/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __included_vnet_classify_h__ #define __included_vnet_classify_h__ #include <stdarg.h> #include <vlib/vlib.h> #include <vnet/vnet.h> #include <vnet/pg/pg.h> #include <vnet/ethernet/ethernet.h> #include <vnet/ethernet/packet.h> #include <vnet/ip/ip_packet.h> #include <vnet/ip/ip4_packet.h> #include <vnet/ip/ip6_packet.h> #include <vlib/cli.h> #include <vnet/l2/l2_input.h> #include <vnet/l2/l2_output.h> #include <vnet/l2/feat_bitmap.h> #include <vnet/api_errno.h> /* for API error numbers */ #include <vppinfra/error.h> #include <vppinfra/hash.h> #include <vppinfra/cache.h> #include <vppinfra/xxhash.h> extern vlib_node_registration_t ip4_classify_node; extern vlib_node_registration_t ip6_classify_node; #define CLASSIFY_TRACE 0 #define U32X4_ALIGNED(p) PREDICT_TRUE((((intptr_t)p) & 0xf) == 0) /* * Classify table option to process packets * CLASSIFY_FLAG_USE_CURR_DATA: * - classify packets starting from VPP node’s current data pointer */ #define CLASSIFY_FLAG_USE_CURR_DATA 1 /* * Classify session action * CLASSIFY_ACTION_SET_IP4_FIB_INDEX: * - Classified IP packets will be looked up * from the specified ipv4 fib table * CLASSIFY_ACTION_SET_IP6_FIB_INDEX: * - Classified IP packets will be looked up * from the specified ipv6 fib table */ typedef enum vnet_classify_action_t_ { CLASSIFY_ACTION_SET_IP4_FIB_INDEX = 1, CLASSIFY_ACTION_SET_IP6_FIB_INDEX = 2, CLASSIFY_ACTION_SET_METADATA = 3, } __attribute__ ((packed)) vnet_classify_action_t; struct _vnet_classify_main; typedef struct _vnet_classify_main vnet_classify_main_t; #define foreach_size_in_u32x4 \ _(1) \ _(2) \ _(3) \ _(4) \ _(5) /* *INDENT-OFF* */ typedef CLIB_PACKED(struct _vnet_classify_entry { /* Graph node next index */ u32 next_index; /* put into vnet_buffer(b)->l2_classfy.opaque_index */ union { struct { u32 opaque_index; /* advance on hit, note it's a signed quantity... */ i32 advance; }; u64 opaque_count; }; /* Really only need 1 bit */ u8 flags; #define VNET_CLASSIFY_ENTRY_FREE (1<<0) vnet_classify_action_t action; u16 metadata; /* Hit counter, last heard time */ union { u64 hits; struct _vnet_classify_entry * next_free; }; f64 last_heard; /* Must be aligned to a 16-octet boundary */ u32x4 key[0]; }) vnet_classify_entry_t; /* *INDENT-ON* */ static inline int vnet_classify_entry_is_free (vnet_classify_entry_t * e) { return e->flags & VNET_CLASSIFY_ENTRY_FREE; } static inline int vnet_classify_entry_is_busy (vnet_classify_entry_t * e) { return ((e->flags & VNET_CLASSIFY_ENTRY_FREE) == 0); } /* Need these to con the vector allocator */ /* *INDENT-OFF* */ #define _(size) \ typedef CLIB_PACKED(struct { \ u32 pad0[4]; \ u64 pad1[2]; \ u32x4 key[size]; \ }) vnet_classify_entry_##size##_t; foreach_size_in_u32x4; /* *INDENT-ON* */ #undef _ typedef struct { union { struct { u32 offset; u8 linear_search; u8 pad[2]; u8 log2_pages; }; u64 as_u64; }; } vnet_classify_bucket_t; typedef struct { /* Mask to apply after skipping N vectors */ u32x4 *mask; /* Buckets and entries */ vnet_classify_bucket_t *buckets; vnet_classify_entry_t *entries; /* Config parameters */ u32 match_n_vectors; u32 skip_n_vectors; u32 nbuckets; u32 log2_nbuckets; u32 linear_buckets; int entries_per_page; u32 active_elements; u32 current_data_flag; int current_data_offset; u32 data_offset; /* Index of next table to try */ u32 next_table_index; /* Miss next index, return if next_table_index = 0 */ u32 miss_next_index; /* Per-bucket working copies, one per thread */ vnet_classify_entry_t **working_copies; int *working_copy_lengths; vnet_classify_bucket_t saved_bucket; /* Free entry freelists */ vnet_classify_entry_t **freelists; u8 *name; /* Private allocation arena, protected by the writer lock */ void *mheap; /* Writer (only) lock for this table */ volatile u32 *writer_lock; } vnet_classify_table_t; struct _vnet_classify_main { /* Table pool */ vnet_classify_table_t *tables; /* Registered next-index, opaque unformat fcns */ unformat_function_t **unformat_l2_next_index_fns; unformat_function_t **unformat_ip_next_index_fns; unformat_function_t **unformat_acl_next_index_fns; unformat_function_t **unformat_policer_next_index_fns; unformat_function_t **unformat_opaque_index_fns; /* convenience variables */ vlib_main_t *vlib_main; vnet_main_t *vnet_main; }; extern vnet_classify_main_t vnet_classify_main; u8 *format_classify_table (u8 * s, va_list * args); u64 vnet_classify_hash_packet (vnet_classify_table_t * t, u8 * h); static inline u64 vnet_classify_hash_packet_inline (vnet_classify_table_t * t, u8 * h) { u32x4 *mask; union { u32x4 as_u32x4; u64 as_u64[2]; } xor_sum __attribute__ ((aligned (sizeof (u32x4)))); ASSERT (t); mask = t->mask; #ifdef CLIB_HAVE_VEC128 if (U32X4_ALIGNED (h)) { //SSE can't handle unaligned data u32x4 *data = (u32x4 *) h; xor_sum.as_u32x4 = data[0 + t->skip_n_vectors] & mask[0]; switch (t->match_n_vectors) { case 5: xor_sum.as_u32x4 ^= data[4 + t->skip_n_vectors] & mask[4]; /* FALLTHROUGH */ case 4: xor_sum.as_u32x4 ^= data[3 + t->skip_n_vectors] & mask[3]; /* FALLTHROUGH */ case 3: xor_sum.as_u32x4 ^= data[2 + t->skip_n_vectors] & mask[2]; /* FALLTHROUGH */ case 2: xor_sum.as_u32x4 ^= data[1 + t->skip_n_vectors] & mask[1]; /* FALLTHROUGH */ case 1: break; default: abort (); } } else #endif /* CLIB_HAVE_VEC128 */ { u32 skip_u64 = t->skip_n_vectors * 2; u64 *data64 = (u64 *) h; xor_sum.as_u64[0] = data64[0 + skip_u64] & ((u64 *) mask)[0]; xor_sum.as_u64[1] = data64[1 + skip_u64] & ((u64 *) mask)[1]; switch (t->match_n_vectors) { case 5: xor_sum.as_u64[0] ^= data64[8 + skip_u64] & ((u64 *) mask)[8]; xor_sum.as_u64[1] ^= data64[9 + skip_u64] & ((u64 *) mask)[9]; /* FALLTHROUGH */ case 4: xor_sum.as_u64[0] ^= data64[6 + skip_u64] & ((u64 *) mask)[6]; xor_sum.as_u64[1] ^= data64[7 + skip_u64] & ((u64 *) mask)[7]; /* FALLTHROUGH */ case 3: xor_sum.as_u64[0] ^= data64[4 + skip_u64] & ((u64 *) mask)[4]; xor_sum.as_u64[1] ^= data64[5 + skip_u64] & ((u64 *) mask)[5]; /* FALLTHROUGH */ case 2: xor_sum.as_u64[0] ^= data64[2 + skip_u64] & ((u64 *) mask)[2]; xor_sum.as_u64[1] ^= data64[3 + skip_u64] & ((u64 *) mask)[3]; /* FALLTHROUGH */ case 1: break; default: abort (); } } return clib_xxhash (xor_sum.as_u64[0] ^ xor_sum.as_u64[1]); } static inline void vnet_classify_prefetch_bucket (vnet_classify_table_t * t, u64 hash) { u32 bucket_index; ASSERT (is_pow2 (t->nbuckets)); bucket_index = hash & (t->nbuckets - 1); CLIB_PREFETCH (&t->buckets[bucket_index], CLIB_CACHE_LINE_BYTES, LOAD); } static inline vnet_classify_entry_t * vnet_classify_get_entry (vnet_classify_table_t * t, uword offset) { u8 *hp = t->mheap; u8 *vp = hp + offset; return (void *) vp; } static inline uword vnet_classify_get_offset (vnet_classify_table_t * t, vnet_classify_entry_t * v) { u8 *hp, *vp; hp = (u8 *) t->mheap; vp = (u8 *) v; ASSERT ((vp - hp) < 0x100000000ULL); return vp - hp; } static inline vnet_classify_entry_t * vnet_classify_entry_at_index (vnet_classify_table_t * t, vnet_classify_entry_t * e, u32 index) { u8 *eu8; eu8 = (u8 *) e; eu8 += index * (sizeof (vnet_classify_entry_t) + (t->match_n_vectors * sizeof (u32x4))); return (vnet_classify_entry_t *) eu8; } static inline void vnet_classify_prefetch_entry (vnet_classify_table_t * t, u64 hash) { u32 bucket_index; u32 value_index; vnet_classify_bucket_t *b; vnet_classify_entry_t *e; bucket_index = hash & (t->nbuckets - 1); b = &t->buckets[bucket_index]; if (b->offset == 0) return; hash >>= t->log2_nbuckets; e = vnet_classify_get_entry (t, b->offset); value_index = hash & ((1 << b->log2_pages) - 1); e = vnet_classify_entry_at_index (t, e, value_index); CLIB_PREFETCH (e, CLIB_CACHE_LINE_BYTES, LOAD); } vnet_classify_entry_t *vnet_classify_find_entry (vnet_classify_table_t * t, u8 * h, u64 hash, f64 now); static inline vnet_classify_entry_t * vnet_classify_find_entry_inline (vnet_classify_table_t * t, u8 * h, u64 hash, f64 now) { vnet_classify_entry_t *v; u32x4 *mask, *key; union { u32x4 as_u32x4; u64 as_u64[2]; } result __attribute__ ((aligned (sizeof (u32x4)))); vnet_classify_bucket_t *b; u32 value_index; u32 bucket_index; u32 limit; int i; bucket_index = hash & (t->nbuckets - 1); b = &t->buckets[bucket_index]; mask = t->mask; if (b->offset == 0) return 0; hash >>= t->log2_nbuckets; v = vnet_classify_get_entry (t, b->offset); value_index = hash & ((1 << b->log2_pages) - 1); limit = t->entries_per_page; if (PREDICT_FALSE (b->linear_search)) { value_index = 0; limit *= (1 << b->log2_pages); } v = vnet_classify_entry_at_index (t, v, value_index); #ifdef CLIB_HAVE_VEC128 if (U32X4_ALIGNED (h)) { u32x4 *data = (u32x4 *) h; for (i = 0; i < limit; i++) { key = v->key; result.as_u32x4 = (data[0 + t->skip_n_vectors] & mask[0]) ^ key[0]; switch (t->match_n_vectors) { case 5: result.as_u32x4 |= (data[4 + t->skip_n_vectors] & mask[4]) ^ key[4]; /* FALLTHROUGH */ case 4: result.as_u32x4 |= (data[3 + t->skip_n_vectors] & mask[3]) ^ key[3]; /* FALLTHROUGH */ case 3: result.as_u32x4 |= (data[2 + t->skip_n_vectors] & mask[2]) ^ key[2]; /* FALLTHROUGH */ case 2: result.as_u32x4 |= (data[1 + t->skip_n_vectors] & mask[1]) ^ key[1]; /* FALLTHROUGH */ case 1: break; default: abort (); } if (u32x4_zero_byte_mask (result.as_u32x4) == 0xffff) { if (PREDICT_TRUE (now)) { v->hits++; v->last_heard = now; } return (v); } v = vnet_classify_entry_at_index (t, v, 1); } } else #endif /* CLIB_HAVE_VEC128 */ { u32 skip_u64 = t->skip_n_vectors * 2; u64 *data64 = (u64 *) h; for (i = 0; i < limit; i++) { key = v->key; result.as_u64[0] = (data64[0 + skip_u64] & ((u64 *) mask)[0]) ^ ((u64 *) key)[0]; result.as_u64[1] = (data64[1 + skip_u64] & ((u64 *) mask)[1]) ^ ((u64 *) key)[1]; switch (t->match_n_vectors) { case 5: result.as_u64[0] |= (data64[8 + skip_u64] & ((u64 *) mask)[8]) ^ ((u64 *) key)[8]; result.as_u64[1] |= (data64[9 + skip_u64] & ((u64 *) mask)[9]) ^ ((u64 *) key)[9]; /* FALLTHROUGH */ case 4: result.as_u64[0] |= (data64[6 + skip_u64] & ((u64 *) mask)[6]) ^ ((u64 *) key)[6]; result.as_u64[1] |= (data64[7 + skip_u64] & ((u64 *) mask)[7]) ^ ((u64 *) key)[7]; /* FALLTHROUGH */ case 3: result.as_u64[0] |= (data64[4 + skip_u64] & ((u64 *) mask)[4]) ^ ((u64 *) key)[4]; result.as_u64[1] |= (data64[5 + skip_u64] & ((u64 *) mask)[5]) ^ ((u64 *) key)[5]; /* FALLTHROUGH */ case 2: result.as_u64[0] |= (data64[2 + skip_u64] & ((u64 *) mask)[2]) ^ ((u64 *) key)[2]; result.as_u64[1] |= (data64[3 + skip_u64] & ((u64 *) mask)[3]) ^ ((u64 *) key)[3]; /* FALLTHROUGH */ case 1: break; default: abort (); } if (result.as_u64[0] == 0 && result.as_u64[1] == 0) { if (PREDICT_TRUE (now)) { v->hits++; v->last_heard = now; } return (v); } v = vnet_classify_entry_at_index (t, v, 1); } } return 0; } vnet_classify_table_t *vnet_classify_new_table (vnet_classify_main_t * cm, u8 * mask, u32 nbuckets, u32 memory_size, u32 skip_n_vectors, u32 match_n_vectors); int vnet_classify_add_del_session (vnet_classify_main_t * cm, u32 table_index, u8 * match, u32 hit_next_index, u32 opaque_index, i32 advance, u8 action, u32 metadata, int is_add); int vnet_classify_add_del_table (vnet_classify_main_t * cm, u8 * mask, u32 nbuckets, u32 memory_size, u32 skip, u32 match, u32 next_table_index, u32 miss_next_index, u32 * table_index, u8 current_data_flag, i16 current_data_offset, int is_add, int del_chain); unformat_function_t unformat_ip4_mask; unformat_function_t unformat_ip6_mask; unformat_function_t unformat_l3_mask; unformat_function_t unformat_l2_mask; unformat_function_t unformat_classify_mask; unformat_function_t unformat_l2_next_index; unformat_function_t unformat_ip_next_index; unformat_function_t unformat_ip4_match; unformat_function_t unformat_ip6_match; unformat_function_t unformat_l3_match; unformat_function_t unformat_l4_match; unformat_function_t unformat_vlan_tag; unformat_function_t unformat_l2_match; unformat_function_t unformat_classify_match; void vnet_classify_register_unformat_ip_next_index_fn (unformat_function_t * fn); void vnet_classify_register_unformat_l2_next_index_fn (unformat_function_t * fn); void vnet_classify_register_unformat_acl_next_index_fn (unformat_function_t * fn); void vnet_classify_register_unformat_policer_next_index_fn (unformat_function_t * fn); void vnet_classify_register_unformat_opaque_index_fn (unformat_function_t * fn); #endif /* __included_vnet_classify_h__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */