/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <stdint.h>

#include <vlib/vlib.h>
#include <vnet/vnet.h>

#include <vnet/policer/xlate.h>
#include <vnet/policer/police.h>

#define INTERNAL_SS 1

/* debugs */
#define SSE2_QOS_DEBUG_ERROR(msg, args...) \
    fformat(stderr, msg "\n", ##args);

#define SSE2_QOS_DEBUG_INFO(msg, args...) \
    fformat(stderr, msg "\n", ##args);


#define SSE2_QOS_TR_ERR(TpParms...)
// {
// }

#define SSE2_QOS_TR_INFO(TpParms...)

#ifndef MIN
#define MIN(x,y)            (((x)<(y))?(x):(y))
#endif

#ifndef MAX
#define MAX(x,y)            (((x)>(y))?(x):(y))
#endif

#define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_OFFSET                   0
#define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_MASK                     8
#define IPE_POLICER_FULL_WRITE_REQUEST_M40AH_SHIFT                   24

#define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_OFFSET                    2
#define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_MASK                      2
#define IPE_POLICER_FULL_WRITE_REQUEST_TYPE_SHIFT                    10

#define IPE_POLICER_FULL_WRITE_REQUEST_CMD_OFFSET                     3
#define IPE_POLICER_FULL_WRITE_REQUEST_CMD_MASK                       2
#define IPE_POLICER_FULL_WRITE_REQUEST_CMD_SHIFT                      0

#define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_OFFSET                   4
#define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_MASK                    32
#define IPE_POLICER_FULL_WRITE_REQUEST_M40AL_SHIFT                    0

#define IPE_POLICER_FULL_WRITE_REQUEST_RFC_OFFSET                     8
#define IPE_POLICER_FULL_WRITE_REQUEST_RFC_MASK                       2
#define IPE_POLICER_FULL_WRITE_REQUEST_RFC_SHIFT                     30

#define IPE_POLICER_FULL_WRITE_REQUEST_AN_OFFSET                      8
#define IPE_POLICER_FULL_WRITE_REQUEST_AN_MASK                        1
#define IPE_POLICER_FULL_WRITE_REQUEST_AN_SHIFT                      29

#define IPE_POLICER_FULL_WRITE_REQUEST_REXP_OFFSET                    8
#define IPE_POLICER_FULL_WRITE_REQUEST_REXP_MASK                      4
#define IPE_POLICER_FULL_WRITE_REQUEST_REXP_SHIFT                    22

#define IPE_POLICER_FULL_WRITE_REQUEST_ARM_OFFSET                     9
#define IPE_POLICER_FULL_WRITE_REQUEST_ARM_MASK                      11
#define IPE_POLICER_FULL_WRITE_REQUEST_ARM_SHIFT                     11

#define IPE_POLICER_FULL_WRITE_REQUEST_PRM_OFFSET                    10
#define IPE_POLICER_FULL_WRITE_REQUEST_PRM_MASK                      11
#define IPE_POLICER_FULL_WRITE_REQUEST_PRM_SHIFT                      0

#define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_OFFSET                   12
#define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_MASK                      5
#define IPE_POLICER_FULL_WRITE_REQUEST_CBLE_SHIFT                    27

#define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_OFFSET                   12
#define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_MASK                      7
#define IPE_POLICER_FULL_WRITE_REQUEST_CBLM_SHIFT                    20

#define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_OFFSET                   13
#define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_MASK                      5
#define IPE_POLICER_FULL_WRITE_REQUEST_EBLE_SHIFT                    15

#define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_OFFSET                   14
#define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_MASK                      7
#define IPE_POLICER_FULL_WRITE_REQUEST_EBLM_SHIFT                     8

#define IPE_POLICER_FULL_WRITE_REQUEST_CB_OFFSET                     16
#define IPE_POLICER_FULL_WRITE_REQUEST_CB_MASK                       31
#define IPE_POLICER_FULL_WRITE_REQUEST_CB_SHIFT                       0

#define IPE_POLICER_FULL_WRITE_REQUEST_EB_OFFSET                     20
#define IPE_POLICER_FULL_WRITE_REQUEST_EB_MASK                       31
#define IPE_POLICER_FULL_WRITE_REQUEST_EB_SHIFT                       0

#define IPE_RFC_RFC2697           0x00000000
#define IPE_RFC_RFC2698           0x00000001
#define IPE_RFC_RFC4115           0x00000002
#define IPE_RFC_MEF5CF1           0x00000003

/* End of constants copied from sse_ipe_desc_fmt.h */

/* Misc Policer specific definitions */
#define SSE2_QOS_POLICER_FIXED_PKT_SIZE    256

// TODO check what can be provided by hw macro based on ASIC
#define SSE2_QOS_POL_TICKS_PER_SEC     1000LL	/* 1 tick = 1 ms */

/*
 * Default burst, in ms (byte format)
 */
#define SSE2_QOS_POL_DEF_BURST_BYTE    100

/*
 * Minimum burst needs to be such that the largest packet size is accommodated
 */
// Do we need to get it from some lib?
#define SSE2_QOS_POL_MIN_BURST_BYTE    9*1024


/*
 * Flag to indicate if AN is employed or not
 * 1 - TRUE, 0 - FALSE
 */
#define SSE2_QOS_POL_ALLOW_NEGATIVE    1

// Various Macros to take care of policer calculations

#define SSE2_QOS_POL_COMM_BKT_MAX \
                            (1<<IPE_POLICER_FULL_WRITE_REQUEST_CB_MASK)
#define SSE2_QOS_POL_EXTD_BKT_MAX \
                            (1<<IPE_POLICER_FULL_WRITE_REQUEST_EB_MASK)

#define SSE2_QOS_POL_RATE_EXP_SIZE \
                            (IPE_POLICER_FULL_WRITE_REQUEST_REXP_MASK)
#define SSE2_QOS_POL_RATE_EXP_MAX  ((1<<SSE2_QOS_POL_RATE_EXP_SIZE) - 1)
#define SSE2_QOS_POL_AVG_RATE_MANT_SIZE \
                            (IPE_POLICER_FULL_WRITE_REQUEST_ARM_MASK)
#define SSE2_QOS_POL_AVG_RATE_MANT_MAX    \
                            ((1<< SSE2_QOS_POL_AVG_RATE_MANT_SIZE) - 1)
#define SSE2_QOS_POL_AVG_RATE_MAX \
                            (SSE2_QOS_POL_AVG_RATE_MANT_MAX << \
                             SSE2_QOS_POL_RATE_EXP_MAX)

#define SSE2_QOS_POL_PEAK_RATE_MANT_SIZE   \
                            (IPE_POLICER_FULL_WRITE_REQUEST_PRM_MASK)
#define SSE2_QOS_POL_PEAK_RATE_MANT_MAX    \
                            ((1<<SSE2_QOS_POL_PEAK_RATE_MANT_SIZE) - 1)
#define SSE2_QOS_POL_PEAK_RATE_MAX \
                            (SSE2_QOS_POL_PEAK_RATE_MANT_MAX << \
                             SSE2_QOS_POL_RATE_EXP_MAX)

#define SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_SIZE   \
                        (IPE_POLICER_FULL_WRITE_REQUEST_CBLM_MASK)
#define SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX   \
                        ((1<<SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_SIZE) - 1)
#define SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_SIZE   \
                        (IPE_POLICER_FULL_WRITE_REQUEST_CBLE_MASK)
#define SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX   \
                        ((1<<SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_SIZE) - 1)
#define SSE2_QOS_POL_COMM_BKT_LIMIT_MAX \
                        ((u64)SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX << \
                         (u64)SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX)

#define SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_SIZE   \
                        (IPE_POLICER_FULL_WRITE_REQUEST_EBLM_MASK)
#define SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX   \
                        ((1<<SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_SIZE) - 1)
#define SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_SIZE   \
                        (IPE_POLICER_FULL_WRITE_REQUEST_EBLE_MASK)
#define SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX   \
                        ((1<<SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_SIZE) - 1)
#define SSE2_QOS_POL_EXT_BKT_LIMIT_MAX \
                        ((u64)SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX << \
                         (u64)SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX)

/*
 * Rates determine the units of the bucket
 *    256.114688 Gbps < Rate                      8 byte units
 *    128.057344 Gbps < Rate <= 256.114688 Gbps   4 byte units
 *     64.028672 Gbps < Rate <= 128.057344 Gbps   2 byte units
 *                      Rate <=  64.028672 Gbps   1 byte units
 *
 * The code uses bytes per tick as oppose to Gigabits per second.
 */
#define RATE256 (256114688000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC)
#define RATE128 (128057344000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC)
#define RATE64  ( 64028672000LL / 8LL / SSE2_QOS_POL_TICKS_PER_SEC)

#define RATE_OVER256_UNIT  8LL
#define RATE_128TO256_UNIT 4LL
#define RATE_64TO128_UNIT  2LL

static int
sse2_qos_pol_round (u64 numerator,
		    u64 denominator,
		    u64 * rounded_value, sse2_qos_round_type_en round_type)
{
  int rc = 0;

  if (denominator == 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Illegal denominator");
      SSE2_QOS_TR_ERR (SSE2_QOSRM_TP_ERR_59);
      return (EINVAL);
    }

  switch (round_type)
    {
    case SSE2_QOS_ROUND_TO_CLOSEST:
      *rounded_value = ((numerator + (denominator >> 1)) / denominator);
      break;

    case SSE2_QOS_ROUND_TO_UP:
      *rounded_value = (numerator / denominator);
      if ((*rounded_value * denominator) < numerator)
	{
	  *rounded_value += 1;
	}
      break;

    case SSE2_QOS_ROUND_TO_DOWN:
      *rounded_value = (numerator / denominator);
      break;

    case SSE2_QOS_ROUND_INVALID:
    default:
      SSE2_QOS_DEBUG_ERROR ("Illegal round type");
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_60, round_type);
      rc = EINVAL;
      break;
    }
  return (rc);
}


static int
sse2_pol_validate_cfg_params (sse2_qos_pol_cfg_params_st * cfg)
{
  u64 numer, denom, rnd_value;
  u32 cir_hw, eir_hw;
  int rc = 0;

  if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698) &&
      (cfg->rb.kbps.eir_kbps < cfg->rb.kbps.cir_kbps))
    {
      SSE2_QOS_DEBUG_ERROR ("CIR (%u kbps) is greater than PIR (%u kbps)",
			    cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_39, cfg->rb.kbps.cir_kbps,
		       cfg->rb.kbps.eir_kbps);
      return (EINVAL);
    }

  /*
   * convert rates to bytes-per-tick
   */
  numer = (u64) (cfg->rb.kbps.cir_kbps);
  denom = (u64) (8 * SSE2_QOS_POL_TICKS_PER_SEC) / 1000;
  rc = sse2_qos_pol_round (numer, denom, &rnd_value,
			   (sse2_qos_round_type_en) cfg->rnd_type);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert CIR to bytes/tick format");
      // Error traced
      return (rc);
    }
  cir_hw = (u32) rnd_value;

  numer = (u64) (cfg->rb.kbps.eir_kbps);
  rc = sse2_qos_pol_round (numer, denom, &rnd_value,
			   (sse2_qos_round_type_en) cfg->rnd_type);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert EIR to bytes/tick format");
      // Error traced
      return (rc);
    }
  eir_hw = (u32) rnd_value;

  if (cir_hw > SSE2_QOS_POL_AVG_RATE_MAX)
    {
      SSE2_QOS_DEBUG_ERROR ("hw cir (%u bytes/tick) is greater than the "
			    "max supported value (%u)", cir_hw,
			    SSE2_QOS_POL_AVG_RATE_MAX);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_84, cir_hw, SSE2_QOS_POL_AVG_RATE_MAX);
      return (EINVAL);
    }

  if (eir_hw > SSE2_QOS_POL_PEAK_RATE_MAX)
    {
      SSE2_QOS_DEBUG_ERROR ("hw eir (%u bytes/tick) is greater than the "
			    "max supported value (%u). Capping it to the max. "
			    "supported value", eir_hw,
			    SSE2_QOS_POL_PEAK_RATE_MAX);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_85, eir_hw,
		       SSE2_QOS_POL_PEAK_RATE_MAX);
      return (EINVAL);
    }
  /*
   * CIR = 0, with bc != 0 is not allowed
   */
  if ((cfg->rb.kbps.cir_kbps == 0) && cfg->rb.kbps.cb_bytes)
    {
      SSE2_QOS_DEBUG_ERROR ("CIR = 0 with bc != 0");
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_55);
      return (EINVAL);
    }

  if ((cfg->rb.kbps.eir_kbps == 0) &&
      (cfg->rfc > SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697))
    {
      SSE2_QOS_DEBUG_ERROR ("EIR = 0 for a 2R3C policer (rfc: %u)", cfg->rfc);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_23, cfg->rb.kbps.eir_kbps, cfg->rfc);
      return (EINVAL);
    }

  if (cfg->rb.kbps.eir_kbps &&
      (cfg->rfc < SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698))
    {
      SSE2_QOS_DEBUG_ERROR ("EIR: %u kbps for a 1-rate policer (rfc: %u)",
			    cfg->rb.kbps.eir_kbps, cfg->rfc);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_23, cfg->rb.kbps.eir_kbps, cfg->rfc);
      return (EINVAL);
    }

  if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) && cfg->rb.kbps.eb_bytes)
    {
      SSE2_QOS_DEBUG_ERROR ("For a 1R1B policer, EB burst cannot be > 0");
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_56);
      return (EINVAL);
    }

  return (0);
}

static void
sse2_qos_convert_value_to_exp_mant_fmt (u64 value,
					u16 max_exp_value,
					u16 max_mant_value,
					sse2_qos_round_type_en type,
					u8 * exp, u32 * mant)
{
  u64 rnd_value;
  u64 temp_mant;
  u8 temp_exp;

  /*
   * Select the lowest possible exp, and the largest possible mant
   */
  temp_exp = 0;
  temp_mant = value;
  while (temp_exp <= max_exp_value)
    {
      if (temp_mant <= max_mant_value)
	{
	  break;
	}

      temp_exp++;
      rnd_value = 0;
      (void) sse2_qos_pol_round ((u64) value, (u64) (1 << temp_exp),
				 &rnd_value, type);
      temp_mant = rnd_value;
    }

  if (temp_exp > max_exp_value)
    {
      /*
       * CAP mant to its max value, and decrement exp
       */
      temp_exp--;
      temp_mant = max_mant_value;
    }

  *exp = temp_exp;
  *mant = (u32) temp_mant;

  SSE2_QOS_DEBUG_INFO ("value: 0x%llx, mant: %u, exp: %u", value, *mant,
		       *exp);
  return;
}

static int
sse2_pol_convert_cfg_rates_to_hw (sse2_qos_pol_cfg_params_st * cfg,
				  sse2_qos_pol_hw_params_st * hw)
{
  int rc = 0;
  u32 cir_hw, eir_hw, hi_mant, hi_rate, cir_rnded, eir_rnded, eir_kbps;
  u64 numer, denom, rnd_value;
  u8 exp;

  /*
   * convert rates to bytes-per-tick (tick is 1ms)
   * For rate conversion, the denominator is gonna be the same
   */
  denom = (u64) ((SSE2_QOS_POL_TICKS_PER_SEC * 8) / 1000);
  numer = (u64) (cfg->rb.kbps.cir_kbps);
  rc = sse2_qos_pol_round (numer, denom, &rnd_value,
			   (sse2_qos_round_type_en) cfg->rnd_type);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR
	("Rounding error, rate: %d kbps, rounding_type: %d",
	 cfg->rb.kbps.cir_kbps, cfg->rnd_type);
      // Error is traced
      return (rc);
    }
  cir_hw = (u32) rnd_value;

  if (cfg->rb.kbps.cir_kbps && (cir_hw == 0))
    {
      /*
       * After rounding, cir_hw = 0. Bump it up
       */
      cir_hw = 1;
    }

  if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C)
    {
      eir_kbps = 0;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)
    {
      eir_kbps = cfg->rb.kbps.cir_kbps;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115)
    {
      eir_kbps = cfg->rb.kbps.eir_kbps - cfg->rb.kbps.cir_kbps;
    }
  else
    {
      eir_kbps = cfg->rb.kbps.eir_kbps;
    }

  numer = (u64) eir_kbps;
  rc = sse2_qos_pol_round (numer, denom, &rnd_value,
			   (sse2_qos_round_type_en) cfg->rnd_type);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR
	("Rounding error, rate: %d kbps, rounding_type: %d", eir_kbps,
	 cfg->rnd_type);
      // Error is traced
      return (rc);
    }
  eir_hw = (u32) rnd_value;

  if (eir_kbps && (eir_hw == 0))
    {
      /*
       * After rounding, eir_hw = 0. Bump it up
       */
      eir_hw = 1;
    }

  SSE2_QOS_DEBUG_INFO ("cir_hw: %u bytes/tick, eir_hw: %u bytes/tick", cir_hw,
		       eir_hw);

  if (cir_hw > eir_hw)
    {
      hi_rate = cir_hw;
    }
  else
    {
      hi_rate = eir_hw;
    }

  if ((cir_hw == 0) && (eir_hw == 0))
    {
      /*
       * Both the rates are 0. Use exp = 15, and set the RFC to 4115. Also
       * set AN = 0
       */
      exp = (u8) SSE2_QOS_POL_RATE_EXP_MAX;
      hi_mant = 0;
      hw->rfc = IPE_RFC_RFC4115;
      hw->allow_negative = 0;
    }
  else
    {
      sse2_qos_convert_value_to_exp_mant_fmt (hi_rate,
					      (u16) SSE2_QOS_POL_RATE_EXP_MAX,
					      (u16)
					      SSE2_QOS_POL_AVG_RATE_MANT_MAX,
					      (sse2_qos_round_type_en)
					      cfg->rnd_type, &exp, &hi_mant);
    }

  denom = (1ULL << exp);
  if (hi_rate == eir_hw)
    {
      hw->peak_rate_man = (u16) hi_mant;
      rc = sse2_qos_pol_round ((u64) cir_hw, denom, &rnd_value,
			       (sse2_qos_round_type_en) cfg->rnd_type);
      hw->avg_rate_man = (u16) rnd_value;
    }
  else
    {
      hw->avg_rate_man = (u16) hi_mant;
      rc = sse2_qos_pol_round ((u64) eir_hw, denom, &rnd_value,
			       (sse2_qos_round_type_en) cfg->rnd_type);
      hw->peak_rate_man = (u16) rnd_value;
    }
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Rounding error");
      // Error is traced
      return (rc);
    }
  hw->rate_exp = exp;

  if ((hw->avg_rate_man == 0) && (cfg->rb.kbps.cir_kbps))
    {
      /*
       * cir was reduced to 0 during rounding. Bump it up
       */
      hw->avg_rate_man = 1;
      SSE2_QOS_DEBUG_INFO ("CIR = 0 during rounding. Bump it up to %u "
			   "bytes/tick", (hw->avg_rate_man << hw->rate_exp));
    }

  if ((hw->peak_rate_man == 0) && eir_kbps)
    {
      /*
       * eir was reduced to 0 during rounding. Bump it up
       */
      hw->peak_rate_man = 1;
      SSE2_QOS_DEBUG_INFO ("EIR = 0 during rounding. Bump it up to %u "
			   "bytes/tick", (hw->peak_rate_man << hw->rate_exp));
    }

  cir_rnded = (hw->avg_rate_man << hw->rate_exp);
  eir_rnded = (hw->peak_rate_man << hw->rate_exp);

  SSE2_QOS_DEBUG_INFO ("Configured(rounded) values, cir: %u "
		       "kbps (mant: %u, exp: %u, rate: %u bytes/tick)",
		       cfg->rb.kbps.cir_kbps, hw->avg_rate_man,
		       hw->rate_exp, cir_rnded);

  SSE2_QOS_DEBUG_INFO ("Configured(rounded) values, eir: %u "
		       "kbps (mant: %u, exp: %u, rate: %u bytes/tick)",
		       cfg->rb.kbps.eir_kbps, hw->peak_rate_man,
		       hw->rate_exp, eir_rnded);

  return (rc);
}

/*****
 * NAME
 *   sse2_pol_get_bkt_max
 *
 * PARAMETERS
 *  rate_hw    - either the average rate or peak rate
 *  bkt_max    - bit width in the current bucket or extended bucket
 *
 * RETURNS
 *  u64   - maximum token bytes for the current or extended bucket
 *
 * DESCRIPTION
 *  The current bucket or extended bucket fields are in units of either
 *  1,2,4,8 bytes based on the average or peak rate respective to current
 *  or extended bucket.
 *
 *  To get the actual maximum number of bytes that can be stored in the
 *  field, the value must be multiplied by the units of either 1,2,4,8
 *  bytes based on the rate.
 *****/
u64
sse2_pol_get_bkt_max (u64 rate_hw, u64 bkt_max)
{
  if (rate_hw <= RATE64)
    {
      return (bkt_max - 1);
    }
  else if (rate_hw <= RATE128)
    {
      return ((bkt_max * RATE_64TO128_UNIT) - RATE_64TO128_UNIT);
    }
  else if (rate_hw <= RATE256)
    {
      return ((bkt_max * RATE_128TO256_UNIT) - RATE_128TO256_UNIT);
    }
  /* rate must be over 256 */
  return ((bkt_max * RATE_OVER256_UNIT) - RATE_OVER256_UNIT);
}

/*****
 * NAME
 *   sse2_pol_get_bkt_value
 *
 * PARAMETERS
 *  rate_hw    - either the average rate or peak rate
 *  byte_value - bytes for this token bucket
 *
 * RETURNS
 *  u64   - unit value for the current or extended bucket field
 *
 * DESCRIPTION
 *  The current bucket or extended bucket fields are in units of either
 *  1,2,4,8 bytes based on the average or peak rate respective to current
 *  or extended bucket.
 *
 *  To get the units that can be stored in the field, the byte value must
 *  be divided by the units of either 1,2,4,8 bytes based on the rate.
 *****/
u64
sse2_pol_get_bkt_value (u64 rate_hw, u64 byte_value)
{
  if (rate_hw <= RATE64)
    {
      return (byte_value);
    }
  else if (rate_hw <= RATE128)
    {
      return (byte_value / RATE_64TO128_UNIT);
    }
  else if (rate_hw <= RATE256)
    {
      return (byte_value / RATE_128TO256_UNIT);
    }
  /* rate must be over 256 */
  return (byte_value / RATE_OVER256_UNIT);
}

static void
sse2_pol_rnd_burst_byte_fmt (u64 cfg_burst,
			     u16 max_exp_value,
			     u16 max_mant_value,
			     u32 max_bkt_value,
			     u32 rate_hw,
			     u8 * exp, u32 * mant, u32 * bkt_value)
{
  u64 bkt_max = max_bkt_value;
  u64 bkt_limit_max;
  u64 rnd_burst;
  u64 temp_bkt_value;

  bkt_limit_max = ((u64) max_mant_value << (u64) max_exp_value);
  bkt_max = sse2_pol_get_bkt_max (rate_hw, bkt_max);
  bkt_max = MIN (bkt_max, bkt_limit_max);
  if (!cfg_burst)
    {
      /*
       * If configured burst = 0, compute the burst to be 100ms at a given
       * rate. Note that for rate_hw = 0, exp = mant = 0.
       */
      cfg_burst = (u64) rate_hw *(u64) SSE2_QOS_POL_DEF_BURST_BYTE;
    }

  if (cfg_burst > bkt_max)
    {
      SSE2_QOS_DEBUG_ERROR ("burst 0x%llx bytes is greater than the max. "
			    "supported value 0x%llx bytes. Capping it to the "
			    "max", cfg_burst, bkt_max);
      SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_38,
			(uint) cfg_burst, (uint) bkt_max);
      cfg_burst = bkt_max;
    }

  if (cfg_burst < SSE2_QOS_POL_MIN_BURST_BYTE)
    {
      /*
       * Bump up the burst value ONLY if the cfg_burst is non-zero AND
       * less than the min. supported value
       */
      SSE2_QOS_DEBUG_INFO ("burst 0x%llx bytes is less than the min "
			   "supported value %u bytes. Rounding it up to "
			   "the min", cfg_burst, SSE2_QOS_POL_MIN_BURST_BYTE);
      SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_39, (uint) cfg_burst,
			SSE2_QOS_POL_MIN_BURST_BYTE);
      cfg_burst = SSE2_QOS_POL_MIN_BURST_BYTE;
    }

  sse2_qos_convert_value_to_exp_mant_fmt (cfg_burst,
					  max_exp_value,
					  max_mant_value,
					  SSE2_QOS_ROUND_TO_DOWN, exp, mant);

  /* Bucket value is based on rate. */
  rnd_burst = ((u64) (*mant) << (u64) (*exp));
  temp_bkt_value = sse2_pol_get_bkt_value (rate_hw, rnd_burst);
  *bkt_value = (u32) temp_bkt_value;
}

static int
sse2_pol_convert_cfg_burst_to_hw (sse2_qos_pol_cfg_params_st * cfg,
				  sse2_qos_pol_hw_params_st * hw)
{
  u8 temp_exp;
  u32 temp_mant, rate_hw;
  u64 eb_bytes;
  u32 bkt_value;

  /*
   * compute Committed Burst
   */
  SSE2_QOS_DEBUG_INFO ("Compute commit burst ...");
  rate_hw = (hw->avg_rate_man) << (hw->rate_exp);
  sse2_pol_rnd_burst_byte_fmt (cfg->rb.kbps.cb_bytes,
			       (u16) SSE2_QOS_POL_COMM_BKT_LIMIT_EXP_MAX,
			       (u16) SSE2_QOS_POL_COMM_BKT_LIMIT_MANT_MAX,
			       (u32) SSE2_QOS_POL_COMM_BKT_MAX,
			       rate_hw, &temp_exp, &temp_mant, &bkt_value);
  SSE2_QOS_DEBUG_INFO ("Committed burst, burst_limit: 0x%llx mant : %u, "
		       "exp: %u, rnded: 0x%llx cb:%u bytes",
		       cfg->rb.kbps.cb_bytes, temp_mant, temp_exp,
		       ((u64) temp_mant << (u64) temp_exp), bkt_value);

  hw->comm_bkt_limit_exp = temp_exp;
  hw->comm_bkt_limit_man = (u8) temp_mant;
  hw->comm_bkt = bkt_value;

  /*
   * compute Exceed Burst
   */
  SSE2_QOS_DEBUG_INFO ("Compute exceed burst ...");

  if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C)
    {
      /*
       * For 1R2C, hw uses 2R3C (RFC-4115). As such, the Exceed Bucket
       * params are set to 0. Recommendation is to use EB_exp = max_exp (=15)
       * and EB_mant = 0
       */
      hw->extd_bkt_limit_exp = (u8) SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX;
      hw->extd_bkt_limit_man = 0;
      SSE2_QOS_DEBUG_INFO ("Excess burst, burst: 0x%llx mant: %u, "
			   "exp: %u, rnded: 0x%llx bytes",
			   cfg->rb.kbps.eb_bytes, hw->extd_bkt_limit_man,
			   hw->extd_bkt_limit_exp,
			   ((u64) hw->extd_bkt_limit_man <<
			    (u64) hw->extd_bkt_limit_exp));
      SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_20, (uint) cfg->rb.kbps.eb_bytes,
			hw->extd_bkt_limit_man, hw->extd_bkt_limit_exp);
      return (0);
    }

  if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)
    {
      eb_bytes = cfg->rb.kbps.cb_bytes + cfg->rb.kbps.eb_bytes;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115)
    {
      eb_bytes = cfg->rb.kbps.eb_bytes - cfg->rb.kbps.cb_bytes;
    }
  else
    {
      eb_bytes = cfg->rb.kbps.eb_bytes;
    }

  rate_hw = (hw->peak_rate_man) << (hw->rate_exp);
  sse2_pol_rnd_burst_byte_fmt (eb_bytes,
			       (u16) SSE2_QOS_POL_EXTD_BKT_LIMIT_EXP_MAX,
			       (u16) SSE2_QOS_POL_EXTD_BKT_LIMIT_MANT_MAX,
			       (u32) SSE2_QOS_POL_EXTD_BKT_MAX,
			       rate_hw, &temp_exp, &temp_mant, &bkt_value);

  SSE2_QOS_DEBUG_INFO ("Excess burst, burst_limit: 0x%llx mant: %u, "
		       "exp: %u, rnded: 0x%llx eb:%u bytes",
		       cfg->rb.kbps.eb_bytes, temp_mant, temp_exp,
		       ((u64) temp_mant << (u64) temp_exp), bkt_value);

  hw->extd_bkt_limit_exp = (u8) temp_exp;
  hw->extd_bkt_limit_man = (u8) temp_mant;
  hw->extd_bkt = bkt_value;

  return (0);
}


/*
 * Input: configured parameter values in 'cfg'.
 * Output: h/w programmable parameter values in 'hw'.
 * Return: success or failure code.
 */
static int
sse2_pol_convert_cfg_to_hw_params (sse2_qos_pol_cfg_params_st * cfg,
				   sse2_qos_pol_hw_params_st * hw)
{
  int rc = 0;

  /*
   * clear the hw_params
   */
  memset (hw, 0, sizeof (sse2_qos_pol_hw_params_st));

  hw->allow_negative = SSE2_QOS_POL_ALLOW_NEGATIVE;

  if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) ||
      (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115))
    {
      hw->rfc = IPE_RFC_RFC4115;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)
    {
      hw->rfc = IPE_RFC_RFC2697;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698)
    {
      hw->rfc = IPE_RFC_RFC2698;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_MEF5CF1)
    {
      hw->rfc = IPE_RFC_MEF5CF1;
    }
  else
    {
      SSE2_QOS_DEBUG_ERROR ("Invalid RFC type %d\n", cfg->rfc);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_61, cfg->rfc);
      return (EINVAL);
    }

  rc = sse2_pol_convert_cfg_rates_to_hw (cfg, hw);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert config rates to hw. Error: %d",
			    rc);
      // Error is traced
      return (rc);
    }

  rc = sse2_pol_convert_cfg_burst_to_hw (cfg, hw);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert config burst to hw. Error: %d",
			    rc);
      // Error is traced
      return (rc);
    }

  return 0;
}


u32
sse2_qos_convert_pps_to_kbps (u32 rate_pps)
{
  // sse2_qos_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT,
  //                            SSE2_QOS_SHIP_CNT_POL_CONV_PPS_TO_KBPS);

  u64 numer, rnd_value = 0;

  numer = (u64) ((u64) rate_pps *
		 (u64) SSE2_QOS_POLICER_FIXED_PKT_SIZE * 8LL);
  (void) sse2_qos_pol_round (numer, 1000LL, &rnd_value,
			     SSE2_QOS_ROUND_TO_CLOSEST);

  return ((u32) rnd_value);
}

u32
sse2_qos_convert_burst_ms_to_bytes (u32 burst_ms, u32 rate_kbps)
{
  u64 numer, rnd_value = 0;

  //sse2_qos_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT,
  //                          SSE2_QOS_SHIP_CNT_POL_CONV_BURST_MS_TO_BYTES);

  numer = (u64) ((u64) burst_ms * (u64) rate_kbps);

  (void) sse2_qos_pol_round (numer, 8LL, &rnd_value,
			     SSE2_QOS_ROUND_TO_CLOSEST);

  return ((u32) rnd_value);
}


/*
 * Input: configured parameters in 'cfg'.
 * Output: h/w parameters are returned in 'hw',
 * Return: Status, success or failure code.
 */
int
sse2_pol_compute_hw_params (sse2_qos_pol_cfg_params_st * cfg,
			    sse2_qos_pol_hw_params_st * hw)
{
  int rc = 0;

  if (!cfg || !hw)
    {
      SSE2_QOS_DEBUG_ERROR ("Illegal parameters");
      return (-1);
    }

  /*
   * Validate the police config params being presented to RM
   */
  rc = sse2_pol_validate_cfg_params (cfg);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Config parameter validation failed. Error: %d",
			    rc);
      // Error is traced
      return (-1);
    }

  /*
   * first round configured values to h/w supported values. This func
   * also determines whether 'tick' or 'byte' format
   */
  rc = sse2_pol_convert_cfg_to_hw_params (cfg, hw);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert config params to hw params. "
			    "Error: %d", rc);
      SSE2_QOS_TR_ERR (SSE2_QOS_TP_ERR_53, rc);
      return (-1);
    }

  return 0;
}


#if defined (INTERNAL_SS) || defined (X86)

// For initializing the x86 policer format

/*
 * Return the number of hardware TSC timer ticks per second for the dataplane.
 * This is approximately, but not exactly, the clock speed.
 */
static u64
get_tsc_hz (void)
{
  f64 cpu_freq;

  cpu_freq = os_cpu_clock_frequency ();
  return (u64) cpu_freq;
}

/*
 * Convert rates into bytes_per_period and scale.
 * Return 0 if ok or 1 if error.
 */
static int
compute_policer_params (u64 hz,	// CPU speed in clocks per second
			u64 cir_rate,	// in bytes per second
			u64 pir_rate,	// in bytes per second
			u32 * current_limit,	// in bytes, output may scale the input
			u32 * extended_limit,	// in bytes, output may scale the input
			u32 * cir_bytes_per_period,
			u32 * pir_bytes_per_period, u32 * scale)
{
  double period;
  double internal_cir_bytes_per_period;
  double internal_pir_bytes_per_period;
  u32 max;
  u32 scale_shift;
  u32 scale_amount;
  u32 __attribute__ ((unused)) orig_current_limit = *current_limit;

  // Compute period. For 1Ghz-to-8Ghz CPUs, the period will be in
  // the range of 16 to 116 usec.
  period = ((double) hz) / ((double) POLICER_TICKS_PER_PERIOD);

  // Determine bytes per period for each rate
  internal_cir_bytes_per_period = (double) cir_rate / period;
  internal_pir_bytes_per_period = (double) pir_rate / period;

  // Scale if possible. Scaling helps rate accuracy, but is constrained
  // by the scaled rates and limits fitting in 32-bits.
  // In addition, we need to insure the scaled rate is no larger than
  // 2^22 tokens per period. This allows the dataplane to ignore overflow
  // in the tokens-per-period multiplication since it could only
  // happen if the policer were idle for more than a year.
  // This is not really a constraint because 100Gbps at 1Ghz is only
  // 1.6M tokens per period.
#define MAX_RATE_SHIFT 10
  max = MAX (*current_limit, *extended_limit);
  max = MAX (max, (u32) internal_cir_bytes_per_period << MAX_RATE_SHIFT);
  max = MAX (max, (u32) internal_pir_bytes_per_period << MAX_RATE_SHIFT);
  scale_shift = __builtin_clz (max);

  scale_amount = 1 << scale_shift;
  *scale = scale_shift;

  // Scale the limits
  *current_limit = *current_limit << scale_shift;
  *extended_limit = *extended_limit << scale_shift;

  // Scale the rates
  internal_cir_bytes_per_period =
    internal_cir_bytes_per_period * ((double) scale_amount);
  internal_pir_bytes_per_period =
    internal_pir_bytes_per_period * ((double) scale_amount);

  // Make sure the new rates are reasonable
  // Only needed for very low rates with large bursts
  if (internal_cir_bytes_per_period < 1.0)
    {
      internal_cir_bytes_per_period = 1.0;
    }
  if (internal_pir_bytes_per_period < 1.0)
    {
      internal_pir_bytes_per_period = 1.0;
    }

  *cir_bytes_per_period = (u32) internal_cir_bytes_per_period;
  *pir_bytes_per_period = (u32) internal_pir_bytes_per_period;

// #define PRINT_X86_POLICE_PARAMS
#ifdef PRINT_X86_POLICE_PARAMS
  {
    u64 effective_BPS;

    // This value actually slightly conservative because it doesn't take into account
    // the partial period at the end of a second. This really matters only for very low
    // rates.
    effective_BPS =
      (((u64) (*cir_bytes_per_period * (u64) period)) >> *scale);

    printf ("hz=%llu, cir_rate=%llu, limit=%u => "
	    "periods-per-sec=%d usec-per-period=%d => "
	    "scale=%d cir_BPP=%u, scaled_limit=%u => "
	    "effective BPS=%llu, accuracy=%f\n",
	    // input values
	    (unsigned long long) hz,
	    (unsigned long long) cir_rate, orig_current_limit,
	    // computed values
	    (u32) (period),	// periods per second
	    (u32) (1000.0 * 1000.0 / period),	// in usec
	    *scale, *cir_bytes_per_period, *current_limit,
	    // accuracy
	    (unsigned long long) effective_BPS,
	    (double) cir_rate / (double) effective_BPS);
  }
#endif

  return 0;			// ok
}


/*
 * Input: configured parameters in 'cfg'.
 * Output: h/w parameters are returned in 'hw',
 * Return: Status, success or failure code.
 */
int
x86_pol_compute_hw_params (sse2_qos_pol_cfg_params_st * cfg,
			   policer_read_response_type_st * hw)
{
  const int BYTES_PER_KBIT = (1000 / 8);
  u64 hz;
  u32 cap;

  if (!cfg || !hw)
    {
      SSE2_QOS_DEBUG_ERROR ("Illegal parameters");
      return (-1);
    }

  hz = get_tsc_hz ();
  hw->last_update_time = 0;

  // Cap the bursts to 32-bits. This allows up to almost one second of
  // burst on a 40GE interface, which should be fine for x86.
  cap =
    (cfg->rb.kbps.cb_bytes > 0xFFFFFFFF) ? 0xFFFFFFFF : cfg->rb.kbps.cb_bytes;
  hw->current_limit = cap;
  cap =
    (cfg->rb.kbps.eb_bytes > 0xFFFFFFFF) ? 0xFFFFFFFF : cfg->rb.kbps.eb_bytes;
  hw->extended_limit = cap;

  if ((cfg->rb.kbps.cir_kbps == 0) && (cfg->rb.kbps.cb_bytes == 0)
      && (cfg->rb.kbps.eb_bytes == 0))
    {
      // This is a uninitialized, always-violate policer
      hw->single_rate = 1;
      hw->cir_tokens_per_period = 0;
      return 0;
    }

  if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) ||
      (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697))
    {
      // Single-rate policer

      hw->single_rate = 1;

      if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_1R2C) && cfg->rb.kbps.eb_bytes)
	{
	  SSE2_QOS_DEBUG_ERROR
	    ("Policer parameter validation failed -- 1R2C.");
	  return (-1);
	}

      if ((cfg->rb.kbps.cir_kbps == 0) ||
	  (cfg->rb.kbps.eir_kbps != 0) ||
	  ((cfg->rb.kbps.cb_bytes == 0) && (cfg->rb.kbps.eb_bytes == 0)))
	{
	  SSE2_QOS_DEBUG_ERROR ("Policer parameter validation failed -- 1R.");
	  return (-1);
	}

      if (compute_policer_params (hz,
				  (u64) cfg->rb.kbps.cir_kbps *
				  BYTES_PER_KBIT, 0, &hw->current_limit,
				  &hw->extended_limit,
				  &hw->cir_tokens_per_period,
				  &hw->pir_tokens_per_period, &hw->scale))
	{
	  SSE2_QOS_DEBUG_ERROR ("Policer parameter computation failed.");
	  return (-1);
	}

    }
  else if ((cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698) ||
	   (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115))
    {
      // Two-rate policer

      if ((cfg->rb.kbps.cir_kbps == 0) || (cfg->rb.kbps.eir_kbps == 0)
	  || (cfg->rb.kbps.eir_kbps < cfg->rb.kbps.cir_kbps)
	  || (cfg->rb.kbps.cb_bytes == 0) || (cfg->rb.kbps.eb_bytes == 0))
	{
	  SSE2_QOS_DEBUG_ERROR ("Config parameter validation failed.");
	  return (-1);
	}

      if (compute_policer_params (hz,
				  (u64) cfg->rb.kbps.cir_kbps *
				  BYTES_PER_KBIT,
				  (u64) cfg->rb.kbps.eir_kbps *
				  BYTES_PER_KBIT, &hw->current_limit,
				  &hw->extended_limit,
				  &hw->cir_tokens_per_period,
				  &hw->pir_tokens_per_period, &hw->scale))
	{
	  SSE2_QOS_DEBUG_ERROR ("Policer parameter computation failed.");
	  return (-1);
	}

    }
  else
    {
      SSE2_QOS_DEBUG_ERROR
	("Config parameter validation failed. RFC not supported");
      return (-1);
    }

  hw->current_bucket = hw->current_limit;
  hw->extended_bucket = hw->extended_limit;

  return 0;
}
#endif


/*
 * Input: configured parameters in 'cfg'.
 * Output: physical structure is returned in 'phys',
 * Return: Status, success or failure code.
 */
int
sse2_pol_logical_2_physical (sse2_qos_pol_cfg_params_st * cfg,
			     policer_read_response_type_st * phys)
{
  int rc;
  sse2_qos_pol_cfg_params_st kbps_cfg;

  memset (phys, 0, sizeof (policer_read_response_type_st));
  memset (&kbps_cfg, 0, sizeof (sse2_qos_pol_cfg_params_st));

  if (!cfg)
    {
      SSE2_QOS_DEBUG_ERROR ("Illegal parameters");
      return (-1);
    }

  switch (cfg->rate_type)
    {
    case SSE2_QOS_RATE_KBPS:
      /* copy all the data into kbps_cfg */
      kbps_cfg.rb.kbps.cir_kbps = cfg->rb.kbps.cir_kbps;
      kbps_cfg.rb.kbps.eir_kbps = cfg->rb.kbps.eir_kbps;
      kbps_cfg.rb.kbps.cb_bytes = cfg->rb.kbps.cb_bytes;
      kbps_cfg.rb.kbps.eb_bytes = cfg->rb.kbps.eb_bytes;
      break;
    case SSE2_QOS_RATE_PPS:
      kbps_cfg.rb.kbps.cir_kbps =
	sse2_qos_convert_pps_to_kbps (cfg->rb.pps.cir_pps);
      kbps_cfg.rb.kbps.eir_kbps =
	sse2_qos_convert_pps_to_kbps (cfg->rb.pps.eir_pps);
      kbps_cfg.rb.kbps.cb_bytes = sse2_qos_convert_burst_ms_to_bytes ((u32)
								      cfg->
								      rb.pps.cb_ms,
								      kbps_cfg.rb.
								      kbps.cir_kbps);
      kbps_cfg.rb.kbps.eb_bytes =
	sse2_qos_convert_burst_ms_to_bytes ((u32) cfg->rb.pps.eb_ms,
					    kbps_cfg.rb.kbps.eir_kbps);
      break;
    default:
      SSE2_QOS_DEBUG_ERROR ("Illegal rate type");
      return (-1);
    }

  /* rate type is now converted to kbps */
  kbps_cfg.rate_type = SSE2_QOS_RATE_KBPS;
  kbps_cfg.rnd_type = cfg->rnd_type;
  kbps_cfg.rfc = cfg->rfc;

  phys->action[POLICE_CONFORM] = cfg->conform_action.action_type;
  phys->mark_dscp[POLICE_CONFORM] = cfg->conform_action.dscp;
  phys->action[POLICE_EXCEED] = cfg->exceed_action.action_type;
  phys->mark_dscp[POLICE_EXCEED] = cfg->exceed_action.dscp;
  phys->action[POLICE_VIOLATE] = cfg->violate_action.action_type;
  phys->mark_dscp[POLICE_VIOLATE] = cfg->violate_action.dscp;

  phys->color_aware = cfg->color_aware;

#if !defined (INTERNAL_SS) && !defined (X86)
  // convert logical into hw params which involves qos calculations
  rc = sse2_pol_compute_hw_params (&kbps_cfg, &pol_hw);
  if (rc == -1)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to compute hw param. Error: %d", rc);
      return (rc);
    }

  // convert hw params into the physical
  phys->rfc = pol_hw.rfc;
  phys->an = pol_hw.allow_negative;
  phys->rexp = pol_hw.rate_exp;
  phys->arm = pol_hw.avg_rate_man;
  phys->prm = pol_hw.peak_rate_man;
  phys->cble = pol_hw.comm_bkt_limit_exp;
  phys->cblm = pol_hw.comm_bkt_limit_man;
  phys->eble = pol_hw.extd_bkt_limit_exp;
  phys->eblm = pol_hw.extd_bkt_limit_man;
  phys->cb = pol_hw.comm_bkt;
  phys->eb = pol_hw.extd_bkt;

  /* for debugging purposes, the bucket token values can be overwritten */
  if (cfg->overwrite_bucket)
    {
      phys->cb = cfg->current_bucket;
      phys->eb = cfg->extended_bucket;
    }
#else
  // convert logical into hw params which involves qos calculations
  rc = x86_pol_compute_hw_params (&kbps_cfg, phys);
  if (rc == -1)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to compute hw param. Error: %d", rc);
      return (rc);
    }

  /* for debugging purposes, the bucket token values can be overwritten */
  if (cfg->overwrite_bucket)
    {
      phys->current_bucket = cfg->current_bucket;
      phys->extended_bucket = cfg->extended_bucket;
    }

#endif // if !defined (INTERNAL_SS) && !defined (X86)

  return 0;
}


static void
sse2_qos_convert_pol_bucket_to_hw_fmt (policer_read_response_type_st * bkt,
				       sse2_qos_pol_hw_params_st * hw_fmt)
{
  memset (hw_fmt, 0, sizeof (sse2_qos_pol_hw_params_st));
#if !defined (INTERNAL_SS) && !defined (X86)
  hw_fmt->rfc = (u8) bkt->rfc;
  hw_fmt->allow_negative = (u8) bkt->an;
  hw_fmt->rate_exp = (u8) bkt->rexp;
  hw_fmt->avg_rate_man = (u16) bkt->arm;
  hw_fmt->peak_rate_man = (u16) bkt->prm;
  hw_fmt->comm_bkt_limit_man = (u8) bkt->cblm;
  hw_fmt->comm_bkt_limit_exp = (u8) bkt->cble;
  hw_fmt->extd_bkt_limit_man = (u8) bkt->eblm;
  hw_fmt->extd_bkt_limit_exp = (u8) bkt->eble;
  hw_fmt->extd_bkt = bkt->eb;
  hw_fmt->comm_bkt = bkt->cb;
#endif // if !defined (INTERNAL_SS) && !defined (X86)
}

/*
 * Input: h/w programmable parameter values in 'hw'
 * Output: configured parameter values in 'cfg'
 * Return: Status, success or failure code.
 */
static int
sse2_pol_convert_hw_to_cfg_params (sse2_qos_pol_hw_params_st * hw,
				   sse2_qos_pol_cfg_params_st * cfg)
{
  u64 temp_rate;

  if ((hw == NULL) || (cfg == NULL))
    {
      return EINVAL;
    }

  if ((hw->rfc == IPE_RFC_RFC4115) &&
      (hw->peak_rate_man << hw->rate_exp) == 0 && !(hw->extd_bkt_limit_man))
    {
      /*
       * For a 1R2C, we set EIR = 0, EB = 0
       */
      cfg->rfc = SSE2_QOS_POLICER_TYPE_1R2C;
    }
  else if (hw->rfc == IPE_RFC_RFC2697)
    {
      cfg->rfc = SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697;
    }
  else if (hw->rfc == IPE_RFC_RFC2698)
    {
      cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_2698;
    }
  else if (hw->rfc == IPE_RFC_RFC4115)
    {
      cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115;
    }
  else if (hw->rfc == IPE_RFC_MEF5CF1)
    {
      cfg->rfc = SSE2_QOS_POLICER_TYPE_2R3C_RFC_MEF5CF1;
    }
  else
    {
      return EINVAL;
    }

  temp_rate = (((u64) hw->avg_rate_man << hw->rate_exp) * 8LL *
	       SSE2_QOS_POL_TICKS_PER_SEC) / 1000;
  cfg->rb.kbps.cir_kbps = (u32) temp_rate;

  temp_rate = (((u64) hw->peak_rate_man << hw->rate_exp) * 8LL *
	       SSE2_QOS_POL_TICKS_PER_SEC) / 1000;
  cfg->rb.kbps.eir_kbps = (u32) temp_rate;

  cfg->rb.kbps.cb_bytes = ((u64) hw->comm_bkt_limit_man <<
			   (u64) hw->comm_bkt_limit_exp);
  cfg->rb.kbps.eb_bytes = ((u64) hw->extd_bkt_limit_man <<
			   (u64) hw->extd_bkt_limit_exp);

  if (cfg->rfc == SSE2_QOS_POLICER_TYPE_1R3C_RFC_2697)
    {
      /*
       * For 1R3C in the hardware, EB = sum(CB, EB). Also, EIR = CIR. Restore
       * values such that the configured params don't reflect this adjustment
       */
      cfg->rb.kbps.eb_bytes = (cfg->rb.kbps.eb_bytes - cfg->rb.kbps.cb_bytes);
      cfg->rb.kbps.eir_kbps = 0;
    }
  else if (cfg->rfc == SSE2_QOS_POLICER_TYPE_2R3C_RFC_4115)
    {
      /*
       * For 4115 in the hardware is excess rate and burst, but EA provides
       * peak-rate, so adjust it to be eir
       */
      cfg->rb.kbps.eir_kbps += cfg->rb.kbps.cir_kbps;
      cfg->rb.kbps.eb_bytes += cfg->rb.kbps.cb_bytes;
    }
  /* h/w conversion to cfg is in kbps */
  cfg->rate_type = SSE2_QOS_RATE_KBPS;
  cfg->overwrite_bucket = 0;
  cfg->current_bucket = hw->comm_bkt;
  cfg->extended_bucket = hw->extd_bkt;

  SSE2_QOS_DEBUG_INFO ("configured params, cir: %u kbps, eir: %u kbps, cb "
		       "burst: 0x%llx bytes, eb burst: 0x%llx bytes",
		       cfg->rb.kbps.cir_kbps, cfg->rb.kbps.eir_kbps,
		       cfg->rb.kbps.cb_bytes, cfg->rb.kbps.eb_bytes);
  SSE2_QOS_TR_INFO (SSE2_QOS_TP_INFO_22, cfg->rb.kbps.cir_kbps,
		    cfg->rb.kbps.eir_kbps,
		    (uint) cfg->rb.kbps.cb_bytes,
		    (uint) cfg->rb.kbps.eb_bytes);

  return 0;
}

u32
sse2_qos_convert_kbps_to_pps (u32 rate_kbps)
{
  u64 numer, denom, rnd_value = 0;

  // sse_qosrm_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT,
  //                            SSE2_QOS_SHIP_CNT_POL_CONV_KBPS_TO_PPS);

  numer = (u64) ((u64) rate_kbps * 1000LL);
  denom = (u64) ((u64) SSE2_QOS_POLICER_FIXED_PKT_SIZE * 8LL);

  (void) sse2_qos_pol_round (numer, denom, &rnd_value,
			     SSE2_QOS_ROUND_TO_CLOSEST);

  return ((u32) rnd_value);
}

u32
sse2_qos_convert_burst_bytes_to_ms (u64 burst_bytes, u32 rate_kbps)
{
  u64 numer, denom, rnd_value = 0;

  //sse_qosrm_ship_inc_counter(SSE2_QOS_SHIP_COUNTER_TYPE_API_CNT,
  //                         SSE2_QOS_SHIP_CNT_POL_CONV_BYTES_TO_BURST_MS);

  numer = burst_bytes * 8LL;
  denom = (u64) rate_kbps;

  (void) sse2_qos_pol_round (numer, denom, &rnd_value,
			     SSE2_QOS_ROUND_TO_CLOSEST);

  return ((u32) rnd_value);
}

/*
 * Input: physical structure in 'phys', rate_type in cfg
 * Output: configured parameters in 'cfg'.
 * Return: Status, success or failure code.
 */
int
sse2_pol_physical_2_logical (policer_read_response_type_st * phys,
			     sse2_qos_pol_cfg_params_st * cfg)
{
  int rc;
  sse2_qos_pol_hw_params_st pol_hw;
  sse2_qos_pol_cfg_params_st kbps_cfg;

  memset (&pol_hw, 0, sizeof (sse2_qos_pol_hw_params_st));
  memset (&kbps_cfg, 0, sizeof (sse2_qos_pol_cfg_params_st));

  if (!phys)
    {
      SSE2_QOS_DEBUG_ERROR ("Illegal parameters");
      return (-1);
    }

  sse2_qos_convert_pol_bucket_to_hw_fmt (phys, &pol_hw);

  rc = sse2_pol_convert_hw_to_cfg_params (&pol_hw, &kbps_cfg);
  if (rc != 0)
    {
      SSE2_QOS_DEBUG_ERROR ("Unable to convert hw params to config params. "
			    "Error: %d", rc);
      return (-1);
    }

  /* check what rate type is required */
  switch (cfg->rate_type)
    {
    case SSE2_QOS_RATE_KBPS:
      /* copy all the data into kbps_cfg */
      cfg->rb.kbps.cir_kbps = kbps_cfg.rb.kbps.cir_kbps;
      cfg->rb.kbps.eir_kbps = kbps_cfg.rb.kbps.eir_kbps;
      cfg->rb.kbps.cb_bytes = kbps_cfg.rb.kbps.cb_bytes;
      cfg->rb.kbps.eb_bytes = kbps_cfg.rb.kbps.eb_bytes;
      break;
    case SSE2_QOS_RATE_PPS:
      cfg->rb.pps.cir_pps =
	sse2_qos_convert_kbps_to_pps (kbps_cfg.rb.kbps.cir_kbps);
      cfg->rb.pps.eir_pps =
	sse2_qos_convert_kbps_to_pps (kbps_cfg.rb.kbps.eir_kbps);
      cfg->rb.pps.cb_ms =
	sse2_qos_convert_burst_bytes_to_ms (kbps_cfg.rb.kbps.cb_bytes,
					    kbps_cfg.rb.kbps.cir_kbps);
      cfg->rb.pps.eb_ms =
	sse2_qos_convert_burst_bytes_to_ms (kbps_cfg.rb.kbps.eb_bytes,
					    kbps_cfg.rb.kbps.eir_kbps);
      break;
    default:
      SSE2_QOS_DEBUG_ERROR ("Illegal rate type");
      return (-1);
    }

  /* cfg->rate_type remains what it was */
  cfg->rnd_type = kbps_cfg.rnd_type;
  cfg->rfc = kbps_cfg.rfc;
  cfg->overwrite_bucket = kbps_cfg.overwrite_bucket;
  cfg->current_bucket = kbps_cfg.current_bucket;
  cfg->extended_bucket = kbps_cfg.extended_bucket;

  return 0;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */