/* * Copyright (c) 2016 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief Common utility functions for IPv4, IPv6 and L2 LISP-GPE adjacencys. * */ #ifndef LISP_GPE_ADJACENCY_H__ #define LISP_GPE_ADJACENCY_H__ #include <vnet/fib/fib_node.h> #include <vnet/lisp-gpe/lisp_gpe.h> /** * @brief A LISP GPE Adjacency. * * A adjacency represents peer on an L3 sub-interface to which to send traffic. * adjacencies are thus present in the EID space. * The peer is identified by the key:{remote-rloc, sub-interface}, which is * equivalent to the usal adjacency key {next-hop, interface}. So curiously * the rloc address from the underlay is used as a next hop address in the overlay * This is OK because: * 1 - the RLOC is unique in the underlay AND there is only one underlay VRF per * overlay * 2 - the RLOC may overlap with an address in the overlay, but we do not create * an adj-fib (i.e. a route in the overlay FIB for the rloc) * * */ typedef struct lisp_gpe_adjacency_t_ { /** * The LISP adj is a part of the FIB control plane graph. */ fib_node_t fib_node; /** * remote RLOC. The adjacency's next-hop */ ip_address_t remote_rloc; /** * The VNI. Used in combination with the local-rloc to get the sub-interface */ u32 vni; /** * The number of locks/reference counts on the adjacency. */ u32 locks; /** * The index of the LISP L3 subinterface */ u32 lisp_l3_sub_index; /** * The SW IF index of the sub-interface this adjacency uses. * Cached for convenience from the LISP L3 sub-interface */ u32 sw_if_index; /** * The index of the LISP GPE tunnel that provides the transport * in the underlay. */ u32 tunnel_index; /** * This adjacency is a child of the FIB entry to reach the RLOC. * This is so when the reachability of that RLOC changes, we can restack * the FIB adjacnecies. */ u32 fib_entry_child_index; /** * LISP header fields in HOST byte order */ u8 flags; u8 ver_res; u8 res; u8 next_protocol; } lisp_gpe_adjacency_t; extern index_t lisp_gpe_adjacency_find_or_create_and_lock (const locator_pair_t * pair, u32 rloc_fib_index, u32 vni); extern void lisp_gpe_adjacency_unlock (index_t l3si); extern const lisp_gpe_adjacency_t *lisp_gpe_adjacency_get (index_t l3si); extern void lisp_gpe_update_adjacency (vnet_main_t * vnm, u32 sw_if_index, adj_index_t ai); extern u8 *lisp_gpe_build_rewrite (vnet_main_t * vnm, u32 sw_if_index, vnet_link_t link_type, const void *dst_address); /** * @brief Flags for displaying the adjacency */ typedef enum lisp_gpe_adjacency_format_flags_t_ { LISP_GPE_ADJ_FORMAT_FLAG_NONE, LISP_GPE_ADJ_FORMAT_FLAG_DETAIL, } lisp_gpe_adjacency_format_flags_t; extern u8 *format_lisp_gpe_adjacency (u8 * s, va_list * args); #endif /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */