/* * gre.h: types/functions for gre. * * Copyright (c) 2012 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef included_gre_h #define included_gre_h #include <vnet/vnet.h> #include <vnet/gre/packet.h> #include <vnet/ip/ip.h> #include <vnet/pg/pg.h> #include <vnet/ip/format.h> #include <vnet/adj/adj_types.h> extern vnet_hw_interface_class_t gre_hw_interface_class; typedef enum { #define gre_error(n,s) GRE_ERROR_##n, #include <vnet/gre/error.def> #undef gre_error GRE_N_ERROR, } gre_error_t; /** * @brief The GRE tunnel type */ typedef enum gre_tunnel_type_t_ { /** * L3 GRE (i.e. this tunnel is in L3 mode) */ GRE_TUNNEL_TYPE_L3 = 0, /** * Transparent Ethernet Bridging - the tunnel is in L2 mode */ GRE_TUNNEL_TYPE_TEB = 1, /** * ERSPAN type 2 - the tunnel is for port mirror SPAN output. Each tunnel is * associated with a session ID and expected to be used for encap and output * of mirrored packet from a L2 network only. There is no support for * receiving ERSPAN packets from a GRE ERSPAN tunnel in VPP. */ GRE_TUNNEL_TYPE_ERSPAN = 2, GRE_TUNNEL_TYPE_N } gre_tunnel_type_t; #define GRE_TUNNEL_TYPE_NAMES { \ [GRE_TUNNEL_TYPE_L3] = "L3", \ [GRE_TUNNEL_TYPE_TEB] = "TEB", \ [GRE_TUNNEL_TYPE_ERSPAN] = "ERSPAN", \ } /** * A GRE payload protocol registration */ typedef struct { /** Name (a c string). */ char *name; /** GRE protocol type in host byte order. */ gre_protocol_t protocol; /** GRE tunnel type */ gre_tunnel_type_t tunnel_type; /** Node which handles this type. */ u32 node_index; /** Next index for this type. */ u32 next_index; } gre_protocol_info_t; /** * @brief Key for a IPv4 GRE Tunnel */ typedef struct gre_tunnel_key4_t_ { /** * Source and destination IP addresses */ union { struct { ip4_address_t gtk_src; ip4_address_t gtk_dst; }; u64 gtk_as_u64; }; /** * FIB table index, ERSPAN session ID and tunnel type in u32 bit fields: * - The FIB table index the src,dst addresses are in, top 20 bits * - The Session ID for ERSPAN tunnel type and 0 otherwise, next 10 bits * - Tunnel type, bottom 2 bits */ u32 gtk_fidx_ssid_type; } __attribute__ ((packed)) gre_tunnel_key4_t; /** * @brief Key for a IPv6 GRE Tunnel * We use a different type so that the V4 key hash is as small as possible */ typedef struct gre_tunnel_key6_t_ { /** * Source and destination IP addresses */ ip6_address_t gtk_src; ip6_address_t gtk_dst; /** * FIB table index, ERSPAN session ID and tunnel type in u32 bit fields: * - The FIB table index the src,dst addresses are in, top 20 bits * - The Session ID for ERSPAN tunnel type and 0 otherwise, next 10 bits * - Tunnel type, bottom 2 bits */ u32 gtk_fidx_ssid_type; } __attribute__ ((packed)) gre_tunnel_key6_t; #define GTK_FIB_INDEX_SHIFT 12 #define GTK_FIB_INDEX_MASK 0xfffff000 #define GTK_TYPE_SHIFT 0 #define GTK_TYPE_MASK 0x3 #define GTK_SESSION_ID_SHIFT 2 #define GTK_SESSION_ID_MASK 0xffc #define GTK_SESSION_ID_MAX (GTK_SESSION_ID_MASK >> GTK_SESSION_ID_SHIFT) /** * Union of the two possible key types */ typedef union gre_tunnel_key_t_ { gre_tunnel_key4_t gtk_v4; gre_tunnel_key6_t gtk_v6; } gre_tunnel_key_t; /** * Used for GRE header seq number generation for ERSPAN encap */ typedef struct { u32 seq_num; u32 ref_count; } gre_sn_t; /** * Hash key for GRE header seq number generation for ERSPAN encap */ typedef struct { ip46_address_t src; ip46_address_t dst; u32 fib_index; } gre_sn_key_t; /** * @brief A representation of a GRE tunnel */ typedef struct { /** * Required for pool_get_aligned */ CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); /** * Linkage into the FIB object graph */ fib_node_t node; /** * The hash table's key stored in separate memory since the tunnel_t * memory can realloc. */ gre_tunnel_key_t *key; /** * The tunnel's source/local address */ ip46_address_t tunnel_src; /** * The tunnel's destination/remote address */ fib_prefix_t tunnel_dst; /** * The FIB in which the src.dst address are present */ u32 outer_fib_index; u32 hw_if_index; u32 sw_if_index; gre_tunnel_type_t type; /** * The FIB entry sourced by the tunnel for its destination prefix */ fib_node_index_t fib_entry_index; /** * The tunnel is a child of the FIB entry for its desintion. This is * so it receives updates when the forwarding information for that entry * changes. * The tunnels sibling index on the FIB entry's dependency list. */ u32 sibling_index; /** * an L2 tunnel always rquires an L2 midchain. cache here for DP. */ adj_index_t l2_adj_index; /** * ERSPAN type 2 session ID, least significant 10 bits of u16 */ u16 session_id; /** * GRE header sequence number (SN) used for ERSPAN type 2 header, must be * bumped automically to be thread safe. As multiple GRE tunnels are created * for the same fib-idx/DIP/SIP with different ERSPAN session number, they all * share the same SN which is kept per FIB/DIP/SIP, as specified by RFC2890. */ gre_sn_t *gre_sn; u32 dev_instance; /* Real device instance in tunnel vector */ u32 user_instance; /* Instance name being shown to user */ } gre_tunnel_t; typedef struct { u8 next_index; u8 tunnel_type; } next_info_t; /** * @brief GRE related global data */ typedef struct { /** * pool of tunnel instances */ gre_tunnel_t *tunnels; /** * GRE payload protocol registrations */ gre_protocol_info_t *protocol_infos; /** * Hash tables mapping name/protocol to protocol info index. */ uword *protocol_info_by_name, *protocol_info_by_protocol; /** * Hash mapping to tunnels with ipv4 src/dst addr */ uword *tunnel_by_key4; /** * Hash mapping to tunnels with ipv6 src/dst addr */ uword *tunnel_by_key6; /** * Hash mapping tunnel src/dst addr and fib-idx to sequence number */ uword *seq_num_by_key; /** * Mapping from sw_if_index to tunnel index */ u32 *tunnel_index_by_sw_if_index; /* Sparse vector mapping gre protocol in network byte order to next index. */ next_info_t *next_by_protocol; /* convenience */ vlib_main_t *vlib_main; vnet_main_t *vnet_main; /* Record used instances */ uword *instance_used; } gre_main_t; /** * @brief IPv4 and GRE header. */ /* *INDENT-OFF* */ typedef CLIB_PACKED (struct { ip4_header_t ip4; gre_header_t gre; }) ip4_and_gre_header_t; /* *INDENT-ON* */ /** * @brief IPv6 and GRE header. */ /* *INDENT-OFF* */ typedef CLIB_PACKED (struct { ip6_header_t ip6; gre_header_t gre; }) ip6_and_gre_header_t; /* *INDENT-ON* */ always_inline gre_protocol_info_t * gre_get_protocol_info (gre_main_t * em, gre_protocol_t protocol) { uword *p = hash_get (em->protocol_info_by_protocol, protocol); return p ? vec_elt_at_index (em->protocol_infos, p[0]) : 0; } extern gre_main_t gre_main; extern clib_error_t *gre_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags); extern void gre_tunnel_stack (adj_index_t ai); extern void gre_update_adj (vnet_main_t * vnm, u32 sw_if_index, adj_index_t ai); format_function_t format_gre_protocol; format_function_t format_gre_header; format_function_t format_gre_header_with_length; extern vlib_node_registration_t gre4_input_node; extern vlib_node_registration_t gre6_input_node; extern vlib_node_registration_t gre_encap_node; extern vnet_device_class_t gre_device_class; /* Parse gre protocol as 0xXXXX or protocol name. In either host or network byte order. */ unformat_function_t unformat_gre_protocol_host_byte_order; unformat_function_t unformat_gre_protocol_net_byte_order; /* Parse gre header. */ unformat_function_t unformat_gre_header; unformat_function_t unformat_pg_gre_header; void gre_register_input_protocol (vlib_main_t * vm, gre_protocol_t protocol, u32 node_index, gre_tunnel_type_t tunnel_type); /* manually added to the interface output node in gre.c */ #define GRE_OUTPUT_NEXT_LOOKUP 1 typedef struct { u8 is_add; u8 tunnel_type; u8 is_ipv6; u32 instance; ip46_address_t src, dst; u32 outer_fib_id; u16 session_id; } vnet_gre_add_del_tunnel_args_t; int vnet_gre_add_del_tunnel (vnet_gre_add_del_tunnel_args_t * a, u32 * sw_if_indexp); static inline void gre_mk_key4 (ip4_address_t src, ip4_address_t dst, u32 fib_index, u8 ttype, u16 session_id, gre_tunnel_key4_t * key) { key->gtk_src = src; key->gtk_dst = dst; key->gtk_fidx_ssid_type = ttype | (fib_index << GTK_FIB_INDEX_SHIFT) | (session_id << GTK_SESSION_ID_SHIFT); } static inline int gre_match_key4 (const gre_tunnel_key4_t * key1, const gre_tunnel_key4_t * key2) { return ((key1->gtk_as_u64 == key2->gtk_as_u64) && (key1->gtk_fidx_ssid_type == key2->gtk_fidx_ssid_type)); } static inline void gre_mk_key6 (const ip6_address_t * src, const ip6_address_t * dst, u32 fib_index, u8 ttype, u16 session_id, gre_tunnel_key6_t * key) { key->gtk_src = *src; key->gtk_dst = *dst; key->gtk_fidx_ssid_type = ttype | (fib_index << GTK_FIB_INDEX_SHIFT) | (session_id << GTK_SESSION_ID_SHIFT); } static inline int gre_match_key6 (const gre_tunnel_key6_t * key1, const gre_tunnel_key6_t * key2) { return ((key1->gtk_src.as_u64[0] == key2->gtk_src.as_u64[0]) && (key1->gtk_src.as_u64[1] == key2->gtk_src.as_u64[1]) && (key1->gtk_dst.as_u64[0] == key2->gtk_dst.as_u64[0]) && (key1->gtk_dst.as_u64[1] == key2->gtk_dst.as_u64[1]) && (key1->gtk_fidx_ssid_type == key2->gtk_fidx_ssid_type)); } static inline void gre_mk_sn_key (const gre_tunnel_t * gt, gre_sn_key_t * key) { key->src = gt->tunnel_src; key->dst = gt->tunnel_dst.fp_addr; key->fib_index = gt->outer_fib_index; } #endif /* included_gre_h */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */