/* *------------------------------------------------------------------ * Copyright (c) 2019 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------ */ /* *------------------------------------------------------------------ * Copyright(c) 2018, Intel Corporation All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE, * DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *------------------------------------------------------------------ */ /* * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk, * Vinodh Gopal, James Guilford, Tomasz Kantecki * * References: * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on * Intel Architecture Processors. August, 2010 * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on * Intel Architecture Processors. October, 2012. * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git * * Definitions: * GF Galois Extension Field GF(2^128) - finite field where elements are * represented as polynomials with coefficients in GF(2) with the * highest degree of 127. Polynomials are represented as 128-bit binary * numbers where each bit represents one coefficient. * e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011. * H hash key (128 bit) * POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1 * RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1 * + addition in GF, which equals to XOR operation * * multiplication in GF * * GF multiplication consists of 2 steps: * - carry-less multiplication of two 128-bit operands into 256-bit result * - reduction of 256-bit result into 128-bit with modulo POLY * * GHash is calculated on 128-bit blocks of data according to the following * formula: * GH = (GH + data) * hash_key * * To avoid bit-reflection of data, this code uses GF multipication * with reversed polynomial: * a * b * x^-127 mod RPOLY * * To improve computation speed table Hi is precomputed with powers of H', * where H' is calculated as H<<1 mod RPOLY. * This allows us to improve performance by deferring reduction. For example * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do: * * u8x16 Hi[4]; * ghash_precompute (H, Hi, 4); * * ghash_ctx_t _gd, *gd = &_gd; * ghash_mul_first (gd, GH ^ b0, Hi[3]); * ghash_mul_next (gd, b1, Hi[2]); * ghash_mul_next (gd, b2, Hi[1]); * ghash_mul_next (gd, b3, Hi[0]); * ghash_reduce (gd); * ghash_reduce2 (gd); * GH = ghash_final (gd); * * Reduction step is split into 3 functions so it can be better interleaved * with other code, (i.e. with AES computation). */ #ifndef __ghash_h__ #define __ghash_h__ static_always_inline u8x16 gmul_lo_lo (u8x16 a, u8x16 b) { #if defined (__PCLMUL__) return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00); #elif defined (__ARM_FEATURE_CRYPTO) return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), (poly64_t) vget_low_p64 ((poly64x2_t) b)); #endif } static_always_inline u8x16 gmul_hi_lo (u8x16 a, u8x16 b) { #if defined (__PCLMUL__) return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01); #elif defined (__ARM_FEATURE_CRYPTO) return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a), (poly64_t) vget_low_p64 ((poly64x2_t) b)); #endif } static_always_inline u8x16 gmul_lo_hi (u8x16 a, u8x16 b) { #if defined (__PCLMUL__) return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10); #elif defined (__ARM_FEATURE_CRYPTO) return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), (poly64_t) vget_high_p64 ((poly64x2_t) b)); #endif } static_always_inline u8x16 gmul_hi_hi (u8x16 a, u8x16 b) { #if defined (__PCLMUL__) return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11); #elif defined (__ARM_FEATURE_CRYPTO) return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b); #endif } typedef struct { u8x16 mid, hi, lo, tmp_lo, tmp_hi; u8x32 hi2, lo2, mid2, tmp_lo2, tmp_hi2; u8x64 hi4, lo4, mid4, tmp_lo4, tmp_hi4; int pending; } ghash_ctx_t; static const u8x16 ghash_poly = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 }; static const u8x16 ghash_poly2 = { 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 }; static_always_inline void ghash_mul_first (ghash_ctx_t *gd, u8x16 a, u8x16 b) { /* a1 * b1 */ gd->hi = gmul_hi_hi (a, b); /* a0 * b0 */ gd->lo = gmul_lo_lo (a, b); /* a0 * b1 ^ a1 * b0 */ gd->mid = gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b); /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that there is no pending data in tmp_lo and tmp_hi */ gd->pending = 0; } static_always_inline void ghash_mul_next (ghash_ctx_t *gd, u8x16 a, u8x16 b) { /* a1 * b1 */ u8x16 hi = gmul_hi_hi (a, b); /* a0 * b0 */ u8x16 lo = gmul_lo_lo (a, b); /* this branch will be optimized out by the compiler, and it allows us to reduce number of XOR operations by using ternary logic */ if (gd->pending) { /* there is peding data from previous invocation so we can XOR */ gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi); gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo); gd->pending = 0; } else { /* there is no peding data from previous invocation so we postpone XOR */ gd->tmp_hi = hi; gd->tmp_lo = lo; gd->pending = 1; } /* gd->mid ^= a0 * b1 ^ a1 * b0 */ gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b)); } static_always_inline void ghash_reduce (ghash_ctx_t *gd) { u8x16 r; /* Final combination: gd->lo ^= gd->mid << 64 gd->hi ^= gd->mid >> 64 */ u8x16 midl = u8x16_word_shift_left (gd->mid, 8); u8x16 midr = u8x16_word_shift_right (gd->mid, 8); if (gd->pending) { gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl); gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr); } else { gd->lo ^= midl; gd->hi ^= midr; } r = gmul_hi_lo (ghash_poly2, gd->lo); gd->lo ^= u8x16_word_shift_left (r, 8); } static_always_inline void ghash_reduce2 (ghash_ctx_t *gd) { gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo); gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo); } static_always_inline u8x16 ghash_final (ghash_ctx_t *gd) { return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4), u8x16_word_shift_left (gd->tmp_hi, 4)); } static_always_inline u8x16 ghash_mul (u8x16 a, u8x16 b) { ghash_ctx_t _gd, *gd = &_gd; ghash_mul_first (gd, a, b); ghash_reduce (gd); ghash_reduce2 (gd); return ghash_final (gd); } #if defined(__VPCLMULQDQ__) && defined(__AVX512F__) static const u8x64 ghash4_poly2 = { 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, }; static_always_inline u8x64 gmul4_lo_lo (u8x64 a, u8x64 b) { return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00); } static_always_inline u8x64 gmul4_hi_lo (u8x64 a, u8x64 b) { return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01); } static_always_inline u8x64 gmul4_lo_hi (u8x64 a, u8x64 b) { return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10); } static_always_inline u8x64 gmul4_hi_hi (u8x64 a, u8x64 b) { return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11); } static_always_inline void ghash4_mul_first (ghash_ctx_t *gd, u8x64 a, u8x64 b) { gd->hi4 = gmul4_hi_hi (a, b); gd->lo4 = gmul4_lo_lo (a, b); gd->mid4 = gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b); gd->pending = 0; } static_always_inline void ghash4_mul_next (ghash_ctx_t *gd, u8x64 a, u8x64 b) { u8x64 hi = gmul4_hi_hi (a, b); u8x64 lo = gmul4_lo_lo (a, b); if (gd->pending) { /* there is peding data from previous invocation so we can XOR */ gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, hi); gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, lo); gd->pending = 0; } else { /* there is no peding data from previous invocation so we postpone XOR */ gd->tmp_hi4 = hi; gd->tmp_lo4 = lo; gd->pending = 1; } gd->mid4 = u8x64_xor3 (gd->mid4, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b)); } static_always_inline void ghash4_reduce (ghash_ctx_t *gd) { u8x64 r; /* Final combination: gd->lo4 ^= gd->mid4 << 64 gd->hi4 ^= gd->mid4 >> 64 */ u8x64 midl = u8x64_word_shift_left (gd->mid4, 8); u8x64 midr = u8x64_word_shift_right (gd->mid4, 8); if (gd->pending) { gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, midl); gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, midr); } else { gd->lo4 ^= midl; gd->hi4 ^= midr; } r = gmul4_hi_lo (ghash4_poly2, gd->lo4); gd->lo4 ^= u8x64_word_shift_left (r, 8); } static_always_inline void ghash4_reduce2 (ghash_ctx_t *gd) { gd->tmp_lo4 = gmul4_lo_lo (ghash4_poly2, gd->lo4); gd->tmp_hi4 = gmul4_lo_hi (ghash4_poly2, gd->lo4); } static_always_inline u8x16 ghash4_final (ghash_ctx_t *gd) { u8x64 r; u8x32 t; r = u8x64_xor3 (gd->hi4, u8x64_word_shift_right (gd->tmp_lo4, 4), u8x64_word_shift_left (gd->tmp_hi4, 4)); /* horizontal XOR of 4 128-bit lanes */ t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r); return u8x32_extract_hi (t) ^ u8x32_extract_lo (t); } #endif #if defined(__VPCLMULQDQ__) static const u8x32 ghash2_poly2 = { 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, }; static_always_inline u8x32 gmul2_lo_lo (u8x32 a, u8x32 b) { return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x00); } static_always_inline u8x32 gmul2_hi_lo (u8x32 a, u8x32 b) { return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x01); } static_always_inline u8x32 gmul2_lo_hi (u8x32 a, u8x32 b) { return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x10); } static_always_inline u8x32 gmul2_hi_hi (u8x32 a, u8x32 b) { return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x11); } static_always_inline void ghash2_mul_first (ghash_ctx_t *gd, u8x32 a, u8x32 b) { gd->hi2 = gmul2_hi_hi (a, b); gd->lo2 = gmul2_lo_lo (a, b); gd->mid2 = gmul2_hi_lo (a, b) ^ gmul2_lo_hi (a, b); gd->pending = 0; } static_always_inline void ghash2_mul_next (ghash_ctx_t *gd, u8x32 a, u8x32 b) { u8x32 hi = gmul2_hi_hi (a, b); u8x32 lo = gmul2_lo_lo (a, b); if (gd->pending) { /* there is peding data from previous invocation so we can XOR */ gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, hi); gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, lo); gd->pending = 0; } else { /* there is no peding data from previous invocation so we postpone XOR */ gd->tmp_hi2 = hi; gd->tmp_lo2 = lo; gd->pending = 1; } gd->mid2 = u8x32_xor3 (gd->mid2, gmul2_hi_lo (a, b), gmul2_lo_hi (a, b)); } static_always_inline void ghash2_reduce (ghash_ctx_t *gd) { u8x32 r; /* Final combination: gd->lo2 ^= gd->mid2 << 64 gd->hi2 ^= gd->mid2 >> 64 */ u8x32 midl = u8x32_word_shift_left (gd->mid2, 8); u8x32 midr = u8x32_word_shift_right (gd->mid2, 8); if (gd->pending) { gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, midl); gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, midr); } else { gd->lo2 ^= midl; gd->hi2 ^= midr; } r = gmul2_hi_lo (ghash2_poly2, gd->lo2); gd->lo2 ^= u8x32_word_shift_left (r, 8); } static_always_inline void ghash2_reduce2 (ghash_ctx_t *gd) { gd->tmp_lo2 = gmul2_lo_lo (ghash2_poly2, gd->lo2); gd->tmp_hi2 = gmul2_lo_hi (ghash2_poly2, gd->lo2); } static_always_inline u8x16 ghash2_final (ghash_ctx_t *gd) { u8x32 r; r = u8x32_xor3 (gd->hi2, u8x32_word_shift_right (gd->tmp_lo2, 4), u8x32_word_shift_left (gd->tmp_hi2, 4)); /* horizontal XOR of 2 128-bit lanes */ return u8x32_extract_hi (r) ^ u8x32_extract_lo (r); } #endif static_always_inline void ghash_precompute (u8x16 H, u8x16 * Hi, int n) { u8x16 r8; u32x4 r32; /* calcullate H<<1 mod poly from the hash key */ r8 = (u8x16) ((u64x2) H >> 63); H = (u8x16) ((u64x2) H << 1); H |= u8x16_word_shift_left (r8, 8); r32 = (u32x4) u8x16_word_shift_right (r8, 8); #ifdef __SSE2__ r32 = u32x4_shuffle (r32, 0, 1, 2, 0); #else r32[3] = r32[0]; #endif r32 = r32 == (u32x4) {1, 0, 0, 1}; Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly); /* calculate H^(i + 1) */ for (int i = n - 2; i >= 0; i--) Hi[i] = ghash_mul (H, Hi[i + 1]); } #endif /* __ghash_h__ */