/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * ethernet.h: types/functions for ethernet. * * Copyright (c) 2008 Eliot Dresselhaus * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef included_ethernet_h #define included_ethernet_h #include <vnet/vnet.h> #include <vnet/ethernet/packet.h> #include <vnet/ethernet/mac_address.h> #include <vnet/pg/pg.h> #include <vnet/feature/feature.h> /* ethernet-input frame flags and scalar data */ /* all packets in frame share same sw_if_index */ #define ETH_INPUT_FRAME_F_SINGLE_SW_IF_IDX (1 << 0) /* all ip4 packets in frame have correct ip4 checksum */ #define ETH_INPUT_FRAME_F_IP4_CKSUM_OK (1 << 1) typedef struct { u32 sw_if_index; u32 hw_if_index; } ethernet_input_frame_t; #ifdef CLIB_HAVE_VEC128 static const u16x8 tagged_ethertypes = { (u16) ETHERNET_TYPE_VLAN, (u16) ETHERNET_TYPE_DOT1AD, (u16) ETHERNET_TYPE_VLAN_9100, (u16) ETHERNET_TYPE_VLAN_9200, /* duplicate last one to fill register */ (u16) ETHERNET_TYPE_VLAN_9200, (u16) ETHERNET_TYPE_VLAN_9200, (u16) ETHERNET_TYPE_VLAN_9200, (u16) ETHERNET_TYPE_VLAN_9200 }; #endif static_always_inline int ethernet_frame_is_tagged (u16 type) { #ifdef CLIB_HAVE_VEC128 return !u16x8_is_all_zero (tagged_ethertypes == u16x8_splat (type)); #else if ((type == ETHERNET_TYPE_VLAN) || (type == ETHERNET_TYPE_DOT1AD) || (type == ETHERNET_TYPE_VLAN_9100) || (type == ETHERNET_TYPE_VLAN_9200)) return 1; #endif return 0; } static_always_inline int ethernet_frame_is_any_tagged_x2 (u16 type0, u16 type1) { #ifdef CLIB_HAVE_VEC128 u16x8 r0 = (tagged_ethertypes == u16x8_splat (type0)); u16x8 r1 = (tagged_ethertypes == u16x8_splat (type1)); return !u16x8_is_all_zero (r0 | r1); #else return ethernet_frame_is_tagged (type0) || ethernet_frame_is_tagged (type1); #endif } static_always_inline int ethernet_frame_is_any_tagged_x4 (u16 type0, u16 type1, u16 type2, u16 type3) { #ifdef CLIB_HAVE_VEC128 u16x8 r0 = (tagged_ethertypes == u16x8_splat (type0)); u16x8 r1 = (tagged_ethertypes == u16x8_splat (type1)); u16x8 r2 = (tagged_ethertypes == u16x8_splat (type2)); u16x8 r3 = (tagged_ethertypes == u16x8_splat (type3)); return !u16x8_is_all_zero (r0 | r1 | r2 | r3); #else return ethernet_frame_is_tagged (type0) || ethernet_frame_is_tagged (type1) || ethernet_frame_is_tagged (type2) || ethernet_frame_is_tagged (type3); #endif } /* Max. sized ethernet/vlan header for parsing. */ typedef struct { ethernet_header_t ethernet; /* Allow up to 2 stacked vlan headers. */ ethernet_vlan_header_t vlan[2]; } ethernet_max_header_t; struct vnet_hw_interface_t; /* Ethernet flag change callback. */ typedef u32 (ethernet_flag_change_function_t) (vnet_main_t * vnm, struct vnet_hw_interface_t * hi, u32 flags); #define ETHERNET_MIN_PACKET_BYTES 64 #define ETHERNET_MAX_PACKET_BYTES 9216 /* ethernet dataplane loads mac address as u64 for efficiency */ typedef union ethernet_interface_address { struct { mac_address_t mac; u16 zero; }; u64 as_u64; } ethernet_interface_address_t; /* Ethernet interface instance. */ typedef struct ethernet_interface { u32 flags; /* Top 16 bits for status and bottom 16 bits for set operation */ #define ETHERNET_INTERFACE_FLAGS_STATUS_MASK (0xffff0000) #define ETHERNET_INTERFACE_FLAGS_SET_OPN_MASK (0x0000ffff) /* Interface driver/hw is in L3/non-promiscuous mode so packet DMAC would already be filtered */ #define ETHERNET_INTERFACE_FLAG_STATUS_L3 (1 << 16) /* Set interface to default L3 mode */ #define ETHERNET_INTERFACE_FLAG_DEFAULT_L3 0 /* Set interface to accept all packets (promiscuous mode). */ #define ETHERNET_INTERFACE_FLAG_ACCEPT_ALL 1 /* Change MTU on interface from hw interface structure */ #define ETHERNET_INTERFACE_FLAG_MTU 2 /* Callback, e.g. to turn on/off promiscuous mode */ ethernet_flag_change_function_t *flag_change; u32 driver_instance; /* Ethernet (MAC) address for this interface. */ ethernet_interface_address_t address; /* Secondary MAC addresses for this interface */ ethernet_interface_address_t *secondary_addrs; } ethernet_interface_t; extern vnet_hw_interface_class_t ethernet_hw_interface_class; typedef struct { /* Name (a c string). */ char *name; /* Ethernet type in host byte order. */ ethernet_type_t type; /* Node which handles this type. */ u32 node_index; /* Next index for this type. */ u32 next_index; } ethernet_type_info_t; typedef enum { #define ethernet_error(n,c,s) ETHERNET_ERROR_##n, #include <vnet/ethernet/error.def> #undef ethernet_error ETHERNET_N_ERROR, } ethernet_error_t; // Structs used when parsing packet to find sw_if_index typedef struct { u32 sw_if_index; u32 flags; // config entry is-valid flag // exact match flags (valid if packet has 0/1/2/3 tags) // L2 vs L3 forwarding mode #define SUBINT_CONFIG_MATCH_0_TAG (1<<0) #define SUBINT_CONFIG_MATCH_1_TAG (1<<1) #define SUBINT_CONFIG_MATCH_2_TAG (1<<2) #define SUBINT_CONFIG_MATCH_3_TAG (1<<3) #define SUBINT_CONFIG_VALID (1<<4) #define SUBINT_CONFIG_L2 (1<<5) #define SUBINT_CONFIG_P2P (1<<6) } subint_config_t; always_inline u32 eth_create_valid_subint_match_flags (u32 num_tags) { return SUBINT_CONFIG_VALID | (1 << num_tags); } typedef struct { subint_config_t untagged_subint; subint_config_t default_subint; u16 dot1q_vlans; // pool id for vlan table u16 dot1ad_vlans; // pool id for vlan table } main_intf_t; typedef struct { subint_config_t single_tag_subint; subint_config_t inner_any_subint; u32 qinqs; // pool id for qinq table } vlan_intf_t; typedef struct { vlan_intf_t vlans[ETHERNET_N_VLAN]; } vlan_table_t; typedef struct { subint_config_t subint; } qinq_intf_t; typedef struct { qinq_intf_t vlans[ETHERNET_N_VLAN]; } qinq_table_t; // Structure mapping to a next index based on ethertype. // Common ethertypes are stored explicitly, others are // stored in a sparse table. typedef struct { /* Sparse vector mapping ethernet type in network byte order to next index. */ u16 *input_next_by_type; u32 *sparse_index_by_input_next_index; /* cached next indexes for common ethertypes */ u32 input_next_ip4; u32 input_next_ip6; u32 input_next_mpls; } next_by_ethertype_t; struct ethernet_main_t_; typedef void (ethernet_address_change_function_t) (struct ethernet_main_t_ * im, u32 sw_if_index, uword opaque); typedef struct { ethernet_address_change_function_t *function; uword function_opaque; } ethernet_address_change_ctx_t; typedef struct ethernet_main_t_ { vlib_main_t *vlib_main; /* next node index for the L3 input node of each ethertype */ next_by_ethertype_t l3_next; /* next node index for L2 interfaces */ u32 l2_next; /* flag and next node index for L3 redirect */ u32 redirect_l3; u32 redirect_l3_next; /* Pool of ethernet interface instances. */ ethernet_interface_t *interfaces; ethernet_type_info_t *type_infos; /* Hash tables mapping name/type to type info index. */ uword *type_info_by_name, *type_info_by_type; // The root of the vlan parsing tables. A vector with one element // for each main interface, indexed by hw_if_index. main_intf_t *main_intfs; // Pool of vlan tables vlan_table_t *vlan_pool; // Pool of qinq tables; qinq_table_t *qinq_pool; /* Set to one to use AB.CD.EF instead of A:B:C:D:E:F as ethernet format. */ int format_ethernet_address_16bit; /* debug: make sure we don't wipe out an ethernet registration by mistake */ u8 next_by_ethertype_register_called; /* Feature arc index */ u8 output_feature_arc_index; /* Allocated loopback instances */ uword *bm_loopback_instances; /** Functions to call when interface hw address changes. */ ethernet_address_change_ctx_t *address_change_callbacks; /** Default interface MTU */ u32 default_mtu; } ethernet_main_t; extern ethernet_main_t ethernet_main; always_inline ethernet_type_info_t * ethernet_get_type_info (ethernet_main_t * em, ethernet_type_t type) { uword *p = hash_get (em->type_info_by_type, type); return p ? vec_elt_at_index (em->type_infos, p[0]) : 0; } ethernet_interface_t *ethernet_get_interface (ethernet_main_t * em, u32 hw_if_index); mac_address_t *ethernet_interface_add_del_address (ethernet_main_t * em, u32 hw_if_index, const u8 * address, u8 is_add); clib_error_t *ethernet_register_interface (vnet_main_t * vnm, u32 dev_class_index, u32 dev_instance, const u8 * address, u32 * hw_if_index_return, ethernet_flag_change_function_t flag_change); void ethernet_delete_interface (vnet_main_t * vnm, u32 hw_if_index); /* Register given node index to take input for given ethernet type. */ void ethernet_register_input_type (vlib_main_t * vm, ethernet_type_t type, u32 node_index); /* Register given node index to take input for packet from L2 interfaces. */ void ethernet_register_l2_input (vlib_main_t * vm, u32 node_index); /* Register given node index to take redirected L3 traffic, and enable L3 redirect */ void ethernet_register_l3_redirect (vlib_main_t * vm, u32 node_index); /* Formats ethernet address X:X:X:X:X:X */ u8 *format_mac_address (u8 * s, va_list * args); u8 *format_ethernet_address (u8 * s, va_list * args); u8 *format_ethernet_type (u8 * s, va_list * args); u8 *format_ethernet_vlan_tci (u8 * s, va_list * va); u8 *format_ethernet_header (u8 * s, va_list * args); u8 *format_ethernet_header_with_length (u8 * s, va_list * args); /* Parse ethernet address in either X:X:X:X:X:X unix or X.X.X cisco format. */ uword unformat_ethernet_address (unformat_input_t * input, va_list * args); uword unformat_mac_address (unformat_input_t * input, va_list * args); /* Parse ethernet type as 0xXXXX or type name from ethernet/types.def. In either host or network byte order. */ uword unformat_ethernet_type_host_byte_order (unformat_input_t * input, va_list * args); uword unformat_ethernet_type_net_byte_order (unformat_input_t * input, va_list * args); /* Parse ethernet header. */ uword unformat_ethernet_header (unformat_input_t * input, va_list * args); /* Parse ethernet interface name; return hw_if_index. */ uword unformat_ethernet_interface (unformat_input_t * input, va_list * args); uword unformat_pg_ethernet_header (unformat_input_t * input, va_list * args); always_inline void ethernet_setup_node (vlib_main_t * vm, u32 node_index) { vlib_node_t *n = vlib_get_node (vm, node_index); pg_node_t *pn = pg_get_node (node_index); n->format_buffer = format_ethernet_header_with_length; n->unformat_buffer = unformat_ethernet_header; pn->unformat_edit = unformat_pg_ethernet_header; } always_inline ethernet_header_t * ethernet_buffer_get_header (vlib_buffer_t * b) { return (void *) (b->data + vnet_buffer (b)->l2_hdr_offset); } /** Returns the number of VLAN headers in the current Ethernet frame in the * buffer. Returns 0, 1, 2 for the known header count. The value 3 indicates * the number of headers is not known. */ #define ethernet_buffer_get_vlan_count(b) ( \ ((b)->flags & VNET_BUFFER_FLAGS_VLAN_BITS) >> VNET_BUFFER_F_LOG2_VLAN_1_DEEP \ ) /** Sets the number of VLAN headers in the current Ethernet frame in the * buffer. Values 0, 1, 2 indicate the header count. The value 3 indicates * the number of headers is not known. */ #define ethernet_buffer_set_vlan_count(b, v) ( \ (b)->flags = ((b)->flags & ~VNET_BUFFER_FLAGS_VLAN_BITS) | \ (((v) << VNET_BUFFER_F_LOG2_VLAN_1_DEEP) & VNET_BUFFER_FLAGS_VLAN_BITS) \ ) /** Adjusts the vlan count by the delta in 'v' */ #define ethernet_buffer_adjust_vlan_count(b, v) ( \ ethernet_buffer_set_vlan_count(b, \ (word)ethernet_buffer_get_vlan_count(b) + (word)(v)) \ ) /** Adjusts the vlan count by the header size byte delta in 'v' */ #define ethernet_buffer_adjust_vlan_count_by_bytes(b, v) ( \ (b)->flags = ((b)->flags & ~VNET_BUFFER_FLAGS_VLAN_BITS) | (( \ ((b)->flags & VNET_BUFFER_FLAGS_VLAN_BITS) + \ ((v) << (VNET_BUFFER_F_LOG2_VLAN_1_DEEP - 2)) \ ) & VNET_BUFFER_FLAGS_VLAN_BITS) \ ) /** * Determine the size of the Ethernet headers of the current frame in * the buffer. This uses the VLAN depth flags that are set by * ethernet-input. Because these flags are stored in the vlib_buffer_t * "flags" field this count is valid regardless of the node so long as it's * checked downstream of ethernet-input; That is, the value is not stored in * the opaque space. */ #define ethernet_buffer_header_size(b) ( \ ethernet_buffer_get_vlan_count((b)) * sizeof(ethernet_vlan_header_t) + \ sizeof(ethernet_header_t) \ ) ethernet_main_t *ethernet_get_main (vlib_main_t * vm); u32 ethernet_set_flags (vnet_main_t * vnm, u32 hw_if_index, u32 flags); void ethernet_sw_interface_set_l2_mode (vnet_main_t * vnm, u32 sw_if_index, u32 l2); void ethernet_sw_interface_set_l2_mode_noport (vnet_main_t * vnm, u32 sw_if_index, u32 l2); void ethernet_set_rx_redirect (vnet_main_t * vnm, vnet_hw_interface_t * hi, u32 enable); clib_error_t *next_by_ethertype_init (next_by_ethertype_t * l3_next); clib_error_t *next_by_ethertype_register (next_by_ethertype_t * l3_next, u32 ethertype, u32 next_index); int vnet_create_loopback_interface (u32 * sw_if_indexp, u8 * mac_address, u8 is_specified, u32 user_instance); int vnet_delete_loopback_interface (u32 sw_if_index); int vnet_create_sub_interface (u32 sw_if_index, u32 id, u32 flags, u16 inner_vlan_id, u16 outer_vlan_id, u32 * sub_sw_if_index); int vnet_delete_sub_interface (u32 sw_if_index); // Perform ethernet subinterface classification table lookups given // the ports's sw_if_index and fields extracted from the ethernet header. // The resulting tables are used by identify_subint(). always_inline void eth_vlan_table_lookups (ethernet_main_t * em, vnet_main_t * vnm, u32 port_sw_if_index0, u16 first_ethertype, u16 outer_id, u16 inner_id, vnet_hw_interface_t ** hi, main_intf_t ** main_intf, vlan_intf_t ** vlan_intf, qinq_intf_t ** qinq_intf) { vlan_table_t *vlan_table; qinq_table_t *qinq_table; u32 vlan_table_id; // Read the main, vlan, and qinq interface table entries // TODO: Consider if/how to prefetch tables. Also consider // single-entry cache to skip table lookups and identify_subint() // processing. *hi = vnet_get_sup_hw_interface (vnm, port_sw_if_index0); *main_intf = vec_elt_at_index (em->main_intfs, (*hi)->hw_if_index); // Always read the vlan and qinq tables, even if there are not that // many tags on the packet. This makes the lookups and comparisons // easier (and less branchy). vlan_table_id = (first_ethertype == ETHERNET_TYPE_DOT1AD) ? (*main_intf)->dot1ad_vlans : (*main_intf)->dot1q_vlans; vlan_table = vec_elt_at_index (em->vlan_pool, vlan_table_id); *vlan_intf = &vlan_table->vlans[outer_id]; qinq_table = vec_elt_at_index (em->qinq_pool, (*vlan_intf)->qinqs); *qinq_intf = &qinq_table->vlans[inner_id]; } // Determine the subinterface for this packet, given the result of the // vlan table lookups and vlan header parsing. Check the most specific // matches first. // Returns 1 if a matching subinterface was found, otherwise returns 0. always_inline u32 eth_identify_subint (vnet_hw_interface_t * hi, u32 match_flags, main_intf_t * main_intf, vlan_intf_t * vlan_intf, qinq_intf_t * qinq_intf, u32 * new_sw_if_index, u8 * error0, u32 * is_l2) { subint_config_t *subint; // Each comparison is checking both the valid flag and the number of tags // (incorporating exact-match/non-exact-match). // check for specific double tag subint = &qinq_intf->subint; if ((subint->flags & match_flags) == match_flags) goto matched; // check for specific outer and 'any' inner subint = &vlan_intf->inner_any_subint; if ((subint->flags & match_flags) == match_flags) goto matched; // check for specific single tag subint = &vlan_intf->single_tag_subint; if ((subint->flags & match_flags) == match_flags) goto matched; // check for default interface subint = &main_intf->default_subint; if ((subint->flags & match_flags) == match_flags) goto matched; // check for untagged interface subint = &main_intf->untagged_subint; if ((subint->flags & match_flags) == match_flags) goto matched; // No matching subinterface *new_sw_if_index = ~0; *error0 = ETHERNET_ERROR_UNKNOWN_VLAN; *is_l2 = 0; return 0; matched: *new_sw_if_index = subint->sw_if_index; *is_l2 = subint->flags & SUBINT_CONFIG_L2; return 1; } always_inline ethernet_main_t * vnet_get_ethernet_main (void) { return ðernet_main; } void ethernet_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, u32 ai); u8 *ethernet_build_rewrite (vnet_main_t * vnm, u32 sw_if_index, vnet_link_t link_type, const void *dst_address); void ethernet_input_init (vlib_main_t * vm, ethernet_main_t * em); extern vlib_node_registration_t ethernet_input_node; #endif /* included_ethernet_h */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */