/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <string.h> #include <stddef.h> #include <stdio.h> #include <assert.h> #include <math.h> #include <stdint.h> #include <vlib/vlib.h> #include <vnet/vnet.h> #include <vnet/policer/xlate.h> #include <vnet/policer/police.h> #define INTERNAL_SS 1 /* debugs */ #define SSE2_QOS_DEBUG_ERROR(msg, args...) \ fformat(stderr, msg "\n", ##args); #define SSE2_QOS_DEBUG_INFO(msg, args...) \ fformat(stderr, msg "\n", ##args); #define SSE2_QOS_TR_ERR(TpParms...) // { // } #define SSE2_QOS_TR_INFO(TpParms...) #ifndef MIN #define MIN(x,y) (((x)<(y))?(x):(y)) #endif #ifndef MAX #define MAX(x,y) (((x)>(y))?(x):(y)) #endif #define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_OFFSET 0 #define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_MASK 8 #define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_SHIFT 24 #define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_OFFSET 2 #define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_MASK 2 #define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_SHIFT 10 #define IPE_POLICER_FULL_WRITE_REQUEST_CMD_OFFSET 3 #define IPE_POLICER_FULL_WRITE_REQUEST_CMD_MASK 2 #define IPE_POLICER_FULL_WRITE_REQUEST_CMD_SHIFT 0 #define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_OFFSET 4 #define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_MASK 32 #define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_SHIFT 0 #define IPE_POLICER_FULL_WRITE_REQUEST_RFC_OFFSET 8 #define IPE_POLICER_FULL_WRITE_REQUEST_RFC_MASK 2 #define IPE_POLICER_FULL_WRITE_REQUEST_RFC_SHIFT 30 #define IPE_POLICER_FULL_WRITE_REQUEST_AN_OFFSET 8 #define IPE_POLICER_FULL_WRITE_REQUEST_AN_MASK 1 #define IPE_POLICER_FULL_WRITE_REQUEST_AN_SHIFT 29 #define IPE_POLICER_FULL_WRITE_REQUEST_REXP_OFFSET 8 #define IPE_POLICER_FULL_WRITE_REQUEST_REXP_MASK 4 #define IPE_POLICER_FULL_WRITE_REQUEST_REXP_SHIFT 22 #define IPE_POLICER_FULL_WRITE_REQUEST_ARM_OFFSET 9 #define IPE_POLICER_FULL_WRITE_REQUEST_ARM_MASK 11 #define IPE_POLICER_FULL_WRITE_REQUEST_ARM_SHIFT 11 #define IPE_POLICER_FULL_WRITE_REQUEST_PRM_OFFSET 10 #define IPE_POLICER_FULL_WRITE_REQUEST_PRM_MASK 11 #define IPE_POLICER_FULL_WRITE_REQUEST_PRM_SHIFT 0 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_OFFSET 12 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_MASK 5 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_SHIFT 27 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_OFFSET 12 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_MASK 7 #define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_SHIFT 20 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_OFFSET 13 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_MASK 5 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_SHIFT 15 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_OFFSET 14 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_MASK 7 #define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_SHIFT 8 #define IPE_POLICER_FULL_WRITE_REQUEST_CB_OFFSET 16 #define IPE_POLICER_FULL_WRITE_REQUEST_CB_MASK 31 #define IPE_POLICER_FULL_WRITE_REQUEST_CB_SHIFT 0 #define IPE_POLICER_FULL_WRITE_REQUEST_EB_OFFSET 20 #define IPE_POLICER_FULL_WRITE_REQUEST_EB_MASK 31 #define IPE_POLICER_FULL_WRITE_REQUEST_EB_SHIFT 0 #define IPE_RFC_RFC2697 0x00000000 #define IPE_RFC_RFC2698 0x00000001 #define IPE_RFC_RFC4115 0x00000002 #define IPE_RFC_MEF5CF1 0x00000003 /* End of constants copied from sse_ipe_desc_fmt.h */ /* Misc Policer specific definitions */ #define SSE2_QOS_POLICER_FIXED_PKT_SIZE 256 // TODO check what can be provided by hw macro based on ASIC #define SSE2_QOS_POL_TICKS_PER_SEC 1000LL /* 1 tick = 1 ms */ /* * Default burst, in ms (byte format) */ #define SSE2_QOS_POL_DEF_BURST_BYTE 100 /* * Minimum burst needs to be such that the largest packet size is accomodated */ // Do we need to get it from some lib? #define SSE2_QOS_POL_MIN_BURST_BYTE 9*1024 /* * Flag to indicate if AN is employed or not * 1 - TRUE, 0 - FALSE */ #define SSE2_QOS_POL_ALLOW_NEGATIVE 1 // Various Macros to take care of policer calculations #define SSE2_QOS_POL_COMM_BKT_MAX \ (1<<IPE_POLICER_FULL_WRITE_REQUEST_CB_MASK) #define SSE2_QOS_POL_EXTD_BKT_MAX \ (1<<IPE_POLICER_FULL_WRITE_REQUEST_EB_MASK) #define SSE2_QOS_POL_RATE_EXP_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_REXP_MASK) #define SSE2_QOS_POL_RATE_EXP_MAX ((1<<SSE2_QOS_POL_RATE_EXP_SIZE) - 1) #define SSE2_QOS_POL_AVG_RATE_MANT_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_ARM_MASK) #define SSE2_QOS_POL_AVG_RATE_MANT_MAX \ ((1<< SSE2_QOS_POL_AVG_RATE_MANT_SIZE) - 1) #define SSE2_QOS_POL_AVG_RATE_MAX \ (SSE2_QOS_POL_AVG_RATE_MANT_MAX << \ SSE2_QOS_POL_RATE_EXP_MAX) #define SSE2_QOS_POL_PEAK_RATE_MANT_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_PRM_MASK) #define SSE2_QOS_POL_PEAK_RATE_MANT_MAX \ ((1<<SSE2_QOS_POL_PEAK_RATE_MANT_SIZE) - 1) #define SSE2_QOS_POL_PEAK_RATE_MAX \ (SSE2_QOS_POL_PEAK_RATE_MANT_MAX << \ SSE2_QOS_POL_RATE_EXP_MAX) #define SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_CBLM_MASK) #define SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX \ ((1<<SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_SIZE) - 1) #define SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_CBLE_MASK) #define SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX \ ((1<<SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_SIZE) - 1) #define SSE2_QOS_POL_COMM_BKT_LIMIT_MAX \ ((u64)SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX << \ (u64)SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX) #define SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_EBLM_MASK) #define SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX \ ((1<<SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_SIZE) - 1) #define SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_SIZE \ (IPE_POLICER_FULL_WRITE_REQUEST_EBLE_MASK) #define SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX \ ((1<<SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_SIZE) - 1) #define SSE2_QOS_POL_EXT_BKT_LIMIT_MAX \ ((u64)SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX << \ (u64)SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX) /* * Rates determine the units of the bucket * 256.114688 Gbps < Rate 8 byte units * 128.057344 Gbps < Rate <= 256.114688 Gbps 4 byte units * 64.028672 Gbps < Rate <= 128.057344 Gbps 2 byte units * Rate <= 64.028672 Gbps 1 byte units * * The code uses bytes per tick as oppose to Gigabits per second. */ #define RATE256 (256114688000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC) #define RATE128 (128057344000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC) #define RATE64 ( 64028672000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC) #define RATE_OVER256_UNIT 8LL #define RATE_128TO256_UNIT 4LL #define RATE_64TO128_UNIT 2LL static int sse2_qos_pol_round (u64 numerator, u64 denominator, u64 * rounded_value, sse2_qos_round_type_en round_type) { int rc = 0; if (denominator == 0) { SSE2_QOS_DEBUG_ERROR ("Illegal denominator"); SSE2_QOS_TR_ERR (SSE2_QOSRM_TP_ERR_59); return (EINVAL); } switch (round_type) { case SSE2_QOS_ROUND_TO_CLOSEST: *rounded_value = ((numerator + (denominator >> 1)) / denominator); break; case SSE2_QOS_ROUND_TO_UP: *rounded_value = (numerator / denominator); if ((*rounded_value * denominator) < numerator) { *rounded_value += 1; } break; case SSE2_QOS_ROUND_TO_DOWN: *rounded_value = (numerator / denominator); break; case SSE2_QOS_ROUND_INVALID: default: SSE2_QOS_DEBUG_ERROR ("Illegal round type"); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_60, round_type); rc = EINVAL; break; } return (rc); } static int sse2_pol_validate_cfg_params (sse2_qos_pol_cfg_params_st * cfg) { u64 numer, denom, rnd_value; u32 cir_hw, eir_hw; int rc = 0; if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698) && (cfg->rb.kbps.eir_kbps < cfg->rb.kbps.cir_kbps)) { SSE2_QOS_DEBUG_ERROR ("CIR (%u kbps) is greater than PIR (%u kbps)", cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_39, cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps); return (EINVAL); } /* * convert rates to bytes-per-tick */ numer = (u64) (cfg->rb.kbps.cir_kbps); denom = (u64) (8 * SSE2_QOS_POL_TICKS_PER_SEC) / 1000; rc = sse2_qos_pol_round (numer, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert CIR to bytes/tick format"); // Error traced return (rc); } cir_hw = (u32) rnd_value; numer = (u64) (cfg->rb.kbps.eir_kbps); rc = sse2_qos_pol_round (numer, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert EIR to bytes/tick format"); // Error traced return (rc); } eir_hw = (u32) rnd_value; if (cir_hw > SSE2_QOS_POL_AVG_RATE_MAX) { SSE2_QOS_DEBUG_ERROR ("hw cir (%u bytes/tick) is greater than the " "max supported value (%u)", cir_hw, SSE2_QOS_POL_AVG_RATE_MAX); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_84, cir_hw, SSE2_QOS_POL_AVG_RATE_MAX); return (EINVAL); } if (eir_hw > SSE2_QOS_POL_PEAK_RATE_MAX) { SSE2_QOS_DEBUG_ERROR ("hw eir (%u bytes/tick) is greater than the " "max supported value (%u). Capping it to the max. " "supported value", eir_hw, SSE2_QOS_POL_PEAK_RATE_MAX); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_85, eir_hw, SSE2_QOS_POL_PEAK_RATE_MAX); return (EINVAL); } /* * CIR = 0, with bc != 0 is not allowed */ if ((cfg->rb.kbps.cir_kbps == 0) && cfg->rb.kbps.cb_bytes) { SSE2_QOS_DEBUG_ERROR ("CIR = 0 with bc != 0"); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_55); return (EINVAL); } if ((cfg->rb.kbps.eir_kbps == 0) && (cfg->rfc > SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)) { SSE2_QOS_DEBUG_ERROR ("EIR = 0 for a 2R3C policer (rfc: %u)", cfg->rfc); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_23, cfg->rb.kbps.eir_kbps, cfg->rfc); return (EINVAL); } if (cfg->rb.kbps.eir_kbps && (cfg->rfc < SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698)) { SSE2_QOS_DEBUG_ERROR ("EIR: %u kbps for a 1-rate policer (rfc: %u)", cfg->rb.kbps.eir_kbps, cfg->rfc); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_23, cfg->rb.kbps.eir_kbps, cfg->rfc); return (EINVAL); } if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) && cfg->rb.kbps.eb_bytes) { SSE2_QOS_DEBUG_ERROR ("For a 1R1B policer, EB burst cannot be > 0"); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_56); return (EINVAL); } return (0); } static void sse2_qos_convert_value_to_exp_mant_fmt (u64 value, u16 max_exp_value, u16 max_mant_value, sse2_qos_round_type_en type, u8 * exp, u32 * mant) { u64 rnd_value; u64 temp_mant; u8 temp_exp; /* * Select the lowest possible exp, and the largest possible mant */ temp_exp = 0; temp_mant = value; while (temp_exp <= max_exp_value) { if (temp_mant <= max_mant_value) { break; } temp_exp++; rnd_value = 0; (void) sse2_qos_pol_round ((u64) value, (u64) (1 << temp_exp), &rnd_value, type); temp_mant = rnd_value; } if (temp_exp > max_exp_value) { /* * CAP mant to its max value, and decrement exp */ temp_exp--; temp_mant = max_mant_value; } *exp = temp_exp; *mant = (u32) temp_mant; SSE2_QOS_DEBUG_INFO ("value: 0x%llx, mant: %u, exp: %u", value, *mant, *exp); return; } static int sse2_pol_convert_cfg_rates_to_hw (sse2_qos_pol_cfg_params_st * cfg, sse2_qos_pol_hw_params_st * hw) { int rc = 0; u32 cir_hw, eir_hw, hi_mant, hi_rate, cir_rnded, eir_rnded, eir_kbps; u64 numer, denom, rnd_value; u8 exp; /* * convert rates to bytes-per-tick (tick is 1ms) * For rate conversion, the denominator is gonna be the same */ denom = (u64) ((SSE2_QOS_POL_TICKS_PER_SEC * 8) / 1000); numer = (u64) (cfg->rb.kbps.cir_kbps); rc = sse2_qos_pol_round (numer, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Rounding error, rate: %d kbps, rounding_type: %d", cfg->rb.kbps.cir_kbps, cfg->rnd_type); // Error is traced return (rc); } cir_hw = (u32) rnd_value; if (cfg->rb.kbps.cir_kbps && (cir_hw == 0)) { /* * After rounding, cir_hw = 0. Bump it up */ cir_hw = 1; } if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) { eir_kbps = 0; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697) { eir_kbps = cfg->rb.kbps.cir_kbps; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115) { eir_kbps = cfg->rb.kbps.eir_kbps - cfg->rb.kbps.cir_kbps; } else { eir_kbps = cfg->rb.kbps.eir_kbps; } numer = (u64) eir_kbps; rc = sse2_qos_pol_round (numer, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Rounding error, rate: %d kbps, rounding_type: %d", eir_kbps, cfg->rnd_type); // Error is traced return (rc); } eir_hw = (u32) rnd_value; if (eir_kbps && (eir_hw == 0)) { /* * After rounding, eir_hw = 0. Bump it up */ eir_hw = 1; } SSE2_QOS_DEBUG_INFO ("cir_hw: %u bytes/tick, eir_hw: %u bytes/tick", cir_hw, eir_hw); if (cir_hw > eir_hw) { hi_rate = cir_hw; } else { hi_rate = eir_hw; } if ((cir_hw == 0) && (eir_hw == 0)) { /* * Both the rates are 0. Use exp = 15, and set the RFC to 4115. Also * set AN = 0 */ exp = (u8) SSE2_QOS_POL_RATE_EXP_MAX; hi_mant = 0; hw->rfc = IPE_RFC_RFC4115; hw->allow_negative = 0; } else { sse2_qos_convert_value_to_exp_mant_fmt (hi_rate, (u16) SSE2_QOS_POL_RATE_EXP_MAX, (u16) SSE2_QOS_POL_AVG_RATE_MANT_MAX, (sse2_qos_round_type_en) cfg->rnd_type, &exp, &hi_mant); } denom = (1ULL << exp); if (hi_rate == eir_hw) { hw->peak_rate_man = (u16) hi_mant; rc = sse2_qos_pol_round ((u64) cir_hw, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); hw->avg_rate_man = (u16) rnd_value; } else { hw->avg_rate_man = (u16) hi_mant; rc = sse2_qos_pol_round ((u64) eir_hw, denom, &rnd_value, (sse2_qos_round_type_en) cfg->rnd_type); hw->peak_rate_man = (u16) rnd_value; } if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Rounding error"); // Error is traced return (rc); } hw->rate_exp = exp; if ((hw->avg_rate_man == 0) && (cfg->rb.kbps.cir_kbps)) { /* * cir was reduced to 0 during rounding. Bump it up */ hw->avg_rate_man = 1; SSE2_QOS_DEBUG_INFO ("CIR = 0 during rounding. Bump it up to %u " "bytes/tick", (hw->avg_rate_man << hw->rate_exp)); } if ((hw->peak_rate_man == 0) && eir_kbps) { /* * eir was reduced to 0 during rounding. Bump it up */ hw->peak_rate_man = 1; SSE2_QOS_DEBUG_INFO ("EIR = 0 during rounding. Bump it up to %u " "bytes/tick", (hw->peak_rate_man << hw->rate_exp)); } cir_rnded = (hw->avg_rate_man << hw->rate_exp); eir_rnded = (hw->peak_rate_man << hw->rate_exp); SSE2_QOS_DEBUG_INFO ("Configured(rounded) values, cir: %u " "kbps (mant: %u, exp: %u, rate: %u bytes/tick)", cfg->rb.kbps.cir_kbps, hw->avg_rate_man, hw->rate_exp, cir_rnded); SSE2_QOS_DEBUG_INFO ("Configured(rounded) values, eir: %u " "kbps (mant: %u, exp: %u, rate: %u bytes/tick)", cfg->rb.kbps.eir_kbps, hw->peak_rate_man, hw->rate_exp, eir_rnded); return (rc); } /***** * NAME * sse2_pol_get_bkt_max * * PARAMETERS * rate_hw - either the averate rate or peak rate * bkt_max - bit width in the current bucket or extended bucket * * RETURNS * u64 - maximum token bytes for the current or extended bucket * * DESCRIPTION * The current bucket or extended bucket fields are in units of either * 1,2,4,8 bytes based on the average or peak rate respective to current * or extended bucket. * * To get the actual maximum number of bytes that can be stored in the * field, the value must be multiplied by the units of either 1,2,4,8 * bytes based on the rate. *****/ u64 sse2_pol_get_bkt_max (u64 rate_hw, u64 bkt_max) { if (rate_hw <= RATE64) { return (bkt_max - 1); } else if (rate_hw <= RATE128) { return ((bkt_max * RATE_64TO128_UNIT) - RATE_64TO128_UNIT); } else if (rate_hw <= RATE256) { return ((bkt_max * RATE_128TO256_UNIT) - RATE_128TO256_UNIT); } /* rate must be over 256 */ return ((bkt_max * RATE_OVER256_UNIT) - RATE_OVER256_UNIT); } /***** * NAME * sse2_pol_get_bkt_value * * PARAMETERS * rate_hw - either the averate rate or peak rate * byte_value - bytes for this token bucket * * RETURNS * u64 - unit value for the current or extended bucket field * * DESCRIPTION * The current bucket or extended bucket fields are in units of either * 1,2,4,8 bytes based on the average or peak rate respective to current * or extended bucket. * * To get the units that can be stored in the field, the byte value must * be divided by the units of either 1,2,4,8 bytes based on the rate. *****/ u64 sse2_pol_get_bkt_value (u64 rate_hw, u64 byte_value) { if (rate_hw <= RATE64) { return (byte_value); } else if (rate_hw <= RATE128) { return (byte_value / RATE_64TO128_UNIT); } else if (rate_hw <= RATE256) { return (byte_value / RATE_128TO256_UNIT); } /* rate must be over 256 */ return (byte_value / RATE_OVER256_UNIT); } static void sse2_pol_rnd_burst_byte_fmt (u64 cfg_burst, u16 max_exp_value, u16 max_mant_value, u32 max_bkt_value, u32 rate_hw, u8 * exp, u32 * mant, u32 * bkt_value) { u64 bkt_max = max_bkt_value; u64 bkt_limit_max; u64 rnd_burst; u64 temp_bkt_value; bkt_limit_max = ((u64) max_mant_value << (u64) max_exp_value); bkt_max = sse2_pol_get_bkt_max (rate_hw, bkt_max); bkt_max = MIN (bkt_max, bkt_limit_max); if (!cfg_burst) { /* * If configured burst = 0, compute the burst to be 100ms at a given * rate. Note that for rate_hw = 0, exp = mant = 0. */ cfg_burst = (u64) rate_hw *(u64) SSE2_QOS_POL_DEF_BURST_BYTE; } if (cfg_burst > bkt_max) { SSE2_QOS_DEBUG_ERROR ("burst 0x%llx bytes is greater than the max. " "supported value 0x%llx bytes. Capping it to the " "max", cfg_burst, bkt_max); SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_38, (uint) cfg_burst, (uint) bkt_max); cfg_burst = bkt_max; } if (cfg_burst < SSE2_QOS_POL_MIN_BURST_BYTE) { /* * Bump up the burst value ONLY if the cfg_burst is non-zero AND * less than the min. supported value */ SSE2_QOS_DEBUG_INFO ("burst 0x%llx bytes is less than the min " "supported value %u bytes. Rounding it up to " "the min", cfg_burst, SSE2_QOS_POL_MIN_BURST_BYTE); SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_39, (uint) cfg_burst, SSE2_QOS_POL_MIN_BURST_BYTE); cfg_burst = SSE2_QOS_POL_MIN_BURST_BYTE; } sse2_qos_convert_value_to_exp_mant_fmt (cfg_burst, max_exp_value, max_mant_value, SSE2_QOS_ROUND_TO_DOWN, exp, mant); /* Bucket value is based on rate. */ rnd_burst = ((u64) (*mant) << (u64) (*exp)); temp_bkt_value = sse2_pol_get_bkt_value (rate_hw, rnd_burst); *bkt_value = (u32) temp_bkt_value; } static int sse2_pol_convert_cfg_burst_to_hw (sse2_qos_pol_cfg_params_st * cfg, sse2_qos_pol_hw_params_st * hw) { u8 temp_exp; u32 temp_mant, rate_hw; u64 eb_bytes; u32 bkt_value; /* * compute Committed Burst */ SSE2_QOS_DEBUG_INFO ("Compute commit burst ..."); rate_hw = (hw->avg_rate_man) << (hw->rate_exp); sse2_pol_rnd_burst_byte_fmt (cfg->rb.kbps.cb_bytes, (u16) SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX, (u16) SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX, (u32) SSE2_QOS_POL_COMM_BKT_MAX, rate_hw, &temp_exp, &temp_mant, &bkt_value); SSE2_QOS_DEBUG_INFO ("Committed burst, burst_limit: 0x%llx mant : %u, " "exp: %u, rnded: 0x%llx cb:%u bytes", cfg->rb.kbps.cb_bytes, temp_mant, temp_exp, ((u64) temp_mant << (u64) temp_exp), bkt_value); hw->comm_bkt_limit_exp = temp_exp; hw->comm_bkt_limit_man = (u8) temp_mant; hw->comm_bkt = bkt_value; /* * compute Exceed Burst */ SSE2_QOS_DEBUG_INFO ("Compute exceed burst ..."); if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) { /* * For 1R2C, hw uses 2R3C (RFC-4115). As such, the Exceed Bucket * params are set to 0. Recommendation is to use EB_exp = max_exp (=15) * and EB_mant = 0 */ hw->extd_bkt_limit_exp = (u8) SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX; hw->extd_bkt_limit_man = 0; SSE2_QOS_DEBUG_INFO ("Excess burst, burst: 0x%llx mant: %u, " "exp: %u, rnded: 0x%llx bytes", cfg->rb.kbps.eb_bytes, hw->extd_bkt_limit_man, hw->extd_bkt_limit_exp, ((u64) hw->extd_bkt_limit_man << (u64) hw->extd_bkt_limit_exp)); SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_20, (uint) cfg->rb.kbps.eb_bytes, hw->extd_bkt_limit_man, hw->extd_bkt_limit_exp); return (0); } if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697) { eb_bytes = cfg->rb.kbps.cb_bytes + cfg->rb.kbps.eb_bytes; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115) { eb_bytes = cfg->rb.kbps.eb_bytes - cfg->rb.kbps.cb_bytes; } else { eb_bytes = cfg->rb.kbps.eb_bytes; } rate_hw = (hw->peak_rate_man) << (hw->rate_exp); sse2_pol_rnd_burst_byte_fmt (eb_bytes, (u16) SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX, (u16) SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX, (u32) SSE2_QOS_POL_EXTD_BKT_MAX, rate_hw, &temp_exp, &temp_mant, &bkt_value); SSE2_QOS_DEBUG_INFO ("Excess burst, burst_limit: 0x%llx mant: %u, " "exp: %u, rnded: 0x%llx eb:%u bytes", cfg->rb.kbps.eb_bytes, temp_mant, temp_exp, ((u64) temp_mant << (u64) temp_exp), bkt_value); hw->extd_bkt_limit_exp = (u8) temp_exp; hw->extd_bkt_limit_man = (u8) temp_mant; hw->extd_bkt = bkt_value; return (0); } /* * Input: configured parameter values in 'cfg'. * Output: h/w programmable parameter values in 'hw'. * Return: success or failure code. */ static int sse2_pol_convert_cfg_to_hw_params (sse2_qos_pol_cfg_params_st * cfg, sse2_qos_pol_hw_params_st * hw) { int rc = 0; /* * clear the hw_params */ memset (hw, 0, sizeof (sse2_qos_pol_hw_params_st)); hw->allow_negative = SSE2_QOS_POL_ALLOW_NEGATIVE; if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) || (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115)) { hw->rfc = IPE_RFC_RFC4115; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697) { hw->rfc = IPE_RFC_RFC2697; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698) { hw->rfc = IPE_RFC_RFC2698; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_MEF5CF1) { hw->rfc = IPE_RFC_MEF5CF1; } else { SSE2_QOS_DEBUG_ERROR ("Invalid RFC type %d\n", cfg->rfc); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_61, cfg->rfc); return (EINVAL); } rc = sse2_pol_convert_cfg_rates_to_hw (cfg, hw); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert config rates to hw. Error: %d", rc); // Error is traced return (rc); } rc = sse2_pol_convert_cfg_burst_to_hw (cfg, hw); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert config burst to hw. Error: %d", rc); // Error is traced return (rc); } return 0; } u32 sse2_qos_convert_pps_to_kbps (u32 rate_pps) { // sse2_qos_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT, // SSE2_QOS_SHIP_CNT_POL_CONV_PPS_TO_KBPS); u64 numer, rnd_value = 0; numer = (u64) ((u64) rate_pps * (u64) SSE2_QOS_POLICER_FIXED_PKT_SIZE * 8LL); (void) sse2_qos_pol_round (numer, 1000LL, &rnd_value, SSE2_QOS_ROUND_TO_CLOSEST); return ((u32) rnd_value); } u32 sse2_qos_convert_burst_ms_to_bytes (u32 burst_ms, u32 rate_kbps) { u64 numer, rnd_value = 0; //sse2_qos_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT, // SSE2_QOS_SHIP_CNT_POL_CONV_BURST_MS_TO_BYTES); numer = (u64) ((u64) burst_ms * (u64) rate_kbps); (void) sse2_qos_pol_round (numer, 8LL, &rnd_value, SSE2_QOS_ROUND_TO_CLOSEST); return ((u32) rnd_value); } /* * Input: configured parameters in 'cfg'. * Output: h/w parameters are returned in 'hw', * Return: Status, success or failure code. */ int sse2_pol_compute_hw_params (sse2_qos_pol_cfg_params_st * cfg, sse2_qos_pol_hw_params_st * hw) { int rc = 0; if (!cfg || !hw) { SSE2_QOS_DEBUG_ERROR ("Illegal parameters"); return (-1); } /* * Validate the police config params being presented to RM */ rc = sse2_pol_validate_cfg_params (cfg); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Config parameter validation failed. Error: %d", rc); // Error is traced return (-1); } /* * first round configured values to h/w supported values. This func * also determines whether 'tick' or 'byte' format */ rc = sse2_pol_convert_cfg_to_hw_params (cfg, hw); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert config params to hw params. " "Error: %d", rc); SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_53, rc); return (-1); } return 0; } #if defined (INTERNAL_SS) || defined (X86) // For initializing the x86 policer format /* * Return the number of hardware TSC timer ticks per second for the dataplane. * This is approximately, but not exactly, the clock speed. */ static u64 get_tsc_hz (void) { f64 cpu_freq; cpu_freq = os_cpu_clock_frequency (); return (u64) cpu_freq; } /* * Convert rates into bytes_per_period and scale. * Return 0 if ok or 1 if error. */ static int compute_policer_params (u64 hz, // CPU speed in clocks per second u64 cir_rate, // in bytes per second u64 pir_rate, // in bytes per second u32 * current_limit, // in bytes, output may scale the input u32 * extended_limit, // in bytes, output may scale the input u32 * cir_bytes_per_period, u32 * pir_bytes_per_period, u32 * scale) { double period; double internal_cir_bytes_per_period; double internal_pir_bytes_per_period; u32 max; u32 scale_shift; u32 scale_amount; u32 __attribute__ ((unused)) orig_current_limit = *current_limit; // Compute period. For 1Ghz-to-8Ghz CPUs, the period will be in // the range of 16 to 116 usec. period = ((double) hz) / ((double) POLICER_TICKS_PER_PERIOD); // Determine bytes per period for each rate internal_cir_bytes_per_period = (double) cir_rate / period; internal_pir_bytes_per_period = (double) pir_rate / period; // Scale if possible. Scaling helps rate accuracy, but is contrained // by the scaled rates and limits fitting in 32-bits. // In addition, we need to insure the scaled rate is no larger than // 2^22 tokens per period. This allows the dataplane to ignore overflow // in the tokens-per-period multiplication since it could only // happen if the policer were idle for more than a year. // This is not really a constraint because 100Gbps at 1Ghz is only // 1.6M tokens per period. #define MAX_RATE_SHIFT 10 max = MAX (*current_limit, *extended_limit); max = MAX (max, (u32) internal_cir_bytes_per_period << MAX_RATE_SHIFT); max = MAX (max, (u32) internal_pir_bytes_per_period << MAX_RATE_SHIFT); scale_shift = __builtin_clz (max); scale_amount = 1 << scale_shift; *scale = scale_shift; // Scale the limits *current_limit = *current_limit << scale_shift; *extended_limit = *extended_limit << scale_shift; // Scale the rates internal_cir_bytes_per_period = internal_cir_bytes_per_period * ((double) scale_amount); internal_pir_bytes_per_period = internal_pir_bytes_per_period * ((double) scale_amount); // Make sure the new rates are reasonable // Only needed for very low rates with large bursts if (internal_cir_bytes_per_period < 1.0) { internal_cir_bytes_per_period = 1.0; } if (internal_pir_bytes_per_period < 1.0) { internal_pir_bytes_per_period = 1.0; } *cir_bytes_per_period = (u32) internal_cir_bytes_per_period; *pir_bytes_per_period = (u32) internal_pir_bytes_per_period; // #define PRINT_X86_POLICE_PARAMS #ifdef PRINT_X86_POLICE_PARAMS { u64 effective_BPS; // This value actually slightly conservative because it doesn't take into account // the partial period at the end of a second. This really matters only for very low // rates. effective_BPS = (((u64) (*cir_bytes_per_period * (u64) period)) >> *scale); printf ("hz=%llu, cir_rate=%llu, limit=%u => " "periods-per-sec=%d usec-per-period=%d => " "scale=%d cir_BPP=%u, scaled_limit=%u => " "effective BPS=%llu, accuracy=%f\n", // input values (unsigned long long) hz, (unsigned long long) cir_rate, orig_current_limit, // computed values (u32) (period), // periods per second (u32) (1000.0 * 1000.0 / period), // in usec *scale, *cir_bytes_per_period, *current_limit, // accuracy (unsigned long long) effective_BPS, (double) cir_rate / (double) effective_BPS); } #endif return 0; // ok } /* * Input: configured parameters in 'cfg'. * Output: h/w parameters are returned in 'hw', * Return: Status, success or failure code. */ int x86_pol_compute_hw_params (sse2_qos_pol_cfg_params_st * cfg, policer_read_response_type_st * hw) { const int BYTES_PER_KBIT = (1000 / 8); u64 hz; u32 cap; if (!cfg || !hw) { SSE2_QOS_DEBUG_ERROR ("Illegal parameters"); return (-1); } hz = get_tsc_hz (); hw->last_update_time = 0; // Cap the bursts to 32-bits. This allows up to almost one second of // burst on a 40GE interface, which should be fine for x86. cap = (cfg->rb.kbps.cb_bytes > 0xFFFFFFFF) ? 0xFFFFFFFF : cfg->rb.kbps.cb_bytes; hw->current_limit = cap; cap = (cfg->rb.kbps.eb_bytes > 0xFFFFFFFF) ? 0xFFFFFFFF : cfg->rb.kbps.eb_bytes; hw->extended_limit = cap; if ((cfg->rb.kbps.cir_kbps == 0) && (cfg->rb.kbps.cb_bytes == 0) && (cfg->rb.kbps.eb_bytes == 0)) { // This is a uninitialized, always-violate policer hw->single_rate = 1; hw->cir_tokens_per_period = 0; return 0; } if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) || (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)) { // Single-rate policer hw->single_rate = 1; if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) && cfg->rb.kbps.eb_bytes) { SSE2_QOS_DEBUG_ERROR ("Policer parameter validation failed -- 1R2C."); return (-1); } if ((cfg->rb.kbps.cir_kbps == 0) || (cfg->rb.kbps.eir_kbps != 0) || ((cfg->rb.kbps.cb_bytes == 0) && (cfg->rb.kbps.eb_bytes == 0))) { SSE2_QOS_DEBUG_ERROR ("Policer parameter validation failed -- 1R."); return (-1); } if (compute_policer_params (hz, (u64) cfg->rb.kbps.cir_kbps * BYTES_PER_KBIT, 0, &hw->current_limit, &hw->extended_limit, &hw->cir_tokens_per_period, &hw->pir_tokens_per_period, &hw->scale)) { SSE2_QOS_DEBUG_ERROR ("Policer parameter computation failed."); return (-1); } } else if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698) || (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115)) { // Two-rate policer if ((cfg->rb.kbps.cir_kbps == 0) || (cfg->rb.kbps.eir_kbps == 0) || (cfg->rb.kbps.eir_kbps < cfg->rb.kbps.cir_kbps) || (cfg->rb.kbps.cb_bytes == 0) || (cfg->rb.kbps.eb_bytes == 0)) { SSE2_QOS_DEBUG_ERROR ("Config parameter validation failed."); return (-1); } if (compute_policer_params (hz, (u64) cfg->rb.kbps.cir_kbps * BYTES_PER_KBIT, (u64) cfg->rb.kbps.eir_kbps * BYTES_PER_KBIT, &hw->current_limit, &hw->extended_limit, &hw->cir_tokens_per_period, &hw->pir_tokens_per_period, &hw->scale)) { SSE2_QOS_DEBUG_ERROR ("Policer parameter computation failed."); return (-1); } } else { SSE2_QOS_DEBUG_ERROR ("Config parameter validation failed. RFC not supported"); return (-1); } hw->current_bucket = hw->current_limit; hw->extended_bucket = hw->extended_limit; return 0; } #endif /* * Input: configured parameters in 'cfg'. * Output: physical structure is returned in 'phys', * Return: Status, success or failure code. */ int sse2_pol_logical_2_physical (sse2_qos_pol_cfg_params_st * cfg, policer_read_response_type_st * phys) { int rc; sse2_qos_pol_cfg_params_st kbps_cfg; memset (phys, 0, sizeof (policer_read_response_type_st)); memset (&kbps_cfg, 0, sizeof (sse2_qos_pol_cfg_params_st)); if (!cfg) { SSE2_QOS_DEBUG_ERROR ("Illegal parameters"); return (-1); } switch (cfg->rate_type) { case SSE2_QOS_RATE_KBPS: /* copy all the data into kbps_cfg */ kbps_cfg.rb.kbps.cir_kbps = cfg->rb.kbps.cir_kbps; kbps_cfg.rb.kbps.eir_kbps = cfg->rb.kbps.eir_kbps; kbps_cfg.rb.kbps.cb_bytes = cfg->rb.kbps.cb_bytes; kbps_cfg.rb.kbps.eb_bytes = cfg->rb.kbps.eb_bytes; break; case SSE2_QOS_RATE_PPS: kbps_cfg.rb.kbps.cir_kbps = sse2_qos_convert_pps_to_kbps (cfg->rb.pps.cir_pps); kbps_cfg.rb.kbps.eir_kbps = sse2_qos_convert_pps_to_kbps (cfg->rb.pps.eir_pps); kbps_cfg.rb.kbps.cb_bytes = sse2_qos_convert_burst_ms_to_bytes ((u32) cfg-> rb.pps.cb_ms, kbps_cfg.rb. kbps.cir_kbps); kbps_cfg.rb.kbps.eb_bytes = sse2_qos_convert_burst_ms_to_bytes ((u32) cfg->rb.pps.eb_ms, kbps_cfg.rb.kbps.eir_kbps); break; default: SSE2_QOS_DEBUG_ERROR ("Illegal rate type"); return (-1); } /* rate type is now converted to kbps */ kbps_cfg.rate_type = SSE2_QOS_RATE_KBPS; kbps_cfg.rnd_type = cfg->rnd_type; kbps_cfg.rfc = cfg->rfc; phys->action[POLICE_CONFORM] = cfg->conform_action.action_type; phys->mark_dscp[POLICE_CONFORM] = cfg->conform_action.dscp; phys->action[POLICE_EXCEED] = cfg->exceed_action.action_type; phys->mark_dscp[POLICE_EXCEED] = cfg->exceed_action.dscp; phys->action[POLICE_VIOLATE] = cfg->violate_action.action_type; phys->mark_dscp[POLICE_VIOLATE] = cfg->violate_action.dscp; phys->color_aware = cfg->color_aware; #if !defined (INTERNAL_SS) && !defined (X86) // convert logical into hw params which involves qos calculations rc = sse2_pol_compute_hw_params (&kbps_cfg, &pol_hw); if (rc == -1) { SSE2_QOS_DEBUG_ERROR ("Unable to compute hw param. Error: %d", rc); return (rc); } // convert hw params into the physical phys->rfc = pol_hw.rfc; phys->an = pol_hw.allow_negative; phys->rexp = pol_hw.rate_exp; phys->arm = pol_hw.avg_rate_man; phys->prm = pol_hw.peak_rate_man; phys->cble = pol_hw.comm_bkt_limit_exp; phys->cblm = pol_hw.comm_bkt_limit_man; phys->eble = pol_hw.extd_bkt_limit_exp; phys->eblm = pol_hw.extd_bkt_limit_man; phys->cb = pol_hw.comm_bkt; phys->eb = pol_hw.extd_bkt; /* for debugging purposes, the bucket token values can be overwritten */ if (cfg->overwrite_bucket) { phys->cb = cfg->current_bucket; phys->eb = cfg->extended_bucket; } #else // convert logical into hw params which involves qos calculations rc = x86_pol_compute_hw_params (&kbps_cfg, phys); if (rc == -1) { SSE2_QOS_DEBUG_ERROR ("Unable to compute hw param. Error: %d", rc); return (rc); } /* for debugging purposes, the bucket token values can be overwritten */ if (cfg->overwrite_bucket) { phys->current_bucket = cfg->current_bucket; phys->extended_bucket = cfg->extended_bucket; } #endif // if !defined (INTERNAL_SS) && !defined (X86) return 0; } static void sse2_qos_convert_pol_bucket_to_hw_fmt (policer_read_response_type_st * bkt, sse2_qos_pol_hw_params_st * hw_fmt) { memset (hw_fmt, 0, sizeof (sse2_qos_pol_hw_params_st)); #if !defined (INTERNAL_SS) && !defined (X86) hw_fmt->rfc = (u8) bkt->rfc; hw_fmt->allow_negative = (u8) bkt->an; hw_fmt->rate_exp = (u8) bkt->rexp; hw_fmt->avg_rate_man = (u16) bkt->arm; hw_fmt->peak_rate_man = (u16) bkt->prm; hw_fmt->comm_bkt_limit_man = (u8) bkt->cblm; hw_fmt->comm_bkt_limit_exp = (u8) bkt->cble; hw_fmt->extd_bkt_limit_man = (u8) bkt->eblm; hw_fmt->extd_bkt_limit_exp = (u8) bkt->eble; hw_fmt->extd_bkt = bkt->eb; hw_fmt->comm_bkt = bkt->cb; #endif // if !defined (INTERNAL_SS) && !defined (X86) } /* * Input: h/w programmable parameter values in 'hw' * Output: configured parameter values in 'cfg' * Return: Status, success or failure code. */ static int sse2_pol_convert_hw_to_cfg_params (sse2_qos_pol_hw_params_st * hw, sse2_qos_pol_cfg_params_st * cfg) { u64 temp_rate; if ((hw == NULL) || (cfg == NULL)) { return EINVAL; } if ((hw->rfc == IPE_RFC_RFC4115) && (hw->peak_rate_man << hw->rate_exp) == 0 && !(hw->extd_bkt_limit_man)) { /* * For a 1R2C, we set EIR = 0, EB = 0 */ cfg->rfc = SSE2_QOS_POLICER_TYPE_1R2C; } else if (hw->rfc == IPE_RFC_RFC2697) { cfg->rfc = SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697; } else if (hw->rfc == IPE_RFC_RFC2698) { cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698; } else if (hw->rfc == IPE_RFC_RFC4115) { cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115; } else if (hw->rfc == IPE_RFC_MEF5CF1) { cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_MEF5CF1; } else { return EINVAL; } temp_rate = (((u64) hw->avg_rate_man << hw->rate_exp) * 8LL * SSE2_QOS_POL_TICKS_PER_SEC) / 1000; cfg->rb.kbps.cir_kbps = (u32) temp_rate; temp_rate = (((u64) hw->peak_rate_man << hw->rate_exp) * 8LL * SSE2_QOS_POL_TICKS_PER_SEC) / 1000; cfg->rb.kbps.eir_kbps = (u32) temp_rate; cfg->rb.kbps.cb_bytes = ((u64) hw->comm_bkt_limit_man << (u64) hw->comm_bkt_limit_exp); cfg->rb.kbps.eb_bytes = ((u64) hw->extd_bkt_limit_man << (u64) hw->extd_bkt_limit_exp); if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697) { /* * For 1R3C in the hardware, EB = sum(CB, EB). Also, EIR = CIR. Restore * values such that the configured params don't reflect this adjustment */ cfg->rb.kbps.eb_bytes = (cfg->rb.kbps.eb_bytes - cfg->rb.kbps.cb_bytes); cfg->rb.kbps.eir_kbps = 0; } else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115) { /* * For 4115 in the hardware is excess rate and burst, but EA provides * peak-rate, so adjust it to be eir */ cfg->rb.kbps.eir_kbps += cfg->rb.kbps.cir_kbps; cfg->rb.kbps.eb_bytes += cfg->rb.kbps.cb_bytes; } /* h/w conversion to cfg is in kbps */ cfg->rate_type = SSE2_QOS_RATE_KBPS; cfg->overwrite_bucket = 0; cfg->current_bucket = hw->comm_bkt; cfg->extended_bucket = hw->extd_bkt; SSE2_QOS_DEBUG_INFO ("configured params, cir: %u kbps, eir: %u kbps, cb " "burst: 0x%llx bytes, eb burst: 0x%llx bytes", cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps, cfg->rb.kbps.cb_bytes, cfg->rb.kbps.eb_bytes); SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_22, cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps, (uint) cfg->rb.kbps.cb_bytes, (uint) cfg->rb.kbps.eb_bytes); return 0; } u32 sse2_qos_convert_kbps_to_pps (u32 rate_kbps) { u64 numer, denom, rnd_value = 0; // sse_qosrm_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT, // SSE2_QOS_SHIP_CNT_POL_CONV_KBPS_TO_PPS); numer = (u64) ((u64) rate_kbps * 1000LL); denom = (u64) ((u64) SSE2_QOS_POLICER_FIXED_PKT_SIZE * 8LL); (void) sse2_qos_pol_round (numer, denom, &rnd_value, SSE2_QOS_ROUND_TO_CLOSEST); return ((u32) rnd_value); } u32 sse2_qos_convert_burst_bytes_to_ms (u64 burst_bytes, u32 rate_kbps) { u64 numer, denom, rnd_value = 0; //sse_qosrm_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT, // SSE2_QOS_SHIP_CNT_POL_CONV_BYTES_TO_BURST_MS); numer = burst_bytes * 8LL; denom = (u64) rate_kbps; (void) sse2_qos_pol_round (numer, denom, &rnd_value, SSE2_QOS_ROUND_TO_CLOSEST); return ((u32) rnd_value); } /* * Input: physical structure in 'phys', rate_type in cfg * Output: configured parameters in 'cfg'. * Return: Status, success or failure code. */ int sse2_pol_physical_2_logical (policer_read_response_type_st * phys, sse2_qos_pol_cfg_params_st * cfg) { int rc; sse2_qos_pol_hw_params_st pol_hw; sse2_qos_pol_cfg_params_st kbps_cfg; memset (&pol_hw, 0, sizeof (sse2_qos_pol_hw_params_st)); memset (&kbps_cfg, 0, sizeof (sse2_qos_pol_cfg_params_st)); if (!phys) { SSE2_QOS_DEBUG_ERROR ("Illegal parameters"); return (-1); } sse2_qos_convert_pol_bucket_to_hw_fmt (phys, &pol_hw); rc = sse2_pol_convert_hw_to_cfg_params (&pol_hw, &kbps_cfg); if (rc != 0) { SSE2_QOS_DEBUG_ERROR ("Unable to convert hw params to config params. " "Error: %d", rc); return (-1); } /* check what rate type is required */ switch (cfg->rate_type) { case SSE2_QOS_RATE_KBPS: /* copy all the data into kbps_cfg */ cfg->rb.kbps.cir_kbps = kbps_cfg.rb.kbps.cir_kbps; cfg->rb.kbps.eir_kbps = kbps_cfg.rb.kbps.eir_kbps; cfg->rb.kbps.cb_bytes = kbps_cfg.rb.kbps.cb_bytes; cfg->rb.kbps.eb_bytes = kbps_cfg.rb.kbps.eb_bytes; break; case SSE2_QOS_RATE_PPS: cfg->rb.pps.cir_pps = sse2_qos_convert_kbps_to_pps (kbps_cfg.rb.kbps.cir_kbps); cfg->rb.pps.eir_pps = sse2_qos_convert_kbps_to_pps (kbps_cfg.rb.kbps.eir_kbps); cfg->rb.pps.cb_ms = sse2_qos_convert_burst_bytes_to_ms (kbps_cfg.rb.kbps.cb_bytes, kbps_cfg.rb.kbps.cir_kbps); cfg->rb.pps.eb_ms = sse2_qos_convert_burst_bytes_to_ms (kbps_cfg.rb.kbps.eb_bytes, kbps_cfg.rb.kbps.eir_kbps); break; default: SSE2_QOS_DEBUG_ERROR ("Illegal rate type"); return (-1); } /* cfg->rate_type remains what it was */ cfg->rnd_type = kbps_cfg.rnd_type; cfg->rfc = kbps_cfg.rfc; cfg->overwrite_bucket = kbps_cfg.overwrite_bucket; cfg->current_bucket = kbps_cfg.current_bucket; cfg->extended_bucket = kbps_cfg.extended_bucket; return 0; } /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */