/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __IPSEC_SPD_SA_H__ #define __IPSEC_SPD_SA_H__ #include <vlib/vlib.h> #include <vnet/crypto/crypto.h> #include <vnet/ip/ip.h> #include <vnet/fib/fib_node.h> #define foreach_ipsec_crypto_alg \ _ (0, NONE, "none") \ _ (1, AES_CBC_128, "aes-cbc-128") \ _ (2, AES_CBC_192, "aes-cbc-192") \ _ (3, AES_CBC_256, "aes-cbc-256") \ _ (4, AES_CTR_128, "aes-ctr-128") \ _ (5, AES_CTR_192, "aes-ctr-192") \ _ (6, AES_CTR_256, "aes-ctr-256") \ _ (7, AES_GCM_128, "aes-gcm-128") \ _ (8, AES_GCM_192, "aes-gcm-192") \ _ (9, AES_GCM_256, "aes-gcm-256") \ _ (10, DES_CBC, "des-cbc") \ _ (11, 3DES_CBC, "3des-cbc") typedef enum { #define _(v, f, s) IPSEC_CRYPTO_ALG_##f = v, foreach_ipsec_crypto_alg #undef _ IPSEC_CRYPTO_N_ALG, } ipsec_crypto_alg_t; #define IPSEC_CRYPTO_ALG_IS_GCM(_alg) \ (((_alg == IPSEC_CRYPTO_ALG_AES_GCM_128) || \ (_alg == IPSEC_CRYPTO_ALG_AES_GCM_192) || \ (_alg == IPSEC_CRYPTO_ALG_AES_GCM_256))) #define foreach_ipsec_integ_alg \ _ (0, NONE, "none") \ _ (1, MD5_96, "md5-96") /* RFC2403 */ \ _ (2, SHA1_96, "sha1-96") /* RFC2404 */ \ _ (3, SHA_256_96, "sha-256-96") /* draft-ietf-ipsec-ciph-sha-256-00 */ \ _ (4, SHA_256_128, "sha-256-128") /* RFC4868 */ \ _ (5, SHA_384_192, "sha-384-192") /* RFC4868 */ \ _ (6, SHA_512_256, "sha-512-256") /* RFC4868 */ typedef enum { #define _(v, f, s) IPSEC_INTEG_ALG_##f = v, foreach_ipsec_integ_alg #undef _ IPSEC_INTEG_N_ALG, } ipsec_integ_alg_t; typedef enum { IPSEC_PROTOCOL_AH = 0, IPSEC_PROTOCOL_ESP = 1 } ipsec_protocol_t; #define IPSEC_KEY_MAX_LEN 128 typedef struct ipsec_key_t_ { u8 len; u8 data[IPSEC_KEY_MAX_LEN]; } ipsec_key_t; /* * Enable extended sequence numbers * Enable Anti-replay * IPsec tunnel mode if non-zero, else transport mode * IPsec tunnel mode is IPv6 if non-zero, * else IPv4 tunnel only valid if is_tunnel is non-zero * enable UDP encapsulation for NAT traversal */ #define foreach_ipsec_sa_flags \ _ (0, NONE, "none") \ _ (1, USE_ESN, "esn") \ _ (2, USE_ANTI_REPLAY, "anti-replay") \ _ (4, IS_TUNNEL, "tunnel") \ _ (8, IS_TUNNEL_V6, "tunnel-v6") \ _ (16, UDP_ENCAP, "udp-encap") \ _ (32, IS_PROTECT, "Protect") \ _ (64, IS_INBOUND, "inbound") \ _ (128, IS_AEAD, "aead") \ typedef enum ipsec_sad_flags_t_ { #define _(v, f, s) IPSEC_SA_FLAG_##f = v, foreach_ipsec_sa_flags #undef _ } __clib_packed ipsec_sa_flags_t; STATIC_ASSERT (sizeof (ipsec_sa_flags_t) == 1, "IPSEC SA flags > 1 byte"); typedef struct { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); /* flags */ ipsec_sa_flags_t flags; u8 crypto_iv_size; u8 crypto_block_size; u8 integ_icv_size; u32 encrypt_thread_index; u32 decrypt_thread_index; u32 spi; u32 seq; u32 seq_hi; u32 last_seq; u32 last_seq_hi; u64 replay_window; dpo_id_t dpo; vnet_crypto_key_index_t crypto_key_index; vnet_crypto_key_index_t integ_key_index; vnet_crypto_op_id_t crypto_enc_op_id:16; vnet_crypto_op_id_t crypto_dec_op_id:16; vnet_crypto_op_id_t integ_op_id:16; /* data accessed by dataplane code should be above this comment */ CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); union { ip4_header_t ip4_hdr; ip6_header_t ip6_hdr; }; udp_header_t udp_hdr; fib_node_t node; u32 id; u32 stat_index; ipsec_protocol_t protocol; ipsec_crypto_alg_t crypto_alg; ipsec_key_t crypto_key; vnet_crypto_alg_t crypto_calg; ipsec_integ_alg_t integ_alg; ipsec_key_t integ_key; vnet_crypto_alg_t integ_calg; ip46_address_t tunnel_src_addr; ip46_address_t tunnel_dst_addr; fib_node_index_t fib_entry_index; u32 sibling; u32 tx_fib_index; /* Salt used in GCM modes - stored in network byte order */ u32 salt; u64 gcm_iv_counter; } ipsec_sa_t; STATIC_ASSERT_OFFSET_OF (ipsec_sa_t, cacheline1, CLIB_CACHE_LINE_BYTES); #define _(a,v,s) \ always_inline int \ ipsec_sa_is_set_##v (const ipsec_sa_t *sa) { \ return (sa->flags & IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ #define _(a,v,s) \ always_inline int \ ipsec_sa_set_##v (ipsec_sa_t *sa) { \ return (sa->flags |= IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ #define _(a,v,s) \ always_inline int \ ipsec_sa_unset_##v (ipsec_sa_t *sa) { \ return (sa->flags &= ~IPSEC_SA_FLAG_##v); \ } foreach_ipsec_sa_flags #undef _ /** * @brief * SA packet & bytes counters */ extern vlib_combined_counter_main_t ipsec_sa_counters; extern void ipsec_mk_key (ipsec_key_t * key, const u8 * data, u8 len); extern int ipsec_sa_add_and_lock (u32 id, u32 spi, ipsec_protocol_t proto, ipsec_crypto_alg_t crypto_alg, const ipsec_key_t * ck, ipsec_integ_alg_t integ_alg, const ipsec_key_t * ik, ipsec_sa_flags_t flags, u32 tx_table_id, u32 salt, const ip46_address_t * tunnel_src_addr, const ip46_address_t * tunnel_dst_addr, u32 * sa_index, u16 dst_port); extern index_t ipsec_sa_find_and_lock (u32 id); extern int ipsec_sa_unlock_id (u32 id); extern void ipsec_sa_unlock (index_t sai); extern void ipsec_sa_lock (index_t sai); extern void ipsec_sa_clear (index_t sai); extern void ipsec_sa_set_crypto_alg (ipsec_sa_t * sa, ipsec_crypto_alg_t crypto_alg); extern void ipsec_sa_set_integ_alg (ipsec_sa_t * sa, ipsec_integ_alg_t integ_alg); typedef walk_rc_t (*ipsec_sa_walk_cb_t) (ipsec_sa_t * sa, void *ctx); extern void ipsec_sa_walk (ipsec_sa_walk_cb_t cd, void *ctx); extern u8 *format_ipsec_crypto_alg (u8 * s, va_list * args); extern u8 *format_ipsec_integ_alg (u8 * s, va_list * args); extern u8 *format_ipsec_sa (u8 * s, va_list * args); extern u8 *format_ipsec_key (u8 * s, va_list * args); extern uword unformat_ipsec_crypto_alg (unformat_input_t * input, va_list * args); extern uword unformat_ipsec_integ_alg (unformat_input_t * input, va_list * args); extern uword unformat_ipsec_key (unformat_input_t * input, va_list * args); #define IPSEC_UDP_PORT_NONE ((u16)~0) /* * Anti Replay definitions */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE (64) #define IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE-1) /* * sequence number less than the lower bound are outside of the window * From RFC4303 Appendix A: * Bl = Tl - W + 1 */ #define IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND(_tl) (_tl - IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE + 1) /* * Anti replay check. * inputs need to be in host byte order. */ always_inline int ipsec_sa_anti_replay_check (ipsec_sa_t * sa, u32 seq) { u32 diff, tl, th; if ((sa->flags & IPSEC_SA_FLAG_USE_ANTI_REPLAY) == 0) return 0; if (!ipsec_sa_is_set_USE_ESN (sa)) { if (PREDICT_TRUE (seq > sa->last_seq)) return 0; diff = sa->last_seq - seq; if (IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE > diff) return (sa->replay_window & (1ULL << diff)) ? 1 : 0; else return 1; return 0; } tl = sa->last_seq; th = sa->last_seq_hi; diff = tl - seq; if (PREDICT_TRUE (tl >= (IPSEC_SA_ANTI_REPLAY_WINDOW_MAX_INDEX))) { /* * the last sequence number VPP recieved is more than one * window size greater than zero. * Case A from RFC4303 Appendix A. */ if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl)) { /* * the received sequence number is lower than the lower bound * of the window, this could mean either a replay packet or that * the high sequence number has wrapped. if it decrypts corrently * then it's the latter. */ sa->seq_hi = th + 1; return 0; } else { /* * the recieved sequence number greater than the low * end of the window. */ sa->seq_hi = th; if (seq <= tl) /* * The recieved seq number is within bounds of the window * check if it's a duplicate */ return (sa->replay_window & (1ULL << diff)) ? 1 : 0; else /* * The received sequence number is greater than the window * upper bound. this packet will move the window along, assuming * it decrypts correctly. */ return 0; } } else { /* * the last sequence number VPP recieved is within one window * size of zero, i.e. 0 < TL < WINDOW_SIZE, the lower bound is thus a * large sequence number. * Note that the check below uses unsiged integer arthimetic, so the * RHS will be a larger number. * Case B from RFC4303 Appendix A. */ if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl)) { /* * the sequence number is less than the lower bound. */ if (seq <= tl) { /* * the packet is within the window upper bound. * check for duplicates. */ sa->seq_hi = th; return (sa->replay_window & (1ULL << diff)) ? 1 : 0; } else { /* * the packet is less the window lower bound or greater than * the higher bound, depending on how you look at it... * We're assuming, given that the last sequence number received, * TL < WINDOW_SIZE, that a largeer seq num is more likely to be * a packet that moves the window forward, than a packet that has * wrapped the high sequence again. If it were the latter then * we've lost close to 2^32 packets. */ sa->seq_hi = th; return 0; } } else { /* * the packet seq number is between the lower bound (a large nubmer) * and MAX_SEQ_NUM. This is in the window since the window upper bound * tl > 0. * However, since TL is the other side of 0 to the received * packet, the SA has moved on to a higher sequence number. */ sa->seq_hi = th - 1; return (sa->replay_window & (1ULL << diff)) ? 1 : 0; } } return 0; } /* * Anti replay window advance * inputs need to be in host byte order. */ always_inline void ipsec_sa_anti_replay_advance (ipsec_sa_t * sa, u32 seq) { u32 pos; if (PREDICT_TRUE (sa->flags & IPSEC_SA_FLAG_USE_ANTI_REPLAY) == 0) return; if (PREDICT_TRUE (sa->flags & IPSEC_SA_FLAG_USE_ESN)) { int wrap = sa->seq_hi - sa->last_seq_hi; if (wrap == 0 && seq > sa->last_seq) { pos = seq - sa->last_seq; if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; } else if (wrap > 0) { pos = ~seq + sa->last_seq + 1; if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; sa->last_seq_hi = sa->seq_hi; } else if (wrap < 0) { pos = ~seq + sa->last_seq + 1; sa->replay_window |= (1ULL << pos); } else { pos = sa->last_seq - seq; sa->replay_window |= (1ULL << pos); } } else { if (seq > sa->last_seq) { pos = seq - sa->last_seq; if (pos < IPSEC_SA_ANTI_REPLAY_WINDOW_SIZE) sa->replay_window = ((sa->replay_window) << pos) | 1; else sa->replay_window = 1; sa->last_seq = seq; } else { pos = sa->last_seq - seq; sa->replay_window |= (1ULL << pos); } } } /* * Makes choice for thread_id should be assigned. * if input ~0, gets random worker_id based on unix_time_now_nsec */ always_inline u32 ipsec_sa_assign_thread (u32 thread_id) { return ((thread_id) ? thread_id : (unix_time_now_nsec () % vlib_num_workers ()) + 1); } #endif /* __IPSEC_SPD_SA_H__ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */