/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "dpdk_priv.h" #include #define foreach_dpdk_tx_func_error \ _(BAD_RETVAL, "DPDK tx function returned an error") \ _(RING_FULL, "Tx packet drops (ring full)") \ _(PKT_DROP, "Tx packet drops (dpdk tx failure)") \ _(REPL_FAIL, "Tx packet drops (replication failure)") typedef enum { #define _(f,s) DPDK_TX_FUNC_ERROR_##f, foreach_dpdk_tx_func_error #undef _ DPDK_TX_FUNC_N_ERROR, } dpdk_tx_func_error_t; static char *dpdk_tx_func_error_strings[] = { #define _(n,s) s, foreach_dpdk_tx_func_error #undef _ }; clib_error_t * dpdk_set_mac_address (vnet_hw_interface_t * hi, char *address) { int error; dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); error = rte_eth_dev_default_mac_addr_set (xd->device_index, (struct ether_addr *) address); if (error) { return clib_error_return (0, "mac address set failed: %d", error); } else { return NULL; } } clib_error_t * dpdk_set_mc_filter (vnet_hw_interface_t * hi, struct ether_addr mc_addr_vec[], int naddr) { int error; dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd = vec_elt_at_index (dm->devices, hi->dev_instance); error = rte_eth_dev_set_mc_addr_list (xd->device_index, mc_addr_vec, naddr); if (error) { return clib_error_return (0, "mc addr list failed: %d", error); } else { return NULL; } } struct rte_mbuf * dpdk_replicate_packet_mb (vlib_buffer_t * b) { vlib_main_t *vm = vlib_get_main (); vlib_buffer_main_t *bm = vm->buffer_main; struct rte_mbuf **mbufs = 0, *s, *d; u8 nb_segs; unsigned socket_id = rte_socket_id (); int i; ASSERT (bm->pktmbuf_pools[socket_id]); s = rte_mbuf_from_vlib_buffer (b); nb_segs = s->nb_segs; vec_validate (mbufs, nb_segs - 1); if (rte_pktmbuf_alloc_bulk (bm->pktmbuf_pools[socket_id], mbufs, nb_segs)) { vec_free (mbufs); return 0; } d = mbufs[0]; d->nb_segs = s->nb_segs; d->data_len = s->data_len; d->pkt_len = s->pkt_len; d->data_off = s->data_off; clib_memcpy (d->buf_addr, s->buf_addr, RTE_PKTMBUF_HEADROOM + s->data_len); for (i = 1; i < nb_segs; i++) { d->next = mbufs[i]; d = mbufs[i]; s = s->next; d->data_len = s->data_len; clib_memcpy (d->buf_addr, s->buf_addr, RTE_PKTMBUF_HEADROOM + s->data_len); } d = mbufs[0]; vec_free (mbufs); return d; } static void dpdk_tx_trace_buffer (dpdk_main_t * dm, vlib_node_runtime_t * node, dpdk_device_t * xd, u16 queue_id, u32 buffer_index, vlib_buffer_t * buffer) { vlib_main_t *vm = vlib_get_main (); dpdk_tx_dma_trace_t *t0; struct rte_mbuf *mb; mb = rte_mbuf_from_vlib_buffer (buffer); t0 = vlib_add_trace (vm, node, buffer, sizeof (t0[0])); t0->queue_index = queue_id; t0->device_index = xd->device_index; t0->buffer_index = buffer_index; clib_memcpy (&t0->mb, mb, sizeof (t0->mb)); clib_memcpy (&t0->buffer, buffer, sizeof (buffer[0]) - sizeof (buffer->pre_data)); clib_memcpy (t0->buffer.pre_data, buffer->data + buffer->current_data, sizeof (t0->buffer.pre_data)); } static_always_inline void dpdk_validate_rte_mbuf (vlib_main_t * vm, vlib_buffer_t * b, int maybe_multiseg) { struct rte_mbuf *mb, *first_mb, *last_mb; /* buffer is coming from non-dpdk source so we need to init rte_mbuf header */ if (PREDICT_FALSE ((b->flags & VNET_BUFFER_RTE_MBUF_VALID) == 0)) { vlib_buffer_t *b2 = b; last_mb = mb = rte_mbuf_from_vlib_buffer (b2); rte_pktmbuf_reset (mb); while (maybe_multiseg && (b2->flags & VLIB_BUFFER_NEXT_PRESENT)) { b2 = vlib_get_buffer (vm, b2->next_buffer); mb = rte_mbuf_from_vlib_buffer (b2); last_mb->next = mb; last_mb = mb; rte_pktmbuf_reset (mb); } } first_mb = mb = rte_mbuf_from_vlib_buffer (b); first_mb->nb_segs = 1; mb->data_len = b->current_length; mb->pkt_len = maybe_multiseg ? vlib_buffer_length_in_chain (vm, b) : b->current_length; mb->data_off = VLIB_BUFFER_PRE_DATA_SIZE + b->current_data; while (maybe_multiseg && (b->flags & VLIB_BUFFER_NEXT_PRESENT)) { b = vlib_get_buffer (vm, b->next_buffer); mb = rte_mbuf_from_vlib_buffer (b); mb->data_len = b->current_length; mb->pkt_len = b->current_length; mb->data_off = VLIB_BUFFER_PRE_DATA_SIZE + b->current_data; first_mb->nb_segs++; } } /* * This function calls the dpdk's tx_burst function to transmit the packets * on the tx_vector. It manages a lock per-device if the device does not * support multiple queues. It returns the number of packets untransmitted * on the tx_vector. If all packets are transmitted (the normal case), the * function returns 0. * * The function assumes there is at least one packet on the tx_vector. */ static_always_inline u32 tx_burst_vector_internal (vlib_main_t * vm, dpdk_device_t * xd, struct rte_mbuf **tx_vector) { dpdk_main_t *dm = &dpdk_main; u32 n_packets; u32 tx_head; u32 tx_tail; u32 n_retry; int rv; int queue_id; tx_ring_hdr_t *ring; ring = vec_header (tx_vector, sizeof (*ring)); n_packets = ring->tx_head - ring->tx_tail; tx_head = ring->tx_head % xd->nb_tx_desc; /* * Ensure rte_eth_tx_burst is not called with 0 packets, which can lead to * unpredictable results. */ ASSERT (n_packets > 0); /* * Check for tx_vector overflow. If this fails it is a system configuration * error. The ring should be sized big enough to handle the largest un-flowed * off burst from a traffic manager. A larger size also helps performance * a bit because it decreases the probability of having to issue two tx_burst * calls due to a ring wrap. */ ASSERT (n_packets < xd->nb_tx_desc); ASSERT (ring->tx_tail == 0); n_retry = 16; queue_id = vm->cpu_index; do { /* start the burst at the tail */ tx_tail = ring->tx_tail % xd->nb_tx_desc; /* * This device only supports one TX queue, * and we're running multi-threaded... */ if (PREDICT_FALSE (xd->lockp != 0)) { queue_id = queue_id % xd->tx_q_used; while (__sync_lock_test_and_set (xd->lockp[queue_id], 1)) /* zzzz */ queue_id = (queue_id + 1) % xd->tx_q_used; } if (PREDICT_FALSE (xd->flags & DPDK_DEVICE_FLAG_HQOS)) /* HQoS ON */ { /* no wrap, transmit in one burst */ dpdk_device_hqos_per_worker_thread_t *hqos = &xd->hqos_wt[vm->cpu_index]; ASSERT (hqos->swq != NULL); dpdk_hqos_metadata_set (hqos, &tx_vector[tx_tail], tx_head - tx_tail); rv = rte_ring_sp_enqueue_burst (hqos->swq, (void **) &tx_vector[tx_tail], (uint16_t) (tx_head - tx_tail)); } else if (PREDICT_TRUE (xd->flags & DPDK_DEVICE_FLAG_PMD)) { /* no wrap, transmit in one burst */ rv = rte_eth_tx_burst (xd->device_index, (uint16_t) queue_id, &tx_vector[tx_tail], (uint16_t) (tx_head - tx_tail)); } else { ASSERT (0); rv = 0; } if (PREDICT_FALSE (xd->lockp != 0)) *xd->lockp[queue_id] = 0; if (PREDICT_FALSE (rv < 0)) { // emit non-fatal message, bump counter vnet_main_t *vnm = dm->vnet_main; vnet_interface_main_t *im = &vnm->interface_main; u32 node_index; node_index = vec_elt_at_index (im->hw_interfaces, xd->vlib_hw_if_index)->tx_node_index; vlib_error_count (vm, node_index, DPDK_TX_FUNC_ERROR_BAD_RETVAL, 1); clib_warning ("rte_eth_tx_burst[%d]: error %d", xd->device_index, rv); return n_packets; // untransmitted packets } ring->tx_tail += (u16) rv; n_packets -= (uint16_t) rv; } while (rv && n_packets && (n_retry > 0)); return n_packets; } static_always_inline void dpdk_prefetch_buffer_by_index (vlib_main_t * vm, u32 bi) { vlib_buffer_t *b; struct rte_mbuf *mb; b = vlib_get_buffer (vm, bi); mb = rte_mbuf_from_vlib_buffer (b); CLIB_PREFETCH (mb, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH (b, CLIB_CACHE_LINE_BYTES, LOAD); } static_always_inline void dpdk_buffer_recycle (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_buffer_t * b, u32 bi, struct rte_mbuf **mbp) { dpdk_main_t *dm = &dpdk_main; u32 my_cpu = vm->cpu_index; struct rte_mbuf *mb_new; if (PREDICT_FALSE (b->flags & VLIB_BUFFER_RECYCLE) == 0) return; mb_new = dpdk_replicate_packet_mb (b); if (PREDICT_FALSE (mb_new == 0)) { vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); b->flags |= VLIB_BUFFER_REPL_FAIL; } else *mbp = mb_new; vec_add1 (dm->recycle[my_cpu], bi); } /* * Transmits the packets on the frame to the interface associated with the * node. It first copies packets on the frame to a tx_vector containing the * rte_mbuf pointers. It then passes this vector to tx_burst_vector_internal * which calls the dpdk tx_burst function. */ static uword dpdk_interface_tx (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * f) { dpdk_main_t *dm = &dpdk_main; vnet_interface_output_runtime_t *rd = (void *) node->runtime_data; dpdk_device_t *xd = vec_elt_at_index (dm->devices, rd->dev_instance); u32 n_packets = f->n_vectors; u32 n_left; u32 *from; struct rte_mbuf **tx_vector; u16 i; u16 nb_tx_desc = xd->nb_tx_desc; int queue_id; u32 my_cpu; u32 tx_pkts = 0; tx_ring_hdr_t *ring; u32 n_on_ring; my_cpu = vm->cpu_index; queue_id = my_cpu; tx_vector = xd->tx_vectors[queue_id]; ring = vec_header (tx_vector, sizeof (*ring)); n_on_ring = ring->tx_head - ring->tx_tail; from = vlib_frame_vector_args (f); ASSERT (n_packets <= VLIB_FRAME_SIZE); if (PREDICT_FALSE (n_on_ring + n_packets > nb_tx_desc)) { /* * Overflowing the ring should never happen. * If it does then drop the whole frame. */ vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_RING_FULL, n_packets); while (n_packets--) { u32 bi0 = from[n_packets]; vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0); struct rte_mbuf *mb0 = rte_mbuf_from_vlib_buffer (b0); rte_pktmbuf_free (mb0); } return n_on_ring; } if (PREDICT_FALSE (dm->tx_pcap_enable)) { n_left = n_packets; while (n_left > 0) { u32 bi0 = from[0]; vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0); if (dm->pcap_sw_if_index == 0 || dm->pcap_sw_if_index == vnet_buffer (b0)->sw_if_index[VLIB_TX]) pcap_add_buffer (&dm->pcap_main, vm, bi0, 512); from++; n_left--; } } from = vlib_frame_vector_args (f); n_left = n_packets; i = ring->tx_head % nb_tx_desc; while (n_left >= 8) { u32 bi0, bi1, bi2, bi3; struct rte_mbuf *mb0, *mb1, *mb2, *mb3; vlib_buffer_t *b0, *b1, *b2, *b3; u32 or_flags; dpdk_prefetch_buffer_by_index (vm, from[4]); dpdk_prefetch_buffer_by_index (vm, from[5]); dpdk_prefetch_buffer_by_index (vm, from[6]); dpdk_prefetch_buffer_by_index (vm, from[7]); bi0 = from[0]; bi1 = from[1]; bi2 = from[2]; bi3 = from[3]; from += 4; b0 = vlib_get_buffer (vm, bi0); b1 = vlib_get_buffer (vm, bi1); b2 = vlib_get_buffer (vm, bi2); b3 = vlib_get_buffer (vm, bi3); or_flags = b0->flags | b1->flags | b2->flags | b3->flags; if (or_flags & VLIB_BUFFER_NEXT_PRESENT) { dpdk_validate_rte_mbuf (vm, b0, 1); dpdk_validate_rte_mbuf (vm, b1, 1); dpdk_validate_rte_mbuf (vm, b2, 1); dpdk_validate_rte_mbuf (vm, b3, 1); } else { dpdk_validate_rte_mbuf (vm, b0, 0); dpdk_validate_rte_mbuf (vm, b1, 0); dpdk_validate_rte_mbuf (vm, b2, 0); dpdk_validate_rte_mbuf (vm, b3, 0); } mb0 = rte_mbuf_from_vlib_buffer (b0); mb1 = rte_mbuf_from_vlib_buffer (b1); mb2 = rte_mbuf_from_vlib_buffer (b2); mb3 = rte_mbuf_from_vlib_buffer (b3); if (PREDICT_FALSE (or_flags & VLIB_BUFFER_RECYCLE)) { dpdk_buffer_recycle (vm, node, b0, bi0, &mb0); dpdk_buffer_recycle (vm, node, b1, bi1, &mb1); dpdk_buffer_recycle (vm, node, b2, bi2, &mb2); dpdk_buffer_recycle (vm, node, b3, bi3, &mb3); /* dont enqueue packets if replication failed as they must be sent back to recycle */ if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) tx_vector[i++ % nb_tx_desc] = mb0; if (PREDICT_TRUE ((b1->flags & VLIB_BUFFER_REPL_FAIL) == 0)) tx_vector[i++ % nb_tx_desc] = mb1; if (PREDICT_TRUE ((b2->flags & VLIB_BUFFER_REPL_FAIL) == 0)) tx_vector[i++ % nb_tx_desc] = mb2; if (PREDICT_TRUE ((b3->flags & VLIB_BUFFER_REPL_FAIL) == 0)) tx_vector[i++ % nb_tx_desc] = mb3; } else { if (PREDICT_FALSE (i + 3 >= nb_tx_desc)) { tx_vector[i++ % nb_tx_desc] = mb0; tx_vector[i++ % nb_tx_desc] = mb1; tx_vector[i++ % nb_tx_desc] = mb2; tx_vector[i++ % nb_tx_desc] = mb3; i %= nb_tx_desc; } else { tx_vector[i++] = mb0; tx_vector[i++] = mb1; tx_vector[i++] = mb2; tx_vector[i++] = mb3; } } if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) { if (b0->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); if (b1->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi1, b1); if (b2->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi2, b2); if (b3->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi3, b3); } n_left -= 4; } while (n_left > 0) { u32 bi0; struct rte_mbuf *mb0; vlib_buffer_t *b0; bi0 = from[0]; from++; b0 = vlib_get_buffer (vm, bi0); dpdk_validate_rte_mbuf (vm, b0, 1); mb0 = rte_mbuf_from_vlib_buffer (b0); dpdk_buffer_recycle (vm, node, b0, bi0, &mb0); if (PREDICT_FALSE (node->flags & VLIB_NODE_FLAG_TRACE)) if (b0->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); if (PREDICT_TRUE ((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) { tx_vector[i % nb_tx_desc] = mb0; i++; } n_left--; } /* account for additional packets in the ring */ ring->tx_head += n_packets; n_on_ring = ring->tx_head - ring->tx_tail; /* transmit as many packets as possible */ n_packets = tx_burst_vector_internal (vm, xd, tx_vector); /* * tx_pkts is the number of packets successfully transmitted * This is the number originally on ring minus the number remaining on ring */ tx_pkts = n_on_ring - n_packets; { /* If there is no callback then drop any non-transmitted packets */ if (PREDICT_FALSE (n_packets)) { vlib_simple_counter_main_t *cm; vnet_main_t *vnm = vnet_get_main (); cm = vec_elt_at_index (vnm->interface_main.sw_if_counters, VNET_INTERFACE_COUNTER_TX_ERROR); vlib_increment_simple_counter (cm, my_cpu, xd->vlib_sw_if_index, n_packets); vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_PKT_DROP, n_packets); while (n_packets--) rte_pktmbuf_free (tx_vector[ring->tx_tail + n_packets]); } /* Reset head/tail to avoid unnecessary wrap */ ring->tx_head = 0; ring->tx_tail = 0; } /* Recycle replicated buffers */ if (PREDICT_FALSE (vec_len (dm->recycle[my_cpu]))) { vlib_buffer_free (vm, dm->recycle[my_cpu], vec_len (dm->recycle[my_cpu])); _vec_len (dm->recycle[my_cpu]) = 0; } ASSERT (ring->tx_head >= ring->tx_tail); return tx_pkts; } static void dpdk_clear_hw_interface_counters (u32 instance) { dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd = vec_elt_at_index (dm->devices, instance); /* * Set the "last_cleared_stats" to the current stats, so that * things appear to clear from a display perspective. */ dpdk_update_counters (xd, vlib_time_now (dm->vlib_main)); clib_memcpy (&xd->last_cleared_stats, &xd->stats, sizeof (xd->stats)); clib_memcpy (xd->last_cleared_xstats, xd->xstats, vec_len (xd->last_cleared_xstats) * sizeof (xd->last_cleared_xstats[0])); } static clib_error_t * dpdk_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags) { vnet_hw_interface_t *hif = vnet_get_hw_interface (vnm, hw_if_index); uword is_up = (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0; dpdk_main_t *dm = &dpdk_main; dpdk_device_t *xd = vec_elt_at_index (dm->devices, hif->dev_instance); int rv = 0; if (is_up) { f64 now = vlib_time_now (dm->vlib_main); if ((xd->flags & DPDK_DEVICE_FLAG_ADMIN_UP) == 0) rv = rte_eth_dev_start (xd->device_index); if (xd->flags & DPDK_DEVICE_FLAG_PROMISC) rte_eth_promiscuous_enable (xd->device_index); else rte_eth_promiscuous_disable (xd->device_index); rte_eth_allmulticast_enable (xd->device_index); xd->flags |= DPDK_DEVICE_FLAG_ADMIN_UP; dpdk_update_counters (xd, now); dpdk_update_link_state (xd, now); } else { xd->flags &= ~DPDK_DEVICE_FLAG_ADMIN_UP; rte_eth_allmulticast_disable (xd->device_index); vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0); rte_eth_dev_stop (xd->device_index); /* For bonded interface, stop slave links */ if (xd->pmd == VNET_DPDK_PMD_BOND) { u8 slink[16]; int nlink = rte_eth_bond_slaves_get (xd->device_index, slink, 16); while (nlink >= 1) { u8 dpdk_port = slink[--nlink]; rte_eth_dev_stop (dpdk_port); } } } if (rv < 0) clib_warning ("rte_eth_dev_%s error: %d", is_up ? "start" : "stop", rv); return /* no error */ 0; } /* * Dynamically redirect all pkts from a specific interface * to the specified node */ static void dpdk_set_interface_next_node (vnet_main_t * vnm, u32 hw_if_index, u32 node_index) { dpdk_main_t *xm = &dpdk_main; vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance); /* Shut off redirection */ if (node_index == ~0) { xd->per_interface_next_index = node_index; return; } xd->per_interface_next_index = vlib_node_add_next (xm->vlib_main, dpdk_input_node.index, node_index); } static clib_error_t * dpdk_subif_add_del_function (vnet_main_t * vnm, u32 hw_if_index, struct vnet_sw_interface_t *st, int is_add) { dpdk_main_t *xm = &dpdk_main; vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); dpdk_device_t *xd = vec_elt_at_index (xm->devices, hw->dev_instance); vnet_sw_interface_t *t = (vnet_sw_interface_t *) st; int r, vlan_offload; u32 prev_subifs = xd->num_subifs; clib_error_t *err = 0; if (is_add) xd->num_subifs++; else if (xd->num_subifs) xd->num_subifs--; if ((xd->flags & DPDK_DEVICE_FLAG_PMD) == 0) goto done; /* currently we program VLANS only for IXGBE VF and I40E VF */ if ((xd->pmd != VNET_DPDK_PMD_IXGBEVF) && (xd->pmd != VNET_DPDK_PMD_I40EVF)) goto done; if (t->sub.eth.flags.no_tags == 1) goto done; if ((t->sub.eth.flags.one_tag != 1) || (t->sub.eth.flags.exact_match != 1)) { xd->num_subifs = prev_subifs; err = clib_error_return (0, "unsupported VLAN setup"); goto done; } vlan_offload = rte_eth_dev_get_vlan_offload (xd->device_index); vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; if ((r = rte_eth_dev_set_vlan_offload (xd->device_index, vlan_offload))) { xd->num_subifs = prev_subifs; err = clib_error_return (0, "rte_eth_dev_set_vlan_offload[%d]: err %d", xd->device_index, r); goto done; } if ((r = rte_eth_dev_vlan_filter (xd->device_index, t->sub.eth.outer_vlan_id, is_add))) { xd->num_subifs = prev_subifs; err = clib_error_return (0, "rte_eth_dev_vlan_filter[%d]: err %d", xd->device_index, r); goto done; } done: if (xd->num_subifs) xd->flags |= DPDK_DEVICE_FLAG_HAVE_SUBIF; else xd->flags &= ~DPDK_DEVICE_FLAG_HAVE_SUBIF; return err; } /* *INDENT-OFF* */ VNET_DEVICE_CLASS (dpdk_device_class) = { .name = "dpdk", .tx_function = dpdk_interface_tx, .tx_function_n_errors = DPDK_TX_FUNC_N_ERROR, .tx_function_error_strings = dpdk_tx_func_error_strings, .format_device_name = format_dpdk_device_name, .format_device = format_dpdk_device, .format_tx_trace = format_dpdk_tx_dma_trace, .clear_counters = dpdk_clear_hw_interface_counters, .admin_up_down_function = dpdk_interface_admin_up_down, .subif_add_del_function = dpdk_subif_add_del_function, .rx_redirect_to_node = dpdk_set_interface_next_node, .mac_addr_change_function = dpdk_set_mac_address, }; VLIB_DEVICE_TX_FUNCTION_MULTIARCH (dpdk_device_class, dpdk_interface_tx) /* *INDENT-ON* */ #define UP_DOWN_FLAG_EVENT 1 uword admin_up_down_process (vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { clib_error_t *error = 0; uword event_type; uword *event_data = 0; u32 sw_if_index; u32 flags; while (1) { vlib_process_wait_for_event (vm); event_type = vlib_process_get_events (vm, &event_data); dpdk_main.admin_up_down_in_progress = 1; switch (event_type) { case UP_DOWN_FLAG_EVENT: { if (vec_len (event_data) == 2) { sw_if_index = event_data[0]; flags = event_data[1]; error = vnet_sw_interface_set_flags (vnet_get_main (), sw_if_index, flags); clib_error_report (error); } } break; } vec_reset_length (event_data); dpdk_main.admin_up_down_in_progress = 0; } return 0; /* or not */ } /* *INDENT-OFF* */ VLIB_REGISTER_NODE (admin_up_down_process_node,static) = { .function = admin_up_down_process, .type = VLIB_NODE_TYPE_PROCESS, .name = "admin-up-down-process", .process_log2_n_stack_bytes = 17, // 256KB }; /* *INDENT-ON* */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */