/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __IPSEC_SPD_SA_H__ #define __IPSEC_SPD_SA_H__ #include #include #include #include #include #include #define ESP_MAX_ICV_SIZE (32) #define ESP_MAX_IV_SIZE (16) #define ESP_MAX_BLOCK_SIZE (16) #define foreach_ipsec_crypto_alg \ _ (0, NONE, "none") \ _ (1, AES_CBC_128, "aes-cbc-128") \ _ (2, AES_CBC_192, "aes-cbc-192") \ _ (3, AES_CBC_256, "aes-cbc-256") \ _ (4, AES_CTR_128, "aes-ctr-128") \ _ (5, AES_CTR_192, "aes-ctr-192") \ _ (6, AES_CTR_256, "aes-ctr-256") \ _ (7, AES_GCM_128, "aes-gcm-128") \ _ (8, AES_GCM_192, "aes-gcm-192") \ _ (9, AES_GCM_256, "aes-gcm-256") \ _ (10, DES_CBC, "des-cbc") \ _ (11, 3DES_CBC, "3des-cbc") \ _ (12, CHACHA20_POLY1305, "chacha20-poly1305") \ _ (13, AES_NULL_GMAC_128, "aes-null-gmac-128") \ _ (14, AES_NULL_GMAC_192, "aes-null-gmac-192") \ _ (15, AES_NULL_GMAC_256, "aes-null-gmac-256") typedef enum { #define _(v, f, s) IPSEC_CRYPTO_ALG_##f = v, foreach_ipsec_crypto_alg #undef _ IPSEC_CRYPTO_N_ALG, } __clib_packed ipsec_crypto_alg_t; #define IPSEC_CRYPTO_ALG_IS_NULL_GMAC(_alg) \ ((_alg == IPSEC_CRYPTO_ALG_AES_NULL_GMAC_128) || \ (_alg == IPSEC_CRYPTO_ALG_AES_NULL_GMAC_192) || \ (_alg == IPSEC_CRYPTO_ALG_AES_NULL_GMAC_256)) #define IPSEC_CRYPTO_ALG_IS_GCM(_alg) \ (((_alg == IPSEC_CRYPTO_ALG_AES_GCM_128) || \ (_alg == IPSEC_CRYPTO_ALG_AES_GCM_192) || \ (_alg == IPSEC_CRYPTO_ALG_AES_GCM_256))) #define IPSEC_CRYPTO_ALG_IS_CTR(_alg) \ (((_alg == IPSEC_CRYPTO_ALG_AES_CTR_128) || \ (_alg == IPSEC_CRYPTO_ALG_AES_CTR_192) || \ (_alg == IPSEC_CRYPTO_ALG_AES_CTR_256))) #define IPSEC_CRYPTO_ALG_CTR_AEAD_OTHERS(_alg) \ (_alg == IPSEC_CRYPTO_ALG_CHACHA20_POLY1305) #define foreach_ipsec_integ_alg \ _ (0, NONE, "none") \ _ (1, MD5_96, "md5-96") /* RFC2403 */ \ _ (2, SHA1_96, "sha1-96") /* RFC2404 */ \ _ (3, SHA_256_96, "sha-256-96") /* draft-ietf-ipsec-ciph-sha-256-00 */ \ _ (4, SHA_256_128, "sha-256-128") /* RFC4868 */ \ _ (5, SHA_384_192, "sha-384-192") /* RFC4868 */ \ _ (6, SHA_512_256, "sha-512-256") /* RFC4868 */ typedef enum { #define _(v, f, s) IPSEC_INTEG_ALG_##f = v, foreach_ipsec_integ_alg #undef _ IPSEC_INTEG_N_ALG, } __clib_packed ipsec_integ_alg_t; typedef enum { IPSEC_PROTOCOL_AH = 0, IPSEC_PROTOCOL_ESP = 1 } __clib_packed ipsec_protocol_t; #define IPSEC_KEY_MAX_LEN 128 typedef struct ipsec_key_t_ { u8 len; u8 data[IPSEC_KEY_MAX_LEN]; } ipsec_key_t; /* * Enable extended sequence numbers * Enable Anti-replay * IPsec tunnel mode if non-zero, else transport mode * IPsec tunnel mode is IPv6 if non-zero, * else IPv4 tunnel only valid if is_tunnel is non-zero * enable UDP encapsulation for NAT traversal */ #define foreach_ipsec_sa_flags \ _ (0, NONE, "none") \ _ (1, USE_ESN, "esn") \ _ (2, USE_ANTI_REPLAY, "anti-replay") \ _ (4, IS_TUNNEL, "tunnel") \ _ (8, IS_TUNNEL_V6, "tunnel-v6") \ _ (16, UDP_ENCAP, "udp-encap") \ _ (32, IS_PROTECT, "Protect") \ _ (64, IS_INBOUND, "inbound") \ _ (128, IS_AEAD, "aead") \ _ (256, IS_CTR, "ctr") \ _ (512, IS_ASYNC, "async") \ _ (1024, NO_ALGO_NO_DROP, "no-algo-no-drop") \ _ (2048, IS_NULL_GMAC, "null-gmac") \ _ (4096, ANTI_REPLAY_HUGE, "anti-replay-huge") typedef enum ipsec_sad_flags_t_ { #define _(v, f, s) IPSEC_SA_FLAG_##f = v, foreach_ipsec_sa_flags #undef _ } __clib_packed ipsec_sa_flags_t; STATIC_ASSERT (sizeof (ipsec_sa_flags_t) == 2, "IPSEC SA flags != 2 byte"); #define foreach_ipsec_sa_err \ _ (0, LOST, lost, "packets lost") \ _ (1, HANDOFF, handoff, "hand-off") \ _ (2, INTEG_ERROR, integ_error, "Integrity check failed") \ _ (3, DECRYPTION_FAILED, decryption_failed, "Decryption failed") \ _ (4, CRYPTO_ENGINE_ERROR, crypto_engine_error, \ "crypto engine error (dropped)") \ _ (5, REPLAY, replay, "SA replayed packet") \ _ (6, RUNT, runt, "undersized packet") \ _ (7, NO_BUFFERS, no_buffers, "no buffers (dropped)") \ _ (8, OVERSIZED_HEADER, oversized_header, \ "buffer with oversized header (dropped)") \ _ (9, NO_TAIL_SPACE, no_tail_space, \ "no enough buffer tail space (dropped)") \ _ (10, TUN_NO_PROTO, tun_no_proto, "no tunnel protocol") \ _ (11, UNSUP_PAYLOAD, unsup_payload, "unsupported payload") \ _ (12, SEQ_CYCLED, seq_cycled, "sequence number cycled (dropped)") \ _ (13, CRYPTO_QUEUE_FULL, crypto_queue_full, "crypto queue full (dropped)") \ _ (14, NO_ENCRYPTION, no_encryption, "no Encrypting SA (dropped)") \ _ (15, DROP_FRAGMENTS, drop_fragments, "IP fragments drop") typedef enum { #define _(v, f, s, d) IPSEC_SA_ERROR_##f = v, foreach_ipsec_sa_err #undef _ IPSEC_SA_N_ERRORS, } __clib_packed ipsec_sa_err_t; typedef struct { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); clib_pcg64i_random_t iv_prng; union { u64 replay_window; clib_bitmap_t *replay_window_huge; }; dpo_id_t dpo; vnet_crypto_key_index_t crypto_key_index; vnet_crypto_key_index_t integ_key_index; u32 spi; u32 seq; u32 seq_hi; u16 crypto_enc_op_id; u16 crypto_dec_op_id; u16 integ_op_id; ipsec_sa_flags_t flags; u16 thread_index; u16 integ_icv_size : 6; u16 crypto_iv_size : 5; u16 esp_block_align : 5; CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); union { ip4_header_t ip4_hdr; ip6_header_t ip6_hdr; }; udp_header_t udp_hdr; /* Salt used in CTR modes (incl. GCM) - stored in network byte order */ u32 salt; ipsec_protocol_t protocol; tunnel_encap_decap_flags_t tunnel_flags; u8 __pad[2]; /* data accessed by dataplane code should be above this comment */ CLIB_CACHE_LINE_ALIGN_MARK (cacheline2); /* Elements with u64 size multiples */ tunnel_t tunnel; fib_node_t node; /* elements with u32 size */ u32 id; u32 stat_index; vnet_crypto_alg_t integ_calg; vnet_crypto_alg_t crypto_calg; u32 crypto_sync_key_index; u32 integ_sync_key_index; u32 crypto_async_key_index; /* elements with u16 size */ u16 crypto_sync_enc_op_id; u16 crypto_sync_dec_op_id; u16 integ_sync_op_id; u16 crypto_async_enc_op_id; u16 crypto_async_dec_op_id; /* else u8 packed */ ipsec_crypto_alg_t crypto_alg; ipsec_integ_alg_t integ_alg; ipsec_key_t integ_key; ipsec_key_t crypto_key; } ipsec_sa_t; STATIC_ASSERT (VNET_CRYPTO_N_OP_IDS < (1 << 16), "crypto ops overflow"); STATIC_ASSERT (ESP_MAX_ICV_SIZE < (1 << 6), "integer icv overflow"); STATIC_ASSERT (ESP_MAX_IV_SIZE < (1 << 5), "esp iv overflow"); STATIC_ASSERT (ESP_MAX_BLOCK_SIZE < (1 << 5), "esp alignment overflow"); STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline1, CLIB_CACHE_LINE_BYTES); STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline2, 2 * CLIB_CACHE_LINE_BYTES); /** * Pool of IPSec SAs */ extern ipsec_sa_t *ipsec_sa_pool; /* * Ensure that the IPsec data does not overlap with the IP data in * the buffer meta data */ STATIC_ASSERT (STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ipsec.sad_index) == STRUCT_OFFSET_OF (vnet_buffer_opaque_t, ip.save_protocol), "IPSec data is overlapping with IP data"); #define _(a, v, s) \ always_inline bool ipsec_sa_is_set_##v (const ipsec_sa_t *sa) \ { \ return (sa->flags & IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ #define _(a, v, s) \ always_inline void ipsec_sa_set_##v (ipsec_sa_t *sa) \ { \ sa->flags |= IPSEC_SA_FLAG_##v; \ } foreach_ipsec_sa_flags #undef _ #define _(a, v, s) \ always_inline int ipsec_sa_unset_##v (ipsec_sa_t *sa) \ { \ return (sa->flags &= ~IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ /** * @brief * SA packet & bytes counters */ extern vlib_combined_counter_main_t ipsec_sa_counters; extern vlib_simple_counter_main_t ipsec_sa_err_counters[IPSEC_SA_N_ERRORS]; extern void ipsec_mk_key (ipsec_key_t *key, const u8 *data, u8 len); extern int ipsec_sa_update (u32 id, u16 src_port, u16 dst_port, const tunnel_t *tun, bool is_tun); extern int ipsec_sa_add_and_lock ( u32 id, u32 spi, ipsec_protocol_t proto, ipsec_crypto_alg_t crypto_alg, const ipsec_key_t *ck, ipsec_integ_alg_t integ_alg, const ipsec_key_t *ik, ipsec_sa_flags_t flags, u32 salt, u16 src_port, u16 dst_port, u32 anti_replay_window_size, const tunnel_t *tun, u32 *sa_out_index); extern int ipsec_sa_bind (u32 id, u32 worker, bool bind); extern index_t ipsec_sa_find_and_lock (u32 id); extern int ipsec_sa_unlock_id (u32 id); extern void ipsec_sa_unlock (index_t sai); extern void ipsec_sa_lock (index_t sai); extern void ipsec_sa_clear (index_t sai); extern void ipsec_sa_set_crypto_alg (ipsec_sa_t *sa, ipsec_crypto_alg_t crypto_alg); extern void ipsec_sa_set_integ_alg (ipsec_sa_t *sa, ipsec_integ_alg_t integ_alg); extern void ipsec_sa_set_async_mode (ipsec_sa_t *sa, int is_enabled); typedef walk_rc_t (*ipsec_sa_walk_cb_t) (ipsec_sa_t *sa, void *ctx); extern void ipsec_sa_walk (ipsec_sa_walk_cb_t cd, void *ctx); extern u8 *format_ipsec_replay_window (u8 *s, va_list *args); extern u8 *format_ipsec_crypto_alg (u8 *s, va_list *args); extern u8 *format_ipsec_integ_alg (u8 *s, va_list *args); extern u8 *format_ipsec_sa (u8 *s, va_list *args); extern u8 *format_ipsec_key (u8 *s, va_list *args); extern uword unformat_ipsec_crypto_alg (unformat_input_t *input, va_list *args); extern uword unformat_ipsec_integ_alg (unformat_input_t *input, va_list *args); extern uword unformat_ipsec_key (unformat_input_t *input, va_list *args); #define IPSEC_UDP_PORT_NONE ((u16) ~0) /* * Anti Replay definitions */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE(_sa) \ (u32) (PREDICT_FALSE (ipsec_sa_is_set_ANTI_REPLAY_HUGE (_sa)) ? \ clib_bitmap_bytes (_sa->replay_window_huge) * 8 : \ BITS (_sa->replay_window)) #define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN(_sa, _is_huge) \ (u32) (_is_huge ? clib_bitmap_bytes (_sa->replay_window_huge) * 8 : \ BITS (_sa->replay_window)) #define IPSEC_SA_ANTI_REPLAY_WINDOW_N_SEEN(_sa) \ (u64) (PREDICT_FALSE (ipsec_sa_is_set_ANTI_REPLAY_HUGE (_sa)) ? \ clib_bitmap_count_set_bits (_sa->replay_window_huge) : \ count_set_bits (_sa->replay_window)) #define IPSEC_SA_ANTI_REPLAY_WINDOW_N_SEEN_KNOWN_WIN(_sa, _is_huge) \ (u64) (_is_huge ? clib_bitmap_count_set_bits (_sa->replay_window_huge) : \ count_set_bits (_sa->replay_window)) #define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX(_sa) \ (u32) (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (_sa) - 1) #define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX_KNOWN_WIN(_sa, _is_huge) \ (u32) (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (_sa, _is_huge) - 1) /* * sequence number less than the lower bound are outside of the window * From RFC4303 Appendix A: * Bl = Tl - W + 1 */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND(_sa) \ (u32) (_sa->seq - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (_sa) + 1) #define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND_KNOWN_WIN(_sa, _is_huge) \ (u32) (_sa->seq - \ IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN (_sa, _is_huge) + 1) always_inline u64 ipsec_sa_anti_replay_get_64b_window (const ipsec_sa_t *sa) { if (!ipsec_sa_is_set_ANTI_REPLAY_HUGE (sa)) return sa->replay_window; u64 w; u32 window_size = IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (sa); u32 tl_win_index = sa->seq & (window_size - 1); if (PREDICT_TRUE (tl_win_index >= 63)) return clib_bitmap_get_multiple (sa->replay_window_huge, tl_win_index - 63, 64); w = clib_bitmap_get_multiple_no_check (sa->replay_window_huge, 0, tl_win_index + 1) << (63 - tl_win_index); w |= clib_bitmap_get_multiple_no_check (sa->replay_window_huge, window_size - 63 + tl_win_index, 63 - tl_win_index); return w; } always_inline int ipsec_sa_anti_replay_check (const ipsec_sa_t *sa, u32 seq, bool ar_huge) { u32 window_size = IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN (sa, ar_huge); /* we assume that the packet is in the window. * if the packet falls left (sa->seq - seq >= window size), * the result is wrong */ if (ar_huge) return clib_bitmap_get (sa->replay_window_huge, seq & (window_size - 1)); else return (sa->replay_window >> (window_size + seq - sa->seq - 1)) & 1; return 0; } /* * Anti replay check. * inputs need to be in host byte order. * * The function runs in two contexts. pre and post decrypt. * Pre-decrypt it: * 1 - determines if a packet is a replay - a simple check in the window * 2 - returns the hi-seq number that should be used to decrypt. * post-decrypt: * Checks whether the packet is a replay or falls out of window * * This funcion should be called even without anti-replay enabled to ensure * the high sequence number is set. */ always_inline int ipsec_sa_anti_replay_and_sn_advance (const ipsec_sa_t *sa, u32 seq, u32 hi_seq_used, bool post_decrypt, u32 *hi_seq_req, bool ar_huge) { ASSERT ((post_decrypt == false) == (hi_seq_req != 0)); u32 window_size = IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN (sa, ar_huge); u32 window_lower_bound = IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND_KNOWN_WIN (sa, ar_huge); if (!ipsec_sa_is_set_USE_ESN (sa)) { if (hi_seq_req) /* no ESN, therefore the hi-seq is always 0 */ *hi_seq_req = 0; if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) return 0; if (PREDICT_TRUE (seq > sa->seq)) return 0; /* does the packet fall out on the left of the window */ if (sa->seq >= seq + window_size) return 1; return ipsec_sa_anti_replay_check (sa, seq, ar_huge); } if (!ipsec_sa_is_set_USE_ANTI_REPLAY (sa)) { /* there's no AR configured for this SA, but in order * to know whether a packet has wrapped the hi ESN we need * to know whether it is out of window. if we use the default * lower bound then we are effectively forcing AR because * out of window packets will get the increased hi seq number * and will thus fail to decrypt. IOW we need a window to know * if the SN has wrapped, but we don't want a window to check for * anti replay. to resolve the contradiction we use a huge window. * if the packet is not within 2^30 of the current SN, we'll consider * it a wrap. */ if (hi_seq_req) { if (seq >= sa->seq) /* The packet's sequence number is larger that the SA's. * that can't be a warp - unless we lost more than * 2^32 packets ... how could we know? */ *hi_seq_req = sa->seq_hi; else { /* The packet's SN is less than the SAs, so either the SN has * wrapped or the SN is just old. */ if (sa->seq - seq > (1 << 30)) /* It's really really really old => it wrapped */ *hi_seq_req = sa->seq_hi + 1; else *hi_seq_req = sa->seq_hi; } } /* * else * this is post-decrpyt and since it decrypted we accept it */ return 0; } if (PREDICT_TRUE (sa->seq >= window_size - 1)) { /* * the last sequence number VPP received is more than one * window size greater than zero. * Case A from RFC4303 Appendix A. */ if (seq < window_lower_bound) { /* * the received sequence number is lower than the lower bound * of the window, this could mean either a replay packet or that * the high sequence number has wrapped. if it decrypts corrently * then it's the latter. */ if (post_decrypt) { if (hi_seq_used == sa->seq_hi) /* the high sequence number used to succesfully decrypt this * packet is the same as the last-sequence number of the SA. * that means this packet did not cause a wrap. * this packet is thus out of window and should be dropped */ return 1; else /* The packet decrypted with a different high sequence number * to the SA, that means it is the wrap packet and should be * accepted */ return 0; } else { /* pre-decrypt it might be the packet that causes a wrap, we * need to decrypt it to find out */ if (hi_seq_req) *hi_seq_req = sa->seq_hi + 1; return 0; } } else { /* * the received sequence number greater than the low * end of the window. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; if (seq <= sa->seq) /* * The received seq number is within bounds of the window * check if it's a duplicate */ return ipsec_sa_anti_replay_check (sa, seq, ar_huge); else /* * The received sequence number is greater than the window * upper bound. this packet will move the window along, assuming * it decrypts correctly. */ return 0; } } else { /* * the last sequence number VPP received is within one window * size of zero, i.e. 0 < TL < WINDOW_SIZE, the lower bound is thus a * large sequence number. * Note that the check below uses unsigned integer arithmetic, so the * RHS will be a larger number. * Case B from RFC4303 Appendix A. */ if (seq < window_lower_bound) { /* * the sequence number is less than the lower bound. */ if (seq <= sa->seq) { /* * the packet is within the window upper bound. * check for duplicates. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; return ipsec_sa_anti_replay_check (sa, seq, ar_huge); } else { /* * the packet is less the window lower bound or greater than * the higher bound, depending on how you look at it... * We're assuming, given that the last sequence number received, * TL < WINDOW_SIZE, that a larger seq num is more likely to be * a packet that moves the window forward, than a packet that has * wrapped the high sequence again. If it were the latter then * we've lost close to 2^32 packets. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi; return 0; } } else { /* * the packet seq number is between the lower bound (a large number) * and MAX_SEQ_NUM. This is in the window since the window upper * bound tl > 0. However, since TL is the other side of 0 to the * received packet, the SA has moved on to a higher sequence number. */ if (hi_seq_req) *hi_seq_req = sa->seq_hi - 1; return ipsec_sa_anti_replay_check (sa, seq, ar_huge); } } /* unhandled case */ ASSERT (0); return 0; } always_inline u32 ipsec_sa_anti_replay_window_shift (ipsec_sa_t *sa, u32 inc, bool ar_huge) { u32 n_lost = 0; u32 seen = 0; u32 window_size = IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN (sa, ar_huge); if (inc < window_size) { if (ar_huge) { /* the number of packets we saw in this section of the window */ clib_bitmap_t *window = sa->replay_window_huge; u32 window_lower_bound = (sa->seq + 1) & (window_size - 1); u32 window_next_lower_bound = (window_lower_bound + inc) & (window_size - 1); uword i_block, i_word_start, i_word_end, full_words; uword n_blocks = window_size >> log2_uword_bits; uword mask; i_block = window_lower_bound >> log2_uword_bits; i_word_start = window_lower_bound & (uword_bits - 1); i_word_end = window_next_lower_bound & (uword_bits - 1); /* We stay in the same word */ if (i_word_start + inc <= uword_bits) { mask = pow2_mask (inc) << i_word_start; seen += count_set_bits (window[i_block] & mask); window[i_block] &= ~mask; } else { full_words = (inc + i_word_start - uword_bits - i_word_end) >> log2_uword_bits; /* count set bits in the first word */ mask = (uword) ~0 << i_word_start; seen += count_set_bits (window[i_block] & mask); window[i_block] &= ~mask; i_block = (i_block + 1) & (n_blocks - 1); /* count set bits in the next full words */ /* even if the last word need to be fully counted, we treat it * apart */ while (full_words >= 8) { if (full_words >= 16) { /* prefect the next 8 blocks (64 bytes) */ clib_prefetch_store ( &window[(i_block + 8) & (n_blocks - 1)]); } seen += count_set_bits (window[i_block]); seen += count_set_bits (window[(i_block + 1) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 2) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 3) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 4) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 5) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 6) & (n_blocks - 1)]); seen += count_set_bits (window[(i_block + 7) & (n_blocks - 1)]); window[i_block] = 0; window[(i_block + 1) & (n_blocks - 1)] = 0; window[(i_block + 2) & (n_blocks - 1)] = 0; window[(i_block + 3) & (n_blocks - 1)] = 0; window[(i_block + 4) & (n_blocks - 1)] = 0; window[(i_block + 5) & (n_blocks - 1)] = 0; window[(i_block + 6) & (n_blocks - 1)] = 0; window[(i_block + 7) & (n_blocks - 1)] = 0; i_block = (i_block + 8) & (n_blocks - 1); full_words -= 8; } while (full_words > 0) { // last word is treated after the loop seen += count_set_bits (window[i_block]); window[i_block] = 0; i_block = (i_block + 1) & (n_blocks - 1); full_words--; } /* the last word */ mask = pow2_mask (i_word_end); seen += count_set_bits (window[i_block] & mask); window[i_block] &= ~mask; } clib_bitmap_set_no_check (window, (sa->seq + inc) & (window_size - 1), 1); } else { /* * count how many holes there are in the portion * of the window that we will right shift of the end * as a result of this increments */ u64 old = sa->replay_window & pow2_mask (inc); /* the number of packets we saw in this section of the window */ seen = count_set_bits (old); sa->replay_window = ((sa->replay_window) >> inc) | (1ULL << (window_size - 1)); } /* * the number we missed is the size of the window section * minus the number we saw. */ n_lost = inc - seen; } else { /* holes in the replay window are lost packets */ n_lost = window_size - IPSEC_SA_ANTI_REPLAY_WINDOW_N_SEEN_KNOWN_WIN (sa, ar_huge); /* any sequence numbers that now fall outside the window * are forever lost */ n_lost += inc - window_size; if (PREDICT_FALSE (ar_huge)) { clib_bitmap_zero (sa->replay_window_huge); clib_bitmap_set_no_check (sa->replay_window_huge, (sa->seq + inc) & (window_size - 1), 1); } else { sa->replay_window = 1ULL << (window_size - 1); } } return n_lost; } /* * Anti replay window advance * inputs need to be in host byte order. * This function both advances the anti-replay window and the sequence number * We always need to move on the SN but the window updates are only needed * if AR is on. * However, updating the window is trivial, so we do it anyway to save * the branch cost. */ always_inline u64 ipsec_sa_anti_replay_advance (ipsec_sa_t *sa, u32 thread_index, u32 seq, u32 hi_seq, bool ar_huge) { u64 n_lost = 0; u32 window_size = IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE_KNOWN_WIN (sa, ar_huge); u32 pos; if (ipsec_sa_is_set_USE_ESN (sa)) { int wrap = hi_seq - sa->seq_hi; if (wrap == 0 && seq > sa->seq) { pos = seq - sa->seq; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos, ar_huge); sa->seq = seq; } else if (wrap > 0) { pos = seq + ~sa->seq + 1; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos, ar_huge); sa->seq = seq; sa->seq_hi = hi_seq; } else if (wrap < 0) { pos = ~seq + sa->seq + 1; if (ar_huge) clib_bitmap_set_no_check (sa->replay_window_huge, seq & (window_size - 1), 1); else sa->replay_window |= (1ULL << (window_size - 1 - pos)); } else { pos = sa->seq - seq; if (ar_huge) clib_bitmap_set_no_check (sa->replay_window_huge, seq & (window_size - 1), 1); else sa->replay_window |= (1ULL << (window_size - 1 - pos)); } } else { if (seq > sa->seq) { pos = seq - sa->seq; n_lost = ipsec_sa_anti_replay_window_shift (sa, pos, ar_huge); sa->seq = seq; } else { pos = sa->seq - seq; if (ar_huge) clib_bitmap_set_no_check (sa->replay_window_huge, seq & (window_size - 1), 1); else sa->replay_window |= (1ULL << (window_size - 1 - pos)); } } return n_lost; } /* * Makes choice for thread_id should be assigned. * if input ~0, gets random worker_id based on unix_time_now_nsec */ always_inline u16 ipsec_sa_assign_thread (u16 thread_id) { return ((thread_id) ? thread_id : (unix_time_now_nsec () % vlib_num_workers ()) + 1); } always_inline ipsec_sa_t * ipsec_sa_get (u32 sa_index) { return (pool_elt_at_index (ipsec_sa_pool, sa_index)); } #endif /* __IPSEC_SPD_SA_H__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */