Network Working Group                                    S. Previdi, Ed.
Internet-Draft                                               C. Filsfils
Intended status: Standards Track                     Cisco Systems, Inc.
Expires: June 12, 2015                                          B. Field
                                                                 Comcast
                                                                I. Leung
                                                   Rogers Communications
                                                        December 9, 2014


                   IPv6 Segment Routing Header (SRH)
              draft-previdi-6man-segment-routing-header-05

Abstract

   Segment Routing (SR) allows a node to steer a packet through a
   controlled set of instructions, called segments, by prepending a SR
   header to the packet.  A segment can represent any instruction,
   topological or service-based.  SR allows to enforce a flow through
   any path (topological, or application/service based) while
   maintaining per-flow state only at the ingress node to the SR domain.

   Segment Routing can be applied to the IPv6 data plane with the
   addition of a new type of Routing Extension Header.  This draft
   describes the Segment Routing Extension Header Type and how it is
   used by SR capable nodes.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."




Previdi, et al.           Expires June 12, 2015                 [Page 1]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   This Internet-Draft will expire on June 12, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Structure of this document  . . . . . . . . . . . . . . . . .   3
   2.  Segment Routing Documents . . . . . . . . . . . . . . . . . .   3
   3.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Data Planes supporting Segment Routing  . . . . . . . . .   4
     3.2.  Illustration  . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Abstract Routing Model  . . . . . . . . . . . . . . . . . . .   7
     4.1.  Segment Routing Global Block (SRGB) . . . . . . . . . . .   8
     4.2.  Traffic Engineering with SR . . . . . . . . . . . . . . .   9
     4.3.  Segment Routing Database  . . . . . . . . . . . . . . . .  10
   5.  IPv6 Instantiation of Segment Routing . . . . . . . . . . . .  10
     5.1.  Segment Identifiers (SIDs) and SRGB . . . . . . . . . . .  10
       5.1.1.  Node-SID  . . . . . . . . . . . . . . . . . . . . . .  11
       5.1.2.  Adjacency-SID . . . . . . . . . . . . . . . . . . . .  11
     5.2.  Segment Routing Extension Header (SRH)  . . . . . . . . .  11
       5.2.1.  SRH and RFC2460 behavior  . . . . . . . . . . . . . .  15
   6.  SRH Procedures  . . . . . . . . . . . . . . . . . . . . . . .  15
     6.1.  Segment Routing Operations  . . . . . . . . . . . . . . .  15
     6.2.  Segment Routing Node Functions  . . . . . . . . . . . . .  16
       6.2.1.  Ingress SR Node . . . . . . . . . . . . . . . . . . .  16
       6.2.2.  Transit Non-SR Capable Node . . . . . . . . . . . . .  18
       6.2.3.  SR Intra Segment Transit Node . . . . . . . . . . . .  18
       6.2.4.  SR Segment Endpoint Node  . . . . . . . . . . . . . .  18
     6.3.  FRR Flag Settings . . . . . . . . . . . . . . . . . . . .  18
   7.  SR and Tunneling  . . . . . . . . . . . . . . . . . . . . . .  18
   8.  Example Use Case  . . . . . . . . . . . . . . . . . . . . . .  19
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
   10. Manageability Considerations  . . . . . . . . . . . . . . . .  21
   11. Security Considerations . . . . . . . . . . . . . . . . . . .  21
   12. Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  21



Previdi, et al.           Expires June 12, 2015                 [Page 2]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   13. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  21
   14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
     14.1.  Normative References . . . . . . . . . . . . . . . . . .  21
     14.2.  Informative References . . . . . . . . . . . . . . . . .  21
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  22

1.  Structure of this document

   Section 3 gives an introduction on SR for IPv6 networks.

   Section 4 describes the Segment Routing abstract model.

   Section 5 defines the Segment Routing Header (SRH) allowing
   instantiation of SR over IPv6 dataplane.

   Section 6 details the procedures of the Segment Routing Header.

2.  Segment Routing Documents

   Segment Routing terminology is defined in
   [I-D.filsfils-spring-segment-routing].

   Segment Routing use cases are described in
   [I-D.filsfils-spring-segment-routing-use-cases].

   Segment Routing IPv6 use cases are described in
   [I-D.ietf-spring-ipv6-use-cases].

   Segment Routing protocol extensions are defined in
   [I-D.ietf-isis-segment-routing-extensions], and
   [I-D.psenak-ospf-segment-routing-ospfv3-extension].

   The security mechanisms of the Segment Routing Header (SRH) are
   described in [I-D.vyncke-6man-segment-routing-security].

3.  Introduction

   Segment Routing (SR), defined in
   [I-D.filsfils-spring-segment-routing], allows a node to steer a
   packet through a controlled set of instructions, called segments, by
   prepending a SR header to the packet.  A segment can represent any
   instruction, topological or service-based.  SR allows to enforce a
   flow through any path (topological or service/application based)
   while maintaining per-flow state only at the ingress node to the SR
   domain.  Segments can be derived from different components: IGP, BGP,
   Services, Contexts, Locators, etc.  The list of segment forming the
   path is called the Segment List and is encoded in the packet header.




Previdi, et al.           Expires June 12, 2015                 [Page 3]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   SR allows the use of strict and loose source based routing paradigms
   without requiring any additional signaling protocols in the
   infrastructure hence delivering an excellent scalability property.

   The source based routing model described in
   [I-D.filsfils-spring-segment-routing] is inherited from the ones
   proposed by [RFC1940] and [RFC2460].  The source based routing model
   offers the support for explicit routing capability.

3.1.  Data Planes supporting Segment Routing

   Segment Routing (SR), can be instantiated over MPLS
   ([I-D.filsfils-spring-segment-routing-mpls]) and IPv6.  This document
   defines its instantiation over the IPv6 data-plane based on the use-
   cases defined in [I-D.ietf-spring-ipv6-use-cases].

   Segment Routing for IPv6 (SR-IPv6) is required in networks where MPLS
   data-plane is not used or, when combined with SR-MPLS, in networks
   where MPLS is used in the core and IPv6 is used at the edge (home
   networks, datacenters).

   This document defines a new type of Routing Header (originally
   defined in [RFC2460]) called the Segment Routing Header (SRH) in
   order to convey the Segment List in the packet header as defined in
   [I-D.filsfils-spring-segment-routing].  Mechanisms through which
   segment are known and advertised are outside the scope of this
   document.

3.2.  Illustration

   In the context of Figure 1 where all the links have the same IGP
   cost, let us assume that a packet P enters the SR domain at an
   ingress edge router I and that the operator requests the following
   requirements for packet P:

      The local service S offered by node B must be applied to packet P.

      The links AB and CE cannot be used to transport the packet P.

      Any node N along the journey of the packet should be able to
      determine where the packet P entered the SR domain and where it
      will exit.  The intermediate node should be able to determine the
      paths from the ingress edge router to itself, and from itself to
      the egress edge router.

      Per-flow State for packet P should only be created at the ingress
      edge router.




Previdi, et al.           Expires June 12, 2015                 [Page 4]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


      The operator can forbid, for security reasons, anyone outside the
      operator domain to exploit its intra-domain SR capabilities.

   I---A---B---C---E
        \  |  / \ /
         \ | /   F
          \|/
           D

                Figure 1: An illustration of SR properties

   All these properties may be realized by instructing the ingress SR
   edge router I to push the following abstract SR header on the packet
   P.

   +---------------------------------------------------------------+
   |                                   |                           |
   |      Abstract SR Header           |                           |
   |                                   |                           |
   | {SD, SB, SS, SF, SE}, Ptr, SI, SE |        Transported        |
   |  ^                     |          |           Packet          |
   |  |                     |          |             P             |
   |  +---------------------+          |                           |
   |                                   |                           |
   +---------------------------------------------------------------+

                       Figure 2: Packet P at node I

   The abstract SR header contains a source route encoded as a list of
   segments {SD, SB, SS, SF, SE}, a pointer (Ptr) and the identification
   of the ingress and egress SR edge routers (segments SI and SE).

   A segment identifies a topological instruction or a service
   instruction.  A segment can either be global or local.  The
   instruction associated with a global segment is recognized and
   executed by any SR-capable node in the domain.  The instruction
   associated with a local segment is only supported by the specific
   node that originates it.

   Let us assume some IGP (i.e.: ISIS and OSPF) extensions to define a
   "Node Segment" as a global instruction within the IGP domain to
   forward a packet along the shortest path to the specified node.  Let
   us further assume that within the SR domain illustrated in Figure 1,
   segments SI, SD, SB, SE and SF respectively identify IGP node
   segments to I, D, B, E and F.

   Let us assume that node B identifies its local service S with local
   segment SS.



Previdi, et al.           Expires June 12, 2015                 [Page 5]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   With all of this in mind, let us describe the journey of the packet
   P.

   The packet P reaches the ingress SR edge router.  I pushes the SR
   header illustrated in Figure 2 and sets the pointer to the first
   segment of the list (SD).

   SD is an instruction recognized by all the nodes in the SR domain
   which causes the packet to be forwarded along the shortest path to D.

   Once at D, the pointer is incremented and the next segment is
   executed (SB).

   SB is an instruction recognized by all the nodes in the SR domain
   which causes the packet to be forwarded along the shortest path to B.

   Once at B, the pointer is incremented and the next segment is
   executed (SS).

   SS is an instruction only recognized by node B which causes the
   packet to receive service S.

   Once the service applied, the next segment is executed (SF) which
   causes the packet to be forwarded along the shortest path to F.

   Once at F, the pointer is incremented and the next segment is
   executed (SE).

   SE is an instruction recognized by all the nodes in the SR domain
   which causes the packet to be forwarded along the shortest path to E.

   E then removes the SR header and the packet continues its journey
   outside the SR domain.

   All of the requirements are met.

   First, the packet P has not used links AB and CE: the shortest-path
   from I to D is I-A-D, the shortest-path from D to B is D-B, the
   shortest-path from B to F is B-C-F and the shortest-path from F to E
   is F-E, hence the packet path through the SR domain is I-A-D-B-C-F-E
   and the links AB and CE have been avoided.

   Second, the service S supported by B has been applied on packet P.

   Third, any node along the packet path is able to identify the service
   and topological journey of the packet within the SR domain.  For
   example, node C receives the packet illustrated in Figure 3 and hence
   is able to infer where the packet entered the SR domain (SI), how it



Previdi, et al.           Expires June 12, 2015                 [Page 6]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   got up to itself {SD, SB, SS, SE}, where it will exit the SR domain
   (SE) and how it will do so {SF, SE}.

   +---------------------------------------------------------------+
   |                                   |                           |
   |           SR Header               |                           |
   |                                   |                           |
   | {SD, SB, SS, SF, SE}, Ptr, SI, SE |        Transported        |
   |               ^        |          |           Packet          |
   |               |        |          |             P             |
   |               +--------+          |                           |
   |                                   |                           |
   +---------------------------------------------------------------+

                       Figure 3: Packet P at node C

   Fourth, only node I maintains per-flow state for packet P.  The
   entire program of topological and service instructions to be executed
   by the SR domain on packet P is encoded by the ingress edge router I
   in the SR header in the form of a list of segments where each segment
   identifies a specific instruction.  No further per-flow state is
   required along the packet path.  The per-flow state is in the SR
   header and travels with the packet.  Intermediate nodes only hold
   states related to the IGP global node segments and the local IGP
   adjacency segments.  These segments are not per-flow specific and
   hence scale very well.  Typically, an intermediate node would
   maintain in the order of 100's to 1000's global node segments and in
   the order of 10's to 100 of local adjacency segments.  Typically the
   SR IGP forwarding table is expected to be much less than 10000
   entries.

   Fifth, the SR header is inserted at the entrance to the domain and
   removed at the exit of the operator domain.  For security reasons,
   the operator can forbid anyone outside its domain to use its intra-
   domain SR capability.

4.  Abstract Routing Model

   At the entrance of the SR domain, the ingress SR edge router pushes
   the SR header on top of the packet.  At the exit of the SR domain,
   the egress SR edge router removes the SR header.

   The abstract SR header contains an ordered list of segments, a
   pointer identifying the next segment to process and the
   identifications of the ingress and egress SR edge routers on the path
   of this packet.  The pointer identifies the segment that MUST be used
   by the receiving router to process the packet.  This segment is
   called the active segment.



Previdi, et al.           Expires June 12, 2015                 [Page 7]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   A property of SR is that the entire source route of the packet,
   including the identity of the ingress and egress edge routers is
   always available with the packet.  This allows for interesting
   accounting and service applications.

   We define three SR-header operations:

      "PUSH": an SR header is pushed on an IP packet, or additional
      segments are added at the head of the segment list.  The pointer
      is moved to the first entry of the added segments.

      "NEXT": the active segment is completed, the pointer is moved to
      the next segment in the list.

      "CONTINUE": the active segment is not completed, the pointer is
      left unchanged.

   In the future, other SR-header management operations may be defined.

   As the packet travels through the SR domain, the pointer is
   incremented through the ordered list of segments and the source route
   encoded by the SR ingress edge node is executed.

   A node processes an incoming packet according to the instruction
   associated with the active segment.

   Any instruction might be associated with a segment: for example, an
   intra-domain topological strict or loose forwarding instruction, a
   service instruction, etc.

   At minimum, a segment instruction must define two elements: the
   identity of the next-hop to forward the packet to (this could be the
   same node or a context within the node) and which SR-header
   management operation to execute.

   Each segment is known in the network through a Segment Identifier
   (SID).  The terms "segment" and "SID" are interchangeable.

4.1.  Segment Routing Global Block (SRGB)

   In the SR abstract model, a segment is identified by a Segment
   Routing Identifier (SID).  The SR abstract model doesn't mandate a
   specific format for the SID (IPv6 address or other formats).

   In Segment Routing IPv6 the SID is an IPv6 address.  Therefore, the
   SRGB is materialized by the global IPv6 address space which
   represents the set of IPv6 routable addresses in the SR domain.  The
   following rules apply:



Previdi, et al.           Expires June 12, 2015                 [Page 8]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   o  Each node of the SR domain MUST be configured with the Segment
      Routing Global Block (SRGB).

   o  All global segments must be allocated from the SRGB.  Any SR
      capable node MUST be able to process any global segment advertised
      by any other node within the SR domain.

   o  Any segment outside the SRGB has a local significance and is
      called a "local segment".  An SR-capable node MUST be able to
      process the local segments it originates.  An SR-capable node MUST
      NOT support the instruction associated with a local segment
      originated by a remote node.

4.2.  Traffic Engineering with SR

   An SR Traffic Engineering policy is composed of two elements: a flow
   classification and a segment-list to prepend on the packets of the
   flow.

   In SR, this per-flow state only exists at the ingress edge node where
   the policy is defined and the SR header is pushed.

   It is outside the scope of the document to define the process that
   leads to the instantiation at a node N of an SR Traffic Engineering
   policy.

   [I-D.filsfils-spring-segment-routing-use-cases] illustrates various
   alternatives:

      N is deriving this policy automatically (e.g.  FRR).

      N is provisioned explicitly by the operator.

      N is provisioned by a controller or server (e.g.: SDN Controller).

      N is provisioned by the operator with a high-level policy which is
      mapped into a path thanks to a local CSPF-based computation (e.g.
      affinity/SRLG exclusion).

      N could also be provisioned by other means.

   [I-D.filsfils-spring-segment-routing-use-cases] explains why the
   majority of use-cases require very short segment-lists, hence
   minimizing the performance impact, if any, of inserting and
   transporting the segment list.






Previdi, et al.           Expires June 12, 2015                 [Page 9]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   A SDN controller, which desires to instantiate at node N an SR
   Traffic Engineering policy, collects the SR capability of node N such
   as to ensure that the policy meets its capability.

4.3.  Segment Routing Database

   The Segment routing Database (SRDB) is a set of entries where each
   entry is identified by a SID.  The instruction associated with each
   entry at least defines the identity of the next-hop to which the
   packet should be forwarded and what operation should be performed on
   the SR header (PUSH, CONTINUE, NEXT).

   +---------+-----------+---------------------------------+
   | Segment |  Next-Hop |  SR Header operation            |
   +---------+-----------+---------------------------------+
   |   Sk    |     M     | CONTINUE                        |
   |   Sj    |     N     | NEXT                            |
   |   Sl    | NAT Srvc  | NEXT                            |
   |   Sm    |  FW srvc  | NEXT                            |
   |   Sn    |     Q     | NEXT                            |
   |  etc.   |   etc.    | etc.                            |
   +---------+-----------+---------------------------------+

                           Figure 4: SR Database

   Each SR-capable node maintains its local SRDB.  SRDB entries can
   either derive from local policy or from protocol segment
   advertisement.

5.  IPv6 Instantiation of Segment Routing

5.1.  Segment Identifiers (SIDs) and SRGB

   Segment Routing, as described in
   [I-D.filsfils-spring-segment-routing], defines Node-SID and
   Adjacency-SID.  When SR is used over IPv6 data-plane the following
   applies.

   The SRGB is the global IPv6 address space which represents the set of
   IPv6 routable addresses in the SR domain.

   Node SIDs are IPv6 addresses part of the SRGB (i.e.: routable
   addresses).  Adjacency-SIDs are IPv6 addresses which may not be part
   of the global IPv6 address space.







Previdi, et al.           Expires June 12, 2015                [Page 10]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


5.1.1.  Node-SID

   The Node-SID identifies a node.  With SR-IPv6 the Node-SID is an IPv6
   prefix that the operator configured on the node and that is used as
   the node identifier.  Typically, in case of a router, this is the
   IPv6 address of the node loopback interface.  Therefore, SR-IPv6 does
   not require any additional SID advertisement for the Node Segment.
   The Node-SID is in fact the IPv6 address of the node.

5.1.2.  Adjacency-SID

   In the SR architecture defined in
   [I-D.filsfils-spring-segment-routing] the Adjacency-SID (or Adj-SID)
   identifies a given interface and may be local or global (depending on
   how it is advertised).  A node may advertise one (or more) Adj-SIDs
   allocated to a given interface so to force the forwarding of the
   packet (when received with that particular Adj-SID) into the
   interface regardless the routing entry for the packet destination.
   The semantic of the Adj-SID is:

      Send out the packet to the interface this prefix is allocated to.

   When SR is applied to IPv6, any SID is in a global IPv6 address and
   therefore, an Adj-SID has a global significance (i.e.: the IPv6
   address representing the SID is a global address).  In other words, a
   node that advertises the Adj-SID in the form of a global IPv6 address
   representing the link/adjacency the packet has to be forwarded to,
   will apply to the Adj-SID a global significance.

   Advertisement of Adj-SID may be done using multiple mechanisms among
   which the ones described in ISIS and OSPF protocol extensions:
   [I-D.ietf-isis-segment-routing-extensions] and
   [I-D.psenak-ospf-segment-routing-ospfv3-extension].  The distinction
   between local and global significance of the Adj-SID is given in the
   encoding of the Adj-SID advertisement.

5.2.  Segment Routing Extension Header (SRH)

   A new type of the Routing Header (originally defined in [RFC2460]) is
   defined: the Segment Routing Header (SRH) which has a new Routing
   Type, (suggested value 4) to be assigned by IANA.

   As an example, if an explicit path is to be constructed across a core
   network running ISIS or OSPF, the segment list will contain SIDs
   representing the nodes across the path (loose or strict) which,
   usually, are the IPv6 loopback interface address of each node.  If
   the path is across service or application entities, the segment list




Previdi, et al.           Expires June 12, 2015                [Page 11]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   contains the IPv6 addresses of these services or application
   instances.

   The Segment Routing Header (SRH) is defined as follows:


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Next Header   |  Hdr Ext Len  | Routing Type  | Segments Left |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | First Segment |             Flags             |  HMAC Key ID  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |            Segment List[0] (128 bits ipv6 address)            |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                                                               |
                                  ...
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |            Segment List[n] (128 bits ipv6 address)            |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |            Policy List[0] (optional)                          |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |            Policy List[1] (optional)                          |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |            Policy List[2] (optional)                          |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                                                               |
    |                                                               |
    |                       HMAC (256 bits)                         |



Previdi, et al.           Expires June 12, 2015                [Page 12]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


    |                        (optional)                             |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   where:

   o  Next Header: 8-bit selector.  Identifies the type of header
      immediately following the SRH.

   o  Hdr Ext Len: 8-bit unsigned integer, is the length of the SRH
      header in 8-octet units, not including the first 8 octets.

   o  Routing Type: TBD, to be assigned by IANA (suggested value: 4).

   o  Segments Left.  Defined in [RFC2460], it contains the index, in
      the Segment List, of the next segment to inspect.  Segments Left
      is decremented at each segment and it is used as an index in the
      segment list.

   o  First Segment: offset in the SRH, not including the first 8 octets
      and expressed in 16-octet units, pointing to the last element of
      the segment list, which is in fact the first segment of the
      segment routing path.

   o  Flags: 16 bits of flags.  Following flags are defined:

                              1
          0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |C|P|R|R|    Policy Flags       |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         C-flag: Clean-up flag.  Set when the SRH has to be removed from
         the packet when packet reaches the last segment.

         P-flag: Protected flag.  Set when the packet has been rerouted
         through FRR mechanism by a SR endpoint node.  See Section 6.3
         for more details.

         R-flags.  Reserved and for future use.

         Policy Flags.  Define the type of the IPv6 addresses encoded
         into the Policy List (see below).  The following have been
         defined:





Previdi, et al.           Expires June 12, 2015                [Page 13]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


            Bits 4-6: determine the type of the first element after the
            segment list.

            Bits 7-9: determine the type of the second element.

            Bits 10-12: determine the type of the third element.

            Bits 13-15: determine the type of the fourth element.

         The following values are used for the type:

            0x0: Not present.  If value is set to 0x0, it means the
            element represented by these bits is not present.

            0x1: SR Ingress.

            0x2: SR Egress.

            0x3: Original Source Address.

   o  HMAC Key ID and HMAC field, and their use are defined in
      [I-D.vyncke-6man-segment-routing-security].

   o  Segment List[n]: 128 bit IPv6 addresses representing the nth
      segment in the Segment List.  The Segment List is encoded starting
      from the last segment of the path.  I.e., the first element of the
      segment list (Segment List [0]) contains the last segment of the
      path while the last segment of the Segment List (Segment List[n])
      contains the first segment of the path.  The index contained in
      "Segments Left" identifies the current active segment.

   o  Policy List.  Optional addresses representing specific nodes in
      the SR path such as:

         SR Ingress: a 128 bit generic identifier representing the
         ingress in the SR domain (i.e.: it needs not to be a valid IPv6
         address).

         SR Egress: a 128 bit generic identifier representing the egress
         in the SR domain (i.e.: it needs not to be a valid IPv6
         address).

         Original Source Address: IPv6 address originally present in the
         SA field of the packet.

      The segments in the Policy List are encoded after the segment list
      and they are optional.  If none are in the SRH, all bits of the
      Policy List Flags MUST be set to 0x0.



Previdi, et al.           Expires June 12, 2015                [Page 14]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


5.2.1.  SRH and RFC2460 behavior

   The SRH being a new type of the Routing Header, it also has the same
   properties:

      SHOULD only appear once in the packet.

      Only the router whose address is in the DA field of the packet
      header MUST inspect the SRH.

   Therefore, Segment Routing in IPv6 networks implies that the segment
   identifier (i.e.: the IPv6 address of the segment) is moved into the
   DA of the packet.

   The DA of the packet changes at each segment termination/completion
   and therefore the original DA of the packet MUST be encoded as the
   last segment of the path.

   As illustrated in Section 3.2, nodes that are within the path of a
   segment will forward packets based on the DA of the packet without
   inspecting the SRH.  This ensures full interoperability between SR-
   capable and non-SR-capable nodes.

6.  SRH Procedures

   In this section we describe the different procedures on the SRH.

6.1.  Segment Routing Operations

   When Segment Routing is instantiated over the IPv6 data plane the
   following applies:

   o  The segment list is encoded in the SRH.

   o  The active segment is in the destination address of the packet.

   o  The Segment Routing CONTINUE operation (as described in
      [I-D.filsfils-spring-segment-routing]) is implemented as a
      regular/plain IPv6 operation consisting of DA based forwarding.

   o  The NEXT operation is implemented through the update of the DA
      with the value represented by the Next Segment field in the SRH.

   o  The PUSH operation is implemented through the insertion of the SRH
      or the insertion of additional segments in the SRH segment list.






Previdi, et al.           Expires June 12, 2015                [Page 15]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


6.2.  Segment Routing Node Functions

   SR packets are forwarded to segments endpoints (i.e.: nodes whose
   address is in the DA field of the packet).  The segment endpoint,
   when receiving a SR packet destined to itself, does:

   o  Inspect the SRH.

   o  Determine the next active segment.

   o  Update the Segments Left field (or, if requested, remove the SRH
      from the packet).

   o  Update the DA.

   o  Send the packet to the next segment.

   The procedures applied to the SRH are related to the node function.
   Following nodes functions are defined:

      Ingress SR Node.

      Transit Non-SR Node.

      Transit SR Intra Segment Node.

      SR Endpoint Node.

6.2.1.  Ingress SR Node

   Ingress Node can be a router at the edge of the SR domain or a SR-
   capable host.  The ingress SR node may obtain the segment list by
   either:

      Local path computation.

      Local configuration.

      Interaction with an SDN controller delivering the path as a
      complete SRH.

      Any other mechanism (mechanisms through which the path is acquired
      are outside the scope of this document).

   When creating the SRH (either at ingress node or in the SDN
   controller) the following is done:

      Next Header and Hdr Ext Len fields are set according to [RFC2460].



Previdi, et al.           Expires June 12, 2015                [Page 16]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


      Routing Type field is set as TBD (SRH).

      The Segment List is built with the FIRST segment of the path
      encoded in the LAST element of the Segment List.  Subsequent
      segments are encoded on top of the first segment.  Finally, the
      LAST segment of the path is encoded in the FIRST element of the
      Segment List.  In other words, the Segment List is encoded in the
      reverse order of the path.

      The original DA of the packet is encoded as the last segment of
      the path (encoded in the first element of the Segment List).

      the DA of the packet is set with the value of the first segment
      (found in the last element of the segment list).

      the Segments Left field is set to n-1 where n is the number of
      elements in the Segment List.

      The packet is sent out towards the first segment (i.e.:
      represented in the packet DA).

6.2.1.1.  Security at Ingress

   The procedures related to the Segment Routing security are detailed
   in [I-D.vyncke-6man-segment-routing-security].

   In the case where the SR domain boundaries are not under control of
   the network operator (e.g.: when the SR domain edge is in a home
   network), it is important to authenticate and validate the content of
   any SRH being received by the network operator.  In such case, the
   security procedure described in
   [I-D.vyncke-6man-segment-routing-security] is to be used.

   The ingress node (e.g.: the host in the home network) requests the
   SRH from a control system (e.g.: an SDN controller) which delivers
   the SRH with its HMAC signature on it.

   Then, the home network host can send out SR packets (with an SRH on
   it) that will be validated at the ingress of the network operator
   infrastructure.

   The ingress node of the network operator infrastructure, is
   configured in order to validate the incoming SRH HMACs in order to
   allow only packets having correct SRH according to their SA/DA
   addresses.






Previdi, et al.           Expires June 12, 2015                [Page 17]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


6.2.2.  Transit Non-SR Capable Node

   SR is interoperable with plain IPv6 forwarding.  Any non SR-capable
   node will forward SR packets solely based on the DA.  There's no SRH
   inspection.  This ensures full interoperability between SR and non-SR
   nodes.

6.2.3.  SR Intra Segment Transit Node

   Only the node whose address is in DA inspects and processes the SRH
   (according to [RFC2460]).  An intra segment transit node is not in
   the DA and its forwarding is based on DA and its SR-IPv6 FIB.

6.2.4.  SR Segment Endpoint Node

   The SR segment endpoint node is the node whose address is in the DA.
   The segment endpoint node inspects the SRH and does:

   1.   IF DA = myself (segment endpoint)
   2.      IF Segments Left > 0 THEN
              decrement Segments Left
              update DA with Segment List[Segments Left]
   3.      ELSE IF Segments List[Segments Left] <> DA THEN
              update DA with Segments List[Segments Left]
              IF Clean-up bit is set THEN remove the SRH
   4.      ELSE give the packet to next PID (application)
                End of processing.
   5.   Forward the packet out

6.3.  FRR Flag Settings

   A node supporting SR and doing Fast Reroute (as described in
   [I-D.filsfils-spring-segment-routing-use-cases], when rerouting
   packets through FRR mechanisms, SHOULD inspect the rerouted packet
   header and look for the SRH.  If the SRH is present, the rerouting
   node SHOULD set the Protected bit on all rerouted packets.

7.  SR and Tunneling

   Encapsulation can be realized in two different ways with SR-IPv6:

      Outer encapsulation.

      SRH with SA/DA original addresses.

   Outer encapsulation tunneling is the traditional method where an
   additional IPv6 header is prepended to the packet.  The original IPv6
   header being encapsulated, everything is preserved and the packet is



Previdi, et al.           Expires June 12, 2015                [Page 18]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   switched/routed according to the outer header (that could contain a
   SRH).

   SRH allows encoding both original SA and DA, hence an operator may
   decide to change the SA/DA at ingress and restore them at egress.
   This can be achieved without outer encapsulation, by changing SA/DA
   and encoding the original SA in the Policy List and in the original
   DA in the Segment List.

8.  Example Use Case

   A more detailed description of use cases are available in
   [I-D.ietf-spring-ipv6-use-cases].  In this section, a simple SR-IPv6
   example is illustrated.

   In the topology described in Figure 6 it is assumed an end-to-end SR
   deployment.  Therefore SR is supported by all nodes from A to J.

    Home Network |          Backbone         |    Datacenter
                 |                           |
                 |   +---+   +---+   +---+   |   +---+   |
             +---|---| C |---| D |---| E |---|---| I |---|
             |   |   +---+   +---+   +---+   |   +---+   |
             |   |     |       |       |     |     |     |  +---+
   +---+   +---+ |     |       |       |     |     |     |--| X |
   | A |---| B | |   +---+   +---+   +---+   |   +---+   |  +---+
   +---+   +---+ |   | F |---| G |---| H |---|---| J |---|
                 |   +---+   +---+   +---+   |   +---+   |
                 |                           |
                 |        +-----------+
                          |    SDN    |
                          | Orch/Ctlr |
                          +-----------+

                       Figure 6: Sample SR topology

   The following workflow applies to packets sent by host A and destined
   to server X.













Previdi, et al.           Expires June 12, 2015                [Page 19]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   . Host A sends a request for a path to server X to the SDN
     controller or orchestration system.

   . The SDN controller/orchestrator builds a SRH with:
      . Segment List: C, F, J, X
      . HMAC
     that satisfies the requirements expressed in the request
     by host A and based on policies applicable to host A.

   . Host A receives the SRH and insert it into the packet.
     The packet has now:
      . SA: A
      . DA: C
      . SRH with
         . SL: X, J, F, C
         . Segments Left: 3 (i.e.: Segment List size - 1)
         . PL: C (ingress), J (egress)
        Note that X is the last segment and C is the
        first segment (i.e.: the SL is encoded in the reverse
        path order).
      . HMAC

   . When packet arrives in C (first segment), C does:
      . Validate the HMAC of the SRH.
      . Decrement Segments Left by one: 2
      . Update the DA with the next segment found in
        Segment List[2]. DA is set to F.
      . Forward the packet to F.

   . When packet arrives in F (second segment), F does:
      . Decrement Segments Left by one: 1
      . Update the DA with the next segment found in
        Segment List[1]. DA is set to J.
      . Forward the packet to J.

   . Packet travels across G and H nodes which do plain
     IPv6 forwarding based on DA. No inspection of SRH needs
     to be done in these nodes. However, any SR capable node
     is allowed to set the Protected bit in case of FRR
     protection.

   . When packet arrives in J (third segment), J does:
      . Decrement Segments Left by one: 0
      . Update the DA with the next segment found in
        Segment List[0]. DA is set to X.
      . If the cleanup bit is set, then node J will strip out
        the SRH from the packet.
      . Forward the packet to X.



Previdi, et al.           Expires June 12, 2015                [Page 20]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   The packet arrives in the server that may or may not support SR.  The
   return traffic, from server to host, may be sent using the same
   procedures.

9.  IANA Considerations

   TBD

10.  Manageability Considerations

   TBD

11.  Security Considerations

   Security mechanisms applied to Segment Routing over IPv6 networks are
   detailed in [I-D.vyncke-6man-segment-routing-security].

12.  Contributors

   The authors would like to thank Dave Barach, John Leddy, John
   Brzozowski, Pierre Francois, Nagendra Kumar, Mark Townsley, Christian
   Martin, Roberta Maglione, Eric Vyncke, James Connolly, David Lebrun
   and Fred Baker for their contribution to this document.

13.  Acknowledgements

   TBD

14.  References

14.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 2460, December 1998.

14.2.  Informative References

   [I-D.filsfils-spring-segment-routing]
              Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
              Litkowski, S., Horneffer, M., Milojevic, I., Shakir, R.,
              Ytti, S., Henderickx, W., Tantsura, J., and E. Crabbe,
              "Segment Routing Architecture", draft-filsfils-spring-
              segment-routing-04 (work in progress), July 2014.





Previdi, et al.           Expires June 12, 2015                [Page 21]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   [I-D.filsfils-spring-segment-routing-mpls]
              Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
              Litkowski, S., Horneffer, M., Milojevic, I., Shakir, R.,
              Ytti, S., Henderickx, W., Tantsura, J., and E. Crabbe,
              "Segment Routing with MPLS data plane", draft-filsfils-
              spring-segment-routing-mpls-03 (work in progress), August
              2014.

   [I-D.filsfils-spring-segment-routing-use-cases]
              Filsfils, C., Francois, P., Previdi, S., Decraene, B.,
              Litkowski, S., Horneffer, M., Milojevic, I., Shakir, R.,
              Ytti, S., Henderickx, W., Tantsura, J., Kini, S., and E.
              Crabbe, "Segment Routing Use Cases", draft-filsfils-
              spring-segment-routing-use-cases-01 (work in progress),
              October 2014.

   [I-D.ietf-isis-segment-routing-extensions]
              Previdi, S., Filsfils, C., Bashandy, A., Gredler, H.,
              Litkowski, S., Decraene, B., and J. Tantsura, "IS-IS
              Extensions for Segment Routing", draft-ietf-isis-segment-
              routing-extensions-03 (work in progress), October 2014.

   [I-D.ietf-spring-ipv6-use-cases]
              Brzozowski, J., Leddy, J., Leung, I., Previdi, S.,
              Townsley, W., Martin, C., Filsfils, C., and R. Maglione,
              "IPv6 SPRING Use Cases", draft-ietf-spring-ipv6-use-
              cases-03 (work in progress), November 2014.

   [I-D.psenak-ospf-segment-routing-ospfv3-extension]
              Psenak, P., Previdi, S., Filsfils, C., Gredler, H.,
              Shakir, R., Henderickx, W., and J. Tantsura, "OSPFv3
              Extensions for Segment Routing", draft-psenak-ospf-
              segment-routing-ospfv3-extension-02 (work in progress),
              July 2014.

   [I-D.vyncke-6man-segment-routing-security]
              Vyncke, E. and S. Previdi, "IPv6 Segment Routing Header
              (SRH) Security Considerations", July 2014.

   [RFC1940]  Estrin, D., Li, T., Rekhter, Y., Varadhan, K., and D.
              Zappala, "Source Demand Routing: Packet Format and
              Forwarding Specification (Version 1)", RFC 1940, May 1996.

Authors' Addresses







Previdi, et al.           Expires June 12, 2015                [Page 22]

Internet-Draft      IPv6 Segment Routing Header (SRH)      December 2014


   Stefano Previdi (editor)
   Cisco Systems, Inc.
   Via Del Serafico, 200
   Rome  00142
   Italy

   Email: sprevidi@cisco.com


   Clarence Filsfils
   Cisco Systems, Inc.
   Brussels
   BE

   Email: cfilsfil@cisco.com


   Brian Field
   Comcast
   4100 East Dry Creek Road
   Centennial, CO  80122
   US

   Email: Brian_Field@cable.comcast.com


   Ida Leung
   Rogers Communications
   8200 Dixie Road
   Brampton, ON  L6T 0C1
   CA

   Email: Ida.Leung@rci.rogers.com