error_return (0, "no such thread type 3 '%s'", name); tr = (vlib_thread_registration_t *) p[0]; if (tr->fixed_count) return clib_error_return (0, "number of '%s' threads not configurable", name); if (tr->count) return clib_error_return (0, "number of '%s' threads is already configured", name); tr->count = count; } else break; } if (tm->sched_priority != ~0) { if (tm->sched_policy == SCHED_FIFO || tm->sched_policy == SCHED_RR) { u32 prio_max = sched_get_priority_max (tm->sched_policy); u32 prio_min = sched_get_priority_min (tm->sched_policy); if (tm->sched_priority > prio_max) tm->sched_priority = prio_max; if (tm->sched_priority < prio_min) tm->sched_priority = prio_min; } else { return clib_error_return (0, "scheduling priority (%d) is not allowed for `normal` scheduling policy", tm->sched_priority); } } tr = tm->next; if (!tm->thread_prefix) tm->thread_prefix = format (0, "vpp"); while (tr) { tm->n_thread_stacks += tr->count; tm->n_pthreads += tr->count * tr->use_pthreads; tm->n_threads += tr->count * (tr->use_pthreads == 0); tr = tr->next; } return 0; } VLIB_EARLY_CONFIG_FUNCTION (cpu_config, "cpu"); /* * Enforce minimum open time to minimize packet loss due to Rx overflow, * based on a test based heuristic that barrier should be open for at least * 3 time as long as it is closed (with an upper bound of 1ms because by that * point it is probably too late to make a difference) */ #ifndef BARRIER_MINIMUM_OPEN_LIMIT #define BARRIER_MINIMUM_OPEN_LIMIT 0.001 #endif #ifndef BARRIER_MINIMUM_OPEN_FACTOR #define BARRIER_MINIMUM_OPEN_FACTOR 3 #endif void vlib_worker_thread_initial_barrier_sync_and_release (vlib_main_t * vm) { f64 deadline; f64 now = vlib_time_now (vm); u32 count = vlib_get_n_threads () - 1; /* No worker threads? */ if (count == 0) return; deadline = now + BARRIER_SYNC_TIMEOUT; *vlib_worker_threads->wait_at_barrier = 1; while (*vlib_worker_threads->workers_at_barrier != count) { if ((now = vlib_time_now (vm)) > deadline) { fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__); os_panic (); } CLIB_PAUSE (); } *vlib_worker_threads->wait_at_barrier = 0; } /** * Return true if the wroker thread barrier is held */ u8 vlib_worker_thread_barrier_held (void) { if (vlib_get_n_threads () < 2) return (1); return (*vlib_worker_threads->wait_at_barrier == 1); } void vlib_worker_thread_barrier_sync_int (vlib_main_t * vm, const char *func_name) { f64 deadline; f64 now; f64 t_entry; f64 t_open; f64 t_closed; f64 max_vector_rate; u32 count; int i; if (vlib_get_n_threads () < 2) return; ASSERT (vlib_get_thread_index () == 0); vlib_worker_threads[0].barrier_caller = func_name; count = vlib_get_n_threads () - 1; /* Record entry relative to last close */ now = vlib_time_now (vm); t_entry = now - vm->barrier_epoch; /* Tolerate recursive calls */ if (++vlib_worker_threads[0].recursion_level > 1) { barrier_trace_sync_rec (t_entry); return; } if (PREDICT_FALSE (vec_len (vm->barrier_perf_callbacks) != 0)) clib_call_callbacks (vm->barrier_perf_callbacks, vm, vm->clib_time.last_cpu_time, 0 /* enter */ ); /* * Need data to decide if we're working hard enough to honor * the barrier hold-down timer. */ max_vector_rate = 0.0; for (i = 1; i < vlib_get_n_threads (); i++) { vlib_main_t *ovm = vlib_get_main_by_index (i); max_vector_rate = clib_max (max_vector_rate, (f64) vlib_last_vectors_per_main_loop (ovm)); } vlib_worker_threads[0].barrier_sync_count++; /* Enforce minimum barrier open time to minimize packet loss */ ASSERT (vm->barrier_no_close_before <= (now + BARRIER_MINIMUM_OPEN_LIMIT)); /* * If any worker thread seems busy, which we define * as a vector rate above 10, we enforce the barrier hold-down timer */ if (max_vector_rate > 10.0) { while (1) { now = vlib_time_now (vm); /* Barrier hold-down timer expired? */ if (now >= vm->barrier_no_close_before) break; if ((vm->barrier_no_close_before - now) > (2.0 * BARRIER_MINIMUM_OPEN_LIMIT)) { clib_warning ("clock change: would have waited for %.4f seconds", (vm->barrier_no_close_before - now)); break; } } } /* Record time of closure */ t_open = now - vm->barrier_epoch; vm->barrier_epoch = now; deadline = now + BARRIER_SYNC_TIMEOUT; *vlib_worker_threads->wait_at_barrier = 1; while (*vlib_worker_threads->workers_at_barrier != count) { if ((now = vlib_time_now (vm)) > deadline) { fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__); os_panic (); } } t_closed = now - vm->barrier_epoch; barrier_trace_sync (t_entry, t_open, t_closed); } void vlib_worker_thread_barrier_release (vlib_main_t * vm) { vlib_global_main_t *vgm = vlib_get_global_main (); f64 deadline; f64 now; f64 minimum_open; f64 t_entry; f64 t_closed_total; f64 t_update_main = 0.0; int refork_needed = 0; if (vlib_get_n_threads () < 2) return; ASSERT (vlib_get_thread_index () == 0); now = vlib_time_now (vm); t_entry = now - vm->barrier_epoch; if (--vlib_worker_threads[0].recursion_level > 0) { barrier_trace_release_rec (t_entry); return; } /* Update (all) node runtimes before releasing the barrier, if needed */ if (vgm->need_vlib_worker_thread_node_runtime_update) { /* * Lock stat segment here, so we's safe when * rebuilding the stat segment node clones from the * stat thread... */ vlib_stat_segment_lock (); /* Do stats elements on main thread */ worker_thread_node_runtime_update_internal (); vgm->need_vlib_worker_thread_node_runtime_update = 0; /* Do per thread rebuilds in parallel */ refork_needed = 1; clib_atomic_fetch_add (vlib_worker_threads->node_reforks_required, (vlib_get_n_threads () - 1)); now = vlib_time_now (vm); t_update_main = now - vm->barrier_epoch; } deadline = now + BARRIER_SYNC_TIMEOUT; /* * Note when we let go of the barrier. * Workers can use this to derive a reasonably accurate * time offset. See vlib_time_now(...) */ vm->time_last_barrier_release = vlib_time_now (vm); CLIB_MEMORY_STORE_BARRIER (); *vlib_worker_threads->wait_at_barrier = 0; while (*vlib_worker_threads->workers_at_barrier > 0) { if ((now = vlib_time_now (vm)) > deadline) { fformat (stderr, "%s: worker thread deadlock\n", __FUNCTION__); os_panic (); } } /* Wait for reforks before continuing */ if (refork_needed) { now = vlib_time_now (vm); deadline = now + BARRIER_SYNC_TIMEOUT; while (*vlib_worker_threads->node_reforks_required > 0) { if ((now = vlib_time_now (vm)) > deadline) { fformat (stderr, "%s: worker thread refork deadlock\n", __FUNCTION__); os_panic (); } } vlib_stat_segment_unlock (); } t_closed_total = now - vm->barrier_epoch; minimum_open = t_closed_total * BARRIER_MINIMUM_OPEN_FACTOR; if (minimum_open > BARRIER_MINIMUM_OPEN_LIMIT) { minimum_open = BARRIER_MINIMUM_OPEN_LIMIT; } vm->barrier_no_close_before = now + minimum_open; /* Record barrier epoch (used to enforce minimum open time) */ vm->barrier_epoch = now; barrier_trace_release (t_entry, t_closed_total, t_update_main); if (PREDICT_FALSE (vec_len (vm->barrier_perf_callbacks) != 0)) clib_call_callbacks (vm->barrier_perf_callbacks, vm, vm->clib_time.last_cpu_time, 1 /* leave */ ); } /** * Wait until each of the workers has been once around the track */ void vlib_worker_wait_one_loop (void) { vlib_global_main_t *vgm = vlib_get_global_main (); ASSERT (vlib_get_thread_index () == 0); if (vlib_get_n_threads () < 2) return; if (vlib_worker_thread_barrier_held ()) return; u32 *counts = 0; u32 ii; vec_validate (counts, vlib_get_n_threads () - 1); /* record the current loop counts */ vec_foreach_index (ii, vgm->vlib_mains) counts[ii] = vgm->vlib_mains[ii]->main_loop_count; /* spin until each changes, apart from the main thread, or we'd be * a while */ for (ii = 1; ii < vec_len (counts); ii++) { while (counts[ii] == vgm->vlib_mains[ii]->main_loop_count) CLIB_PAUSE (); } vec_free (counts); return; } void vlib_worker_thread_fn (void *arg) { vlib_global_main_t *vgm = vlib_get_global_main (); vlib_worker_thread_t *w = (vlib_worker_thread_t *) arg; vlib_thread_main_t *tm = vlib_get_thread_main (); vlib_main_t *vm = vlib_get_main (); clib_error_t *e; vlib_process_finish_switch_stack (vm); ASSERT (vm->thread_index == vlib_get_thread_index ()); vlib_worker_thread_init (w); clib_time_init (&vm->clib_time); clib_mem_set_heap (w->thread_mheap); vm->worker_init_functions_called = hash_create (0, 0); e = vlib_call_init_exit_functions_no_sort ( vm, &vgm->worker_init_function_registrations, 1 /* call_once */, 0 /* is_global */); if (e) clib_error_report (e); /* Wait until the dpdk init sequence is complete */ while (tm->extern_thread_mgmt && tm->worker_thread_release == 0) vlib_worker_thread_barrier_check (); vlib_worker_loop (vm); } /* *INDENT-OFF* */ VLIB_REGISTER_THREAD (worker_thread_reg, static) = { .name = "workers", .short_name = "wk", .function = vlib_worker_thread_fn, }; /* *INDENT-ON* */ u32 vlib_frame_queue_main_init (u32 node_index, u32 frame_queue_nelts) { vlib_thread_main_t *tm = vlib_get_thread_main (); vlib_frame_queue_main_t *fqm; vlib_frame_queue_t *fq; int i; u32 num_threads; if (frame_queue_nelts == 0) frame_queue_nelts = FRAME_QUEUE_MAX_NELTS; num_threads = 1 /* main thread */ + tm->n_threads; ASSERT (frame_queue_nelts >= 8 + num_threads); vec_add2 (tm->frame_queue_mains, fqm, 1); fqm->node_index = node_index; fqm->frame_queue_nelts = frame_queue_nelts; vec_validate (fqm->vlib_frame_queues, tm->n_vlib_mains - 1); _vec_len (fqm->vlib_frame_queues) = 0; for (i = 0; i < tm->n_vlib_mains; i++) { fq = vlib_frame_queue_alloc (frame_queue_nelts); vec_add1 (fqm->vlib_frame_queues, fq); } return (fqm - tm->frame_queue_mains); } int vlib_thread_cb_register (struct vlib_main_t *vm, vlib_thread_callbacks_t * cb) { vlib_thread_main_t *tm = vlib_get_thread_main (); if (tm->extern_thread_mgmt) return -1; tm->cb.vlib_launch_thread_cb = cb->vlib_launch_thread_cb; tm->extern_thread_mgmt = 1; return 0; } void vlib_process_signal_event_mt_helper (vlib_process_signal_event_mt_args_t * args) { ASSERT (vlib_get_thread_index () == 0); vlib_process_signal_event (vlib_get_main (), args->node_index, args->type_opaque, args->data); } void *rpc_call_main_thread_cb_fn; void vlib_rpc_call_main_thread (void *callback, u8 * args, u32 arg_size) { if (rpc_call_main_thread_cb_fn) { void (*fp) (void *, u8 *, u32) = rpc_call_main_thread_cb_fn; (*fp) (callback, args, arg_size); } else clib_warning ("BUG: rpc_call_main_thread_cb_fn NULL!"); } clib_error_t * threads_init (vlib_main_t * vm) { return 0; } VLIB_INIT_FUNCTION (threads_init); static clib_error_t * show_clock_command_fn (vlib_main_t * vm, unformat_input_t * input, vlib_cli_command_t * cmd) { int verbose = 0; clib_timebase_t _tb, *tb = &_tb; (void) unformat (input, "verbose %=", &verbose, 1); clib_timebase_init (tb, 0 /* GMT */ , CLIB_TIMEBASE_DAYLIGHT_NONE, &vm->clib_time); vlib_cli_output (vm, "%U, %U GMT", format_clib_time, &vm->clib_time, verbose, format_clib_timebase_time, clib_timebase_now (tb)); vlib_cli_output (vm, "Time last barrier release %.9f", vm->time_last_barrier_release); foreach_vlib_main () { vlib_cli_output (vm, "%d: %U", this_vlib_main->thread_index, format_clib_time, &this_vlib_main->clib_time, verbose); vlib_cli_output (vm, "Thread %d offset %.9f error %.9f", this_vlib_main->thread_index, this_vlib_main->time_offset, vm->time_last_barrier_release - this_vlib_main->time_last_barrier_release); } return 0; } /* *INDENT-OFF* */ VLIB_CLI_COMMAND (f_command, static) = { .path = "show clock", .short_help = "show clock", .function = show_clock_command_fn, }; /* *INDENT-ON* */ vlib_thread_main_t * vlib_get_thread_main_not_inline (void) { return vlib_get_thread_main (); } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */