/* * Copyright (c) 2016-2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _vnet_tcp_h_ #define _vnet_tcp_h_ #include <vnet/vnet.h> #include <vnet/ip/ip.h> #include <vnet/tcp/tcp_packet.h> #include <vnet/tcp/tcp_timer.h> #include <vnet/session/transport.h> #include <vnet/session/session.h> #include <vnet/tcp/tcp_debug.h> #define TCP_TICK 0.001 /**< TCP tick period (s) */ #define THZ (u32) (1/TCP_TICK) /**< TCP tick frequency */ #define TCP_TSTAMP_RESOLUTION TCP_TICK /**< Time stamp resolution */ #define TCP_PAWS_IDLE 24 * 24 * 60 * 60 * THZ /**< 24 days */ #define TCP_FIB_RECHECK_PERIOD 1 * THZ /**< Recheck every 1s */ #define TCP_MAX_OPTION_SPACE 40 #define TCP_CC_DATA_SZ 24 #define TCP_DUPACK_THRESHOLD 3 #define TCP_MAX_RX_FIFO_SIZE 32 << 20 #define TCP_MIN_RX_FIFO_SIZE 4 << 10 #define TCP_IW_N_SEGMENTS 10 #define TCP_ALWAYS_ACK 1 /**< On/off delayed acks */ #define TCP_USE_SACKS 1 /**< Disable only for testing */ /** TCP FSM state definitions as per RFC793. */ #define foreach_tcp_fsm_state \ _(CLOSED, "CLOSED") \ _(LISTEN, "LISTEN") \ _(SYN_SENT, "SYN_SENT") \ _(SYN_RCVD, "SYN_RCVD") \ _(ESTABLISHED, "ESTABLISHED") \ _(CLOSE_WAIT, "CLOSE_WAIT") \ _(FIN_WAIT_1, "FIN_WAIT_1") \ _(LAST_ACK, "LAST_ACK") \ _(CLOSING, "CLOSING") \ _(FIN_WAIT_2, "FIN_WAIT_2") \ _(TIME_WAIT, "TIME_WAIT") typedef enum _tcp_state { #define _(sym, str) TCP_STATE_##sym, foreach_tcp_fsm_state #undef _ TCP_N_STATES } tcp_state_t; format_function_t format_tcp_state; format_function_t format_tcp_flags; format_function_t format_tcp_sacks; format_function_t format_tcp_rcv_sacks; /** TCP timers */ #define foreach_tcp_timer \ _(RETRANSMIT, "RETRANSMIT") \ _(DELACK, "DELAYED ACK") \ _(PERSIST, "PERSIST") \ _(KEEP, "KEEP") \ _(WAITCLOSE, "WAIT CLOSE") \ _(RETRANSMIT_SYN, "RETRANSMIT SYN") \ _(ESTABLISH, "ESTABLISH") \ _(ESTABLISH_AO, "ESTABLISH_AO") \ typedef enum _tcp_timers { #define _(sym, str) TCP_TIMER_##sym, foreach_tcp_timer #undef _ TCP_N_TIMERS } tcp_timers_e; typedef void (timer_expiration_handler) (u32 index); extern timer_expiration_handler tcp_timer_delack_handler; extern timer_expiration_handler tcp_timer_retransmit_handler; extern timer_expiration_handler tcp_timer_persist_handler; extern timer_expiration_handler tcp_timer_retransmit_syn_handler; #define TCP_TIMER_HANDLE_INVALID ((u32) ~0) /* Timer delays as multiples of 100ms */ #define TCP_TO_TIMER_TICK TCP_TICK*10 /* Period for converting from TCP * ticks to timer units */ #define TCP_DELACK_TIME 1 /* 0.1s */ #define TCP_ESTABLISH_TIME 750 /* 75s */ #define TCP_SYN_RCVD_TIME 600 /* 60s */ #define TCP_2MSL_TIME 300 /* 30s */ #define TCP_CLOSEWAIT_TIME 20 /* 2s */ #define TCP_TIMEWAIT_TIME 100 /* 10s */ #define TCP_FINWAIT1_TIME 600 /* 60s */ #define TCP_CLEANUP_TIME 1 /* 0.1s */ #define TCP_TIMER_PERSIST_MIN 2 /* 0.2s */ #define TCP_RTO_MAX 60 * THZ /* Min max RTO (60s) as per RFC6298 */ #define TCP_RTO_MIN 0.2 * THZ /* Min RTO (200ms) - lower than standard */ #define TCP_RTT_MAX 30 * THZ /* 30s (probably too much) */ #define TCP_RTO_SYN_RETRIES 3 /* SYN retries without doubling RTO */ #define TCP_RTO_INIT 1 * THZ /* Initial retransmit timer */ #define TCP_RTO_BOFF_MAX 8 /* Max number of retries before reset */ /** TCP connection flags */ #define foreach_tcp_connection_flag \ _(SNDACK, "Send ACK") \ _(FINSNT, "FIN sent") \ _(RECOVERY, "Recovery") \ _(FAST_RECOVERY, "Fast Recovery") \ _(DCNT_PENDING, "Disconnect pending") \ _(HALF_OPEN_DONE, "Half-open completed") \ _(FINPNDG, "FIN pending") \ _(FRXT_PENDING, "Fast-retransmit pending") \ _(FRXT_FIRST, "Fast-retransmit first again") \ _(DEQ_PENDING, "Pending dequeue acked") \ _(PSH_PENDING, "PSH pending") \ _(FINRCVD, "FIN received") \ _(RATE_SAMPLE, "Conn does rate sampling") \ _(TRACK_BURST, "Track burst") \ _(ZERO_RWND_SENT, "Zero RWND sent") \ typedef enum _tcp_connection_flag_bits { #define _(sym, str) TCP_CONN_##sym##_BIT, foreach_tcp_connection_flag #undef _ TCP_CONN_N_FLAG_BITS } tcp_connection_flag_bits_e; typedef enum _tcp_connection_flag { #define _(sym, str) TCP_CONN_##sym = 1 << TCP_CONN_##sym##_BIT, foreach_tcp_connection_flag #undef _ TCP_CONN_N_FLAGS } tcp_connection_flags_e; #define TCP_SCOREBOARD_TRACE (0) #define TCP_MAX_SACK_BLOCKS 256 /**< Max number of SACK blocks stored */ #define TCP_INVALID_SACK_HOLE_INDEX ((u32)~0) typedef struct _scoreboard_trace_elt { u32 start; u32 end; u32 ack; u32 snd_una_max; u32 group; } scoreboard_trace_elt_t; typedef struct _sack_scoreboard_hole { u32 next; /**< Index for next entry in linked list */ u32 prev; /**< Index for previous entry in linked list */ u32 start; /**< Start sequence number */ u32 end; /**< End sequence number */ u8 is_lost; /**< Mark hole as lost */ } sack_scoreboard_hole_t; typedef struct _sack_scoreboard { sack_scoreboard_hole_t *holes; /**< Pool of holes */ u32 head; /**< Index of first entry */ u32 tail; /**< Index of last entry */ u32 sacked_bytes; /**< Number of bytes sacked in sb */ u32 last_sacked_bytes; /**< Number of bytes last sacked */ u32 last_bytes_delivered; /**< Sack bytes delivered to app */ u32 snd_una_adv; /**< Bytes to add to snd_una */ u32 high_sacked; /**< Highest byte sacked (fack) */ u32 high_rxt; /**< Highest retransmitted sequence */ u32 rescue_rxt; /**< Rescue sequence number */ u32 lost_bytes; /**< Bytes lost as per RFC6675 */ u32 cur_rxt_hole; /**< Retransmitting from this hole */ #if TCP_SCOREBOARD_TRACE scoreboard_trace_elt_t *trace; #endif } sack_scoreboard_t; #if TCP_SCOREBOARD_TRACE #define tcp_scoreboard_trace_add(_tc, _ack) \ { \ static u64 _group = 0; \ sack_scoreboard_t *_sb = &_tc->sack_sb; \ sack_block_t *_sack, *_sacks; \ scoreboard_trace_elt_t *_elt; \ int i; \ _group++; \ _sacks = _tc->rcv_opts.sacks; \ for (i = 0; i < vec_len (_sacks); i++) \ { \ _sack = &_sacks[i]; \ vec_add2 (_sb->trace, _elt, 1); \ _elt->start = _sack->start; \ _elt->end = _sack->end; \ _elt->ack = _elt->end == _ack ? _ack : 0; \ _elt->snd_una_max = _elt->end == _ack ? _tc->snd_una_max : 0; \ _elt->group = _group; \ } \ } #else #define tcp_scoreboard_trace_add(_tc, _ack) #endif sack_scoreboard_hole_t *scoreboard_next_rxt_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * start, u8 have_sent_1_smss, u8 * can_rescue, u8 * snd_limited); sack_scoreboard_hole_t *scoreboard_get_hole (sack_scoreboard_t * sb, u32 index); sack_scoreboard_hole_t *scoreboard_next_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole); sack_scoreboard_hole_t *scoreboard_prev_hole (sack_scoreboard_t * sb, sack_scoreboard_hole_t * hole); sack_scoreboard_hole_t *scoreboard_first_hole (sack_scoreboard_t * sb); sack_scoreboard_hole_t *scoreboard_last_hole (sack_scoreboard_t * sb); void scoreboard_clear (sack_scoreboard_t * sb); void scoreboard_init (sack_scoreboard_t * sb); u8 *format_tcp_scoreboard (u8 * s, va_list * args); #define TCP_BTS_INVALID_INDEX ((u32)~0) typedef enum tcp_bts_flags_ { TCP_BTS_IS_RXT = 1, TCP_BTS_IS_APP_LIMITED = 1 << 1, } __clib_packed tcp_bts_flags_t; typedef struct tcp_bt_sample_ { u32 next; /**< Next sample index in list */ u32 prev; /**< Previous sample index in list */ u32 min_seq; /**< Min seq number in sample */ u32 max_seq; /**< Max seq number. Set for rxt samples */ u64 delivered; /**< Total delivered when sample taken */ f64 delivered_time; /**< Delivered time when sample taken */ u64 tx_rate; /**< Tx pacing rate */ tcp_bts_flags_t flags; /**< Sample flag */ } tcp_bt_sample_t; typedef struct tcp_rate_sample_ { u64 sample_delivered; /**< Delivered of sample used for rate */ u32 delivered; /**< Bytes delivered in ack time */ f64 ack_time; /**< Time to ack the bytes delivered */ u64 tx_rate; /**< Tx pacing rate */ tcp_bts_flags_t flags; /**< Rate sample flags from bt sample */ } tcp_rate_sample_t; typedef struct tcp_byte_tracker_ { tcp_bt_sample_t *samples; /**< Pool of samples */ rb_tree_t sample_lookup; /**< Rbtree for sample lookup by min_seq */ u32 head; /**< Head of samples linked list */ u32 tail; /**< Tail of samples linked list */ u32 last_ooo; /**< Cached last ooo sample */ } tcp_byte_tracker_t; typedef enum _tcp_cc_algorithm_type { TCP_CC_NEWRENO, TCP_CC_CUBIC, TCP_CC_LAST = TCP_CC_CUBIC } tcp_cc_algorithm_type_e; typedef struct _tcp_cc_algorithm tcp_cc_algorithm_t; typedef enum _tcp_cc_ack_t { TCP_CC_ACK, TCP_CC_DUPACK, TCP_CC_PARTIALACK } tcp_cc_ack_t; typedef enum tcp_cc_event_ { TCP_CC_EVT_START_TX, } tcp_cc_event_t; typedef struct _tcp_connection { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); transport_connection_t connection; /**< Common transport data. First! */ u8 state; /**< TCP state as per tcp_state_t */ u16 flags; /**< Connection flags (see tcp_conn_flags_e) */ u32 timers[TCP_N_TIMERS]; /**< Timer handles into timer wheel */ /* TODO RFC4898 */ /** Send sequence variables RFC793 */ u32 snd_una; /**< oldest unacknowledged sequence number */ u32 snd_una_max; /**< newest unacknowledged sequence number + 1*/ u32 snd_wnd; /**< send window */ u32 snd_wl1; /**< seq number used for last snd.wnd update */ u32 snd_wl2; /**< ack number used for last snd.wnd update */ u32 snd_nxt; /**< next seq number to be sent */ u16 snd_mss; /**< Effective send max seg (data) size */ /** Receive sequence variables RFC793 */ u32 rcv_nxt; /**< next sequence number expected */ u32 rcv_wnd; /**< receive window we expect */ u32 rcv_las; /**< rcv_nxt at last ack sent/rcv_wnd update */ u32 iss; /**< initial sent sequence */ u32 irs; /**< initial remote sequence */ /* Options */ u8 snd_opts_len; /**< Tx options len */ u8 rcv_wscale; /**< Window scale to advertise to peer */ u8 snd_wscale; /**< Window scale to use when sending */ u32 tsval_recent; /**< Last timestamp received */ u32 tsval_recent_age; /**< When last updated tstamp_recent*/ tcp_options_t snd_opts; /**< Tx options for connection */ tcp_options_t rcv_opts; /**< Rx options for connection */ sack_block_t *snd_sacks; /**< Vector of SACKs to send. XXX Fixed size? */ u8 snd_sack_pos; /**< Position in vec of first block to send */ sack_block_t *snd_sacks_fl; /**< Vector for building new list */ sack_scoreboard_t sack_sb; /**< SACK "scoreboard" that tracks holes */ u16 rcv_dupacks; /**< Number of DUPACKs received */ u8 pending_dupacks; /**< Number of DUPACKs to be sent */ /* Congestion control */ u32 cwnd; /**< Congestion window */ u32 cwnd_acc_bytes; /**< Bytes accumulated for cwnd increment */ u32 ssthresh; /**< Slow-start threshold */ u32 prev_ssthresh; /**< ssthresh before congestion */ u32 prev_cwnd; /**< ssthresh before congestion */ u32 bytes_acked; /**< Bytes acknowledged by current segment */ u32 burst_acked; /**< Bytes acknowledged in current burst */ u32 snd_rxt_bytes; /**< Retransmitted bytes */ u32 snd_rxt_ts; /**< Timestamp when first packet is retransmitted */ u32 tsecr_last_ack; /**< Timestamp echoed to us in last healthy ACK */ u32 snd_congestion; /**< snd_una_max when congestion is detected */ u32 tx_fifo_size; /**< Tx fifo size. Used to constrain cwnd */ tcp_cc_algorithm_t *cc_algo; /**< Congestion control algorithm */ u8 cc_data[TCP_CC_DATA_SZ]; /**< Congestion control algo private data */ /* RTT and RTO */ u32 rto; /**< Retransmission timeout */ u32 rto_boff; /**< Index for RTO backoff */ u32 srtt; /**< Smoothed RTT */ u32 rttvar; /**< Smoothed mean RTT difference. Approximates variance */ u32 rtt_seq; /**< Sequence number for tracked ACK */ f64 rtt_ts; /**< Timestamp for tracked ACK */ f64 mrtt_us; /**< High precision mrtt from tracked acks */ u32 psh_seq; /**< Add psh header for seg that includes this */ u32 next_node_index; /**< Can be used to control next node in output */ u32 next_node_opaque; /**< Opaque to pass to next node */ u32 limited_transmit; /**< snd_nxt when limited transmit starts */ u32 sw_if_index; /**< Interface for the connection */ /* Delivery rate estimation */ u64 delivered; /**< Total bytes delivered to peer */ u64 app_limited; /**< Delivered when app-limited detected */ f64 delivered_time; /**< Time last bytes were acked */ tcp_byte_tracker_t *bt; /**< Tx byte tracker */ u32 last_fib_check; /**< Last time we checked fib route for peer */ u16 mss; /**< Our max seg size that includes options */ u32 timestamp_delta; } tcp_connection_t; /* *INDENT-OFF* */ struct _tcp_cc_algorithm { const char *name; uword (*unformat_cfg) (unformat_input_t * input); void (*init) (tcp_connection_t * tc); void (*cleanup) (tcp_connection_t * tc); void (*rcv_ack) (tcp_connection_t * tc, tcp_rate_sample_t *rs); void (*rcv_cong_ack) (tcp_connection_t * tc, tcp_cc_ack_t ack, tcp_rate_sample_t *rs); void (*congestion) (tcp_connection_t * tc); void (*loss) (tcp_connection_t * tc); void (*recovered) (tcp_connection_t * tc); void (*undo_recovery) (tcp_connection_t * tc); void (*event) (tcp_connection_t *tc, tcp_cc_event_t evt); }; /* *INDENT-ON* */ #define tcp_fastrecovery_on(tc) (tc)->flags |= TCP_CONN_FAST_RECOVERY #define tcp_fastrecovery_off(tc) (tc)->flags &= ~TCP_CONN_FAST_RECOVERY #define tcp_recovery_on(tc) (tc)->flags |= TCP_CONN_RECOVERY #define tcp_recovery_off(tc) (tc)->flags &= ~TCP_CONN_RECOVERY #define tcp_in_fastrecovery(tc) ((tc)->flags & TCP_CONN_FAST_RECOVERY) #define tcp_in_recovery(tc) ((tc)->flags & (TCP_CONN_RECOVERY)) #define tcp_in_slowstart(tc) (tc->cwnd < tc->ssthresh) #define tcp_disconnect_pending(tc) ((tc)->flags & TCP_CONN_DCNT_PENDING) #define tcp_disconnect_pending_on(tc) ((tc)->flags |= TCP_CONN_DCNT_PENDING) #define tcp_disconnect_pending_off(tc) ((tc)->flags &= ~TCP_CONN_DCNT_PENDING) #define tcp_fastrecovery_first(tc) ((tc)->flags & TCP_CONN_FRXT_FIRST) #define tcp_fastrecovery_first_on(tc) ((tc)->flags |= TCP_CONN_FRXT_FIRST) #define tcp_fastrecovery_first_off(tc) ((tc)->flags &= ~TCP_CONN_FRXT_FIRST) #define tcp_in_cong_recovery(tc) ((tc)->flags & \ (TCP_CONN_FAST_RECOVERY | TCP_CONN_RECOVERY)) always_inline void tcp_cong_recovery_off (tcp_connection_t * tc) { tc->flags &= ~(TCP_CONN_FAST_RECOVERY | TCP_CONN_RECOVERY); tcp_fastrecovery_first_off (tc); } #define tcp_zero_rwnd_sent(tc) (tc)->flags &= TCP_CONN_ZERO_RWND_SENT #define tcp_zero_rwnd_sent_on(tc) (tc)->flags |= TCP_CONN_ZERO_RWND_SENT #define tcp_zero_rwnd_sent_off(tc) (tc)->flags &= ~TCP_CONN_ZERO_RWND_SENT typedef enum _tcp_error { #define tcp_error(n,s) TCP_ERROR_##n, #include <vnet/tcp/tcp_error.def> #undef tcp_error TCP_N_ERROR, } tcp_error_t; typedef struct _tcp_lookup_dispatch { u8 next, error; } tcp_lookup_dispatch_t; typedef struct tcp_worker_ctx_ { CLIB_CACHE_LINE_ALIGN_MARK (cacheline0); /** worker time */ u32 time_now; /** worker timer wheel */ tw_timer_wheel_16t_2w_512sl_t timer_wheel; /** tx buffer free list */ u32 *tx_buffers; /** tx frames for tcp 4/6 output nodes */ vlib_frame_t *tx_frames[2]; /** tx frames for ip 4/6 lookup nodes */ vlib_frame_t *ip_lookup_tx_frames[2]; /** vector of connections needing fast rxt */ u32 *pending_fast_rxt; /** vector of connections now doing fast rxt */ u32 *ongoing_fast_rxt; /** vector of connections that will do fast rxt */ u32 *postponed_fast_rxt; /** vector of pending ack dequeues */ u32 *pending_deq_acked; /** vector of pending acks */ u32 *pending_acks; /** vector of pending disconnect notifications */ u32 *pending_disconnects; /** convenience pointer to this thread's vlib main */ vlib_main_t *vm; CLIB_CACHE_LINE_ALIGN_MARK (cacheline1); /** cached 'on the wire' options for bursts */ u8 cached_opts[40]; } tcp_worker_ctx_t; typedef struct tcp_iss_seed_ { u64 first; u64 second; } tcp_iss_seed_t; typedef struct _tcp_main { /* Per-worker thread tcp connection pools */ tcp_connection_t **connections; /* Pool of listeners. */ tcp_connection_t *listener_pool; /** Dispatch table by state and flags */ tcp_lookup_dispatch_t dispatch_table[TCP_N_STATES][64]; u8 log2_tstamp_clocks_per_tick; f64 tstamp_ticks_per_clock; /** per-worker context */ tcp_worker_ctx_t *wrk_ctx; /* Pool of half-open connections on which we've sent a SYN */ tcp_connection_t *half_open_connections; clib_spinlock_t half_open_lock; /** vlib buffer size */ u32 bytes_per_buffer; /* Seed used to generate random iss */ tcp_iss_seed_t iss_seed; /* Congestion control algorithms registered */ tcp_cc_algorithm_t *cc_algos; /** Hash table of cc algorithms by name */ uword *cc_algo_by_name; /** Last cc algo registered */ tcp_cc_algorithm_type_e cc_last_type; /* * Configuration */ /* Flag that indicates if stack is on or off */ u8 is_enabled; /** Max rx fifo size for a session. It is used in to compute the * rfc 7323 window scaling factor */ u32 max_rx_fifo; /** Default MTU to be used when establishing connections */ u16 default_mtu; /** Initial CWND multiplier, which multiplies MSS to determine initial CWND. * Set 0 to determine the initial CWND by another way */ u16 initial_cwnd_multiplier; /** Number of preallocated connections */ u32 preallocated_connections; u32 preallocated_half_open_connections; /** Vectors of src addresses. Optional unless one needs > 63K active-opens */ ip4_address_t *ip4_src_addresses; u32 last_v4_address_rotor; u32 last_v6_address_rotor; ip6_address_t *ip6_src_addresses; /** Enable tx pacing for new connections */ u8 tx_pacing; u8 punt_unknown4; u8 punt_unknown6; /** fault-injection */ f64 buffer_fail_fraction; /** Default congestion control algorithm type */ tcp_cc_algorithm_type_e cc_algo; } tcp_main_t; extern tcp_main_t tcp_main; extern vlib_node_registration_t tcp4_input_node; extern vlib_node_registration_t tcp6_input_node; extern vlib_node_registration_t tcp4_output_node; extern vlib_node_registration_t tcp6_output_node; extern vlib_node_registration_t tcp4_established_node; extern vlib_node_registration_t tcp6_established_node; extern vlib_node_registration_t tcp4_syn_sent_node; extern vlib_node_registration_t tcp6_syn_sent_node; extern vlib_node_registration_t tcp4_rcv_process_node; extern vlib_node_registration_t tcp6_rcv_process_node; extern vlib_node_registration_t tcp4_listen_node; extern vlib_node_registration_t tcp6_listen_node; always_inline tcp_main_t * vnet_get_tcp_main () { return &tcp_main; } always_inline tcp_worker_ctx_t * tcp_get_worker (u32 thread_index) { return &tcp_main.wrk_ctx[thread_index]; } always_inline tcp_header_t * tcp_buffer_hdr (vlib_buffer_t * b) { ASSERT ((signed) b->current_data >= (signed) -VLIB_BUFFER_PRE_DATA_SIZE); return (tcp_header_t *) (b->data + b->current_data + vnet_buffer (b)->tcp.hdr_offset); } #if (VLIB_BUFFER_TRACE_TRAJECTORY) #define tcp_trajectory_add_start(b, start) \ { \ (*vlib_buffer_trace_trajectory_cb) (b, start); \ } #else #define tcp_trajectory_add_start(b, start) #endif clib_error_t *vnet_tcp_enable_disable (vlib_main_t * vm, u8 is_en); void tcp_punt_unknown (vlib_main_t * vm, u8 is_ip4, u8 is_add); always_inline tcp_connection_t * tcp_connection_get (u32 conn_index, u32 thread_index) { if (PREDICT_FALSE (pool_is_free_index (tcp_main.connections[thread_index], conn_index))) return 0; return pool_elt_at_index (tcp_main.connections[thread_index], conn_index); } always_inline tcp_connection_t * tcp_connection_get_if_valid (u32 conn_index, u32 thread_index) { if (tcp_main.connections[thread_index] == 0) return 0; if (pool_is_free_index (tcp_main.connections[thread_index], conn_index)) return 0; return pool_elt_at_index (tcp_main.connections[thread_index], conn_index); } always_inline tcp_connection_t * tcp_get_connection_from_transport (transport_connection_t * tconn) { return (tcp_connection_t *) tconn; } always_inline void tcp_connection_set_state (tcp_connection_t * tc, tcp_state_t state) { tc->state = state; TCP_EVT_DBG (TCP_EVT_STATE_CHANGE, tc); } void tcp_connection_close (tcp_connection_t * tc); void tcp_connection_cleanup (tcp_connection_t * tc); void tcp_connection_del (tcp_connection_t * tc); int tcp_half_open_connection_cleanup (tcp_connection_t * tc); tcp_connection_t *tcp_connection_alloc (u8 thread_index); void tcp_connection_free (tcp_connection_t * tc); void tcp_connection_reset (tcp_connection_t * tc); int tcp_configure_v4_source_address_range (vlib_main_t * vm, ip4_address_t * start, ip4_address_t * end, u32 table_id); int tcp_configure_v6_source_address_range (vlib_main_t * vm, ip6_address_t * start, ip6_address_t * end, u32 table_id); void tcp_api_reference (void); u8 *format_tcp_connection (u8 * s, va_list * args); always_inline tcp_connection_t * tcp_listener_get (u32 tli) { return pool_elt_at_index (tcp_main.listener_pool, tli); } always_inline tcp_connection_t * tcp_half_open_connection_get (u32 conn_index) { tcp_connection_t *tc = 0; clib_spinlock_lock_if_init (&tcp_main.half_open_lock); if (!pool_is_free_index (tcp_main.half_open_connections, conn_index)) tc = pool_elt_at_index (tcp_main.half_open_connections, conn_index); clib_spinlock_unlock_if_init (&tcp_main.half_open_lock); return tc; } void tcp_make_fin (tcp_connection_t * tc, vlib_buffer_t * b); void tcp_make_synack (tcp_connection_t * ts, vlib_buffer_t * b); void tcp_send_reset_w_pkt (tcp_connection_t * tc, vlib_buffer_t * pkt, u32 thread_index, u8 is_ip4); void tcp_send_reset (tcp_connection_t * tc); void tcp_send_syn (tcp_connection_t * tc); void tcp_send_synack (tcp_connection_t * tc); void tcp_send_fin (tcp_connection_t * tc); void tcp_init_mss (tcp_connection_t * tc); void tcp_update_burst_snd_vars (tcp_connection_t * tc); void tcp_update_rto (tcp_connection_t * tc); void tcp_flush_frame_to_output (tcp_worker_ctx_t * wrk, u8 is_ip4); void tcp_flush_frames_to_output (tcp_worker_ctx_t * wrk); void tcp_program_fastretransmit (tcp_worker_ctx_t * wrk, tcp_connection_t * tc); void tcp_do_fastretransmits (tcp_worker_ctx_t * wrk); void tcp_program_ack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc); void tcp_program_dupack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc); void tcp_send_acks (tcp_worker_ctx_t * wrk); void tcp_send_window_update_ack (tcp_connection_t * tc); /* * Rate estimation */ /** * Byte tracker initialize * * @param tc connection for which the byte tracker should be allocated and * initialized */ void tcp_bt_init (tcp_connection_t * tc); /** * Byte tracker cleanup * * @param tc connection for which the byte tracker should be cleaned up */ void tcp_bt_cleanup (tcp_connection_t * tc); /** * Flush byte tracker samples * * @param tc tcp connection for which samples should be flushed */ void tcp_bt_flush_samples (tcp_connection_t * tc); /** * Track a tcp tx burst * * @param tc tcp connection */ void tcp_bt_track_tx (tcp_connection_t * tc); /** * Track a tcp retransmission * * @param tc tcp connection * @param start start sequence number * @param end end sequence number */ void tcp_bt_track_rxt (tcp_connection_t * tc, u32 start, u32 end); /** * Generate a delivery rate sample from recently acked bytes * * @param tc tcp connection * @param rs resulting rate sample */ void tcp_bt_sample_delivery_rate (tcp_connection_t * tc, tcp_rate_sample_t * rs); /** * Check if sample to be generated is app limited * * @param tc tcp connection */ void tcp_bt_check_app_limited (tcp_connection_t * tc); /** * Check if the byte tracker is in sane state * * Should be used only for testing * * @param bt byte tracker */ int tcp_bt_is_sane (tcp_byte_tracker_t * bt); always_inline u32 tcp_end_seq (tcp_header_t * th, u32 len) { return th->seq_number + tcp_is_syn (th) + tcp_is_fin (th) + len; } /* Modulo arithmetic for TCP sequence numbers */ #define seq_lt(_s1, _s2) ((i32)((_s1)-(_s2)) < 0) #define seq_leq(_s1, _s2) ((i32)((_s1)-(_s2)) <= 0) #define seq_gt(_s1, _s2) ((i32)((_s1)-(_s2)) > 0) #define seq_geq(_s1, _s2) ((i32)((_s1)-(_s2)) >= 0) #define seq_max(_s1, _s2) (seq_gt((_s1), (_s2)) ? (_s1) : (_s2)) /* Modulo arithmetic for timestamps */ #define timestamp_lt(_t1, _t2) ((i32)((_t1)-(_t2)) < 0) #define timestamp_leq(_t1, _t2) ((i32)((_t1)-(_t2)) <= 0) /** * Our estimate of the number of bytes that have left the network */ always_inline u32 tcp_bytes_out (const tcp_connection_t * tc) { if (tcp_opts_sack_permitted (&tc->rcv_opts)) return tc->sack_sb.sacked_bytes + tc->sack_sb.lost_bytes; else return tc->rcv_dupacks * tc->snd_mss; } /** * Our estimate of the number of bytes in flight (pipe size) */ always_inline u32 tcp_flight_size (const tcp_connection_t * tc) { int flight_size; flight_size = (int) (tc->snd_nxt - tc->snd_una) - tcp_bytes_out (tc) + tc->snd_rxt_bytes; if (flight_size < 0) { if (0) clib_warning ("Negative: %u %u %u dupacks %u sacked bytes %u flags %d", tc->snd_una_max - tc->snd_una, tcp_bytes_out (tc), tc->snd_rxt_bytes, tc->rcv_dupacks, tc->sack_sb.sacked_bytes, tc->rcv_opts.flags); return 0; } return flight_size; } /** * Initial cwnd as per RFC5681 */ always_inline u32 tcp_initial_cwnd (const tcp_connection_t * tc) { if (tcp_main.initial_cwnd_multiplier > 0) return tcp_main.initial_cwnd_multiplier * tc->snd_mss; if (tc->snd_mss > 2190) return 2 * tc->snd_mss; else if (tc->snd_mss > 1095) return 3 * tc->snd_mss; else return 4 * tc->snd_mss; } /* * Accumulate acked bytes for cwnd increase * * Once threshold bytes are accumulated, snd_mss bytes are added * to the cwnd. */ always_inline void tcp_cwnd_accumulate (tcp_connection_t * tc, u32 thresh, u32 bytes) { tc->cwnd_acc_bytes += bytes; if (tc->cwnd_acc_bytes >= thresh) { u32 inc = tc->cwnd_acc_bytes / thresh; tc->cwnd_acc_bytes -= inc * thresh; tc->cwnd += inc * tc->snd_mss; tc->cwnd = clib_min (tc->cwnd, tc->tx_fifo_size); } } always_inline u32 tcp_loss_wnd (const tcp_connection_t * tc) { return tc->snd_mss; } always_inline u32 tcp_available_snd_wnd (const tcp_connection_t * tc) { return clib_min (tc->cwnd, tc->snd_wnd); } always_inline u32 tcp_available_output_snd_space (const tcp_connection_t * tc) { u32 available_wnd = tcp_available_snd_wnd (tc); int flight_size = (int) (tc->snd_nxt - tc->snd_una); if (available_wnd <= flight_size) return 0; return available_wnd - flight_size; } /** * Estimate of how many bytes we can still push into the network */ always_inline u32 tcp_available_cc_snd_space (const tcp_connection_t * tc) { u32 available_wnd = tcp_available_snd_wnd (tc); u32 flight_size = tcp_flight_size (tc); if (available_wnd <= flight_size) return 0; return available_wnd - flight_size; } always_inline u8 tcp_is_lost_fin (tcp_connection_t * tc) { if ((tc->flags & TCP_CONN_FINSNT) && tc->snd_una_max - tc->snd_una == 1) return 1; return 0; } u32 tcp_snd_space (tcp_connection_t * tc); int tcp_retransmit_first_unacked (tcp_worker_ctx_t * wrk, tcp_connection_t * tc); int tcp_fast_retransmit_no_sack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, u32 burst_size); int tcp_fast_retransmit_sack (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, u32 burst_size); int tcp_fast_retransmit (tcp_worker_ctx_t * wrk, tcp_connection_t * tc, u32 burst_size); void tcp_cc_init_congestion (tcp_connection_t * tc); void tcp_cc_fastrecovery_clear (tcp_connection_t * tc); fib_node_index_t tcp_lookup_rmt_in_fib (tcp_connection_t * tc); /* Made public for unit testing only */ void tcp_update_sack_list (tcp_connection_t * tc, u32 start, u32 end); u32 tcp_sack_list_bytes (tcp_connection_t * tc); always_inline u32 tcp_time_now (void) { return tcp_main.wrk_ctx[vlib_get_thread_index ()].time_now; } always_inline u32 tcp_time_now_w_thread (u32 thread_index) { return tcp_main.wrk_ctx[thread_index].time_now; } /** * Generate timestamp for tcp connection */ always_inline u32 tcp_tstamp (tcp_connection_t * tc) { return (tcp_main.wrk_ctx[tc->c_thread_index].time_now - tc->timestamp_delta); } always_inline f64 tcp_time_now_us (u32 thread_index) { return transport_time_now (thread_index); } always_inline u32 tcp_set_time_now (tcp_worker_ctx_t * wrk) { wrk->time_now = clib_cpu_time_now () * tcp_main.tstamp_ticks_per_clock; return wrk->time_now; } u32 tcp_session_push_header (transport_connection_t * tconn, vlib_buffer_t * b); void tcp_connection_timers_init (tcp_connection_t * tc); void tcp_connection_timers_reset (tcp_connection_t * tc); void tcp_init_snd_vars (tcp_connection_t * tc); void tcp_connection_init_vars (tcp_connection_t * tc); void tcp_connection_tx_pacer_update (tcp_connection_t * tc); void tcp_connection_tx_pacer_reset (tcp_connection_t * tc, u32 window, u32 start_bucket); always_inline void tcp_cc_rcv_ack (tcp_connection_t * tc, tcp_rate_sample_t * rs) { tc->cc_algo->rcv_ack (tc, rs); tc->tsecr_last_ack = tc->rcv_opts.tsecr; } static inline void tcp_cc_rcv_cong_ack (tcp_connection_t * tc, tcp_cc_ack_t ack_type, tcp_rate_sample_t * rs) { tc->cc_algo->rcv_cong_ack (tc, ack_type, rs); } static inline void tcp_cc_loss (tcp_connection_t * tc) { tc->cc_algo->loss (tc); } static inline void tcp_cc_recovered (tcp_connection_t * tc) { tc->cc_algo->recovered (tc); } static inline void tcp_cc_undo_recovery (tcp_connection_t * tc) { if (tc->cc_algo->undo_recovery) tc->cc_algo->undo_recovery (tc); } static inline void tcp_cc_event (tcp_connection_t * tc, tcp_cc_event_t evt) { if (tc->cc_algo->event) tc->cc_algo->event (tc, evt); } always_inline void tcp_timer_set (tcp_connection_t * tc, u8 timer_id, u32 interval) { ASSERT (tc->c_thread_index == vlib_get_thread_index ()); ASSERT (tc->timers[timer_id] == TCP_TIMER_HANDLE_INVALID); tc->timers[timer_id] = tw_timer_start_16t_2w_512sl (&tcp_main. wrk_ctx[tc->c_thread_index].timer_wheel, tc->c_c_index, timer_id, interval); } always_inline void tcp_timer_reset (tcp_connection_t * tc, u8 timer_id) { ASSERT (tc->c_thread_index == vlib_get_thread_index ()); if (tc->timers[timer_id] == TCP_TIMER_HANDLE_INVALID) return; tw_timer_stop_16t_2w_512sl (&tcp_main. wrk_ctx[tc->c_thread_index].timer_wheel, tc->timers[timer_id]); tc->timers[timer_id] = TCP_TIMER_HANDLE_INVALID; } always_inline void tcp_timer_update (tcp_connection_t * tc, u8 timer_id, u32 interval) { ASSERT (tc->c_thread_index == vlib_get_thread_index ()); if (tc->timers[timer_id] != TCP_TIMER_HANDLE_INVALID) tw_timer_update_16t_2w_512sl (&tcp_main. wrk_ctx[tc->c_thread_index].timer_wheel, tc->timers[timer_id], interval); else tc->timers[timer_id] = tw_timer_start_16t_2w_512sl (&tcp_main. wrk_ctx[tc->c_thread_index].timer_wheel, tc->c_c_index, timer_id, interval); } always_inline void tcp_retransmit_timer_set (tcp_connection_t * tc) { ASSERT (tc->snd_una != tc->snd_una_max); tcp_timer_set (tc, TCP_TIMER_RETRANSMIT, clib_max (tc->rto * TCP_TO_TIMER_TICK, 1)); } always_inline void tcp_retransmit_timer_reset (tcp_connection_t * tc) { tcp_timer_reset (tc, TCP_TIMER_RETRANSMIT); } always_inline void tcp_retransmit_timer_force_update (tcp_connection_t * tc) { tcp_timer_update (tc, TCP_TIMER_RETRANSMIT, clib_max (tc->rto * TCP_TO_TIMER_TICK, 1)); } always_inline void tcp_persist_timer_set (tcp_connection_t * tc) { /* Reuse RTO. It's backed off in handler */ tcp_timer_set (tc, TCP_TIMER_PERSIST, clib_max (tc->rto * TCP_TO_TIMER_TICK, TCP_TIMER_PERSIST_MIN)); } always_inline void tcp_persist_timer_update (tcp_connection_t * tc) { tcp_timer_update (tc, TCP_TIMER_PERSIST, clib_max (tc->rto * TCP_TO_TIMER_TICK, TCP_TIMER_PERSIST_MIN)); } always_inline void tcp_persist_timer_reset (tcp_connection_t * tc) { tcp_timer_reset (tc, TCP_TIMER_PERSIST); } always_inline void tcp_retransmit_timer_update (tcp_connection_t * tc) { if (tc->snd_una == tc->snd_nxt) { tcp_retransmit_timer_reset (tc); if (tc->snd_wnd < tc->snd_mss) tcp_persist_timer_update (tc); } else tcp_timer_update (tc, TCP_TIMER_RETRANSMIT, clib_max (tc->rto * TCP_TO_TIMER_TICK, 1)); } always_inline u8 tcp_timer_is_active (tcp_connection_t * tc, tcp_timers_e timer) { return tc->timers[timer] != TCP_TIMER_HANDLE_INVALID; } #define tcp_validate_txf_size(_tc, _a) \ ASSERT(_tc->state != TCP_STATE_ESTABLISHED \ || transport_max_tx_dequeue (&_tc->connection) >= _a) void tcp_rcv_sacks (tcp_connection_t * tc, u32 ack); u8 *tcp_scoreboard_replay (u8 * s, tcp_connection_t * tc, u8 verbose); /** * Register exiting cc algo type */ void tcp_cc_algo_register (tcp_cc_algorithm_type_e type, const tcp_cc_algorithm_t * vft); /** * Register new cc algo type */ tcp_cc_algorithm_type_e tcp_cc_algo_new_type (const tcp_cc_algorithm_t * vft); tcp_cc_algorithm_t *tcp_cc_algo_get (tcp_cc_algorithm_type_e type); static inline void * tcp_cc_data (tcp_connection_t * tc) { return (void *) tc->cc_data; } void newreno_rcv_cong_ack (tcp_connection_t * tc, tcp_cc_ack_t ack_type, tcp_rate_sample_t * rs); /** * Push TCP header to buffer * * @param vm - vlib_main * @param b - buffer to write the header to * @param sp_net - source port net order * @param dp_net - destination port net order * @param seq - sequence number net order * @param ack - ack number net order * @param tcp_hdr_opts_len - header and options length in bytes * @param flags - header flags * @param wnd - window size * * @return - pointer to start of TCP header */ always_inline void * vlib_buffer_push_tcp_net_order (vlib_buffer_t * b, u16 sp, u16 dp, u32 seq, u32 ack, u8 tcp_hdr_opts_len, u8 flags, u16 wnd) { tcp_header_t *th; th = vlib_buffer_push_uninit (b, tcp_hdr_opts_len); th->src_port = sp; th->dst_port = dp; th->seq_number = seq; th->ack_number = ack; th->data_offset_and_reserved = (tcp_hdr_opts_len >> 2) << 4; th->flags = flags; th->window = wnd; th->checksum = 0; th->urgent_pointer = 0; return th; } /** * Push TCP header to buffer * * @param b - buffer to write the header to * @param sp_net - source port net order * @param dp_net - destination port net order * @param seq - sequence number host order * @param ack - ack number host order * @param tcp_hdr_opts_len - header and options length in bytes * @param flags - header flags * @param wnd - window size * * @return - pointer to start of TCP header */ always_inline void * vlib_buffer_push_tcp (vlib_buffer_t * b, u16 sp_net, u16 dp_net, u32 seq, u32 ack, u8 tcp_hdr_opts_len, u8 flags, u16 wnd) { return vlib_buffer_push_tcp_net_order (b, sp_net, dp_net, clib_host_to_net_u32 (seq), clib_host_to_net_u32 (ack), tcp_hdr_opts_len, flags, clib_host_to_net_u16 (wnd)); } #endif /* _vnet_tcp_h_ */ /* * fd.io coding-style-patch-verification: ON * * Local Variables: * eval: (c-set-style "gnu") * End: */