/* This is a version (aka dlmalloc) of malloc/free/realloc written by Doug Lea and released to the public domain, as explained at http://creativecommons.org/publicdomain/zero/1.0/ Send questions, comments, complaints, performance data, etc to dl@cs.oswego.edu */ #include <vppinfra/dlmalloc.h> /*------------------------------ internal #includes ---------------------- */ #ifdef _MSC_VER #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ #endif /* _MSC_VER */ #if !NO_MALLOC_STATS #include <stdio.h> /* for printing in malloc_stats */ #endif /* NO_MALLOC_STATS */ #ifndef LACKS_ERRNO_H #include <errno.h> /* for MALLOC_FAILURE_ACTION */ #endif /* LACKS_ERRNO_H */ #ifdef DEBUG #if DLM_ABORT_ON_ASSERT_FAILURE #undef assert #define assert(x) if(!(x)) DLM_ABORT #else /* DLM_ABORT_ON_ASSERT_FAILURE */ #include <assert.h> #endif /* DLM_ABORT_ON_ASSERT_FAILURE */ #else /* DEBUG */ #ifndef assert #define assert(x) #endif #define DEBUG 0 #endif /* DEBUG */ #if !defined(WIN32) && !defined(LACKS_TIME_H) #include <time.h> /* for magic initialization */ #endif /* WIN32 */ #ifndef LACKS_STDLIB_H #include <stdlib.h> /* for abort() */ #endif /* LACKS_STDLIB_H */ #ifndef LACKS_STRING_H #include <string.h> /* for memset etc */ #endif /* LACKS_STRING_H */ #if USE_BUILTIN_FFS #ifndef LACKS_STRINGS_H #include <strings.h> /* for ffs */ #endif /* LACKS_STRINGS_H */ #endif /* USE_BUILTIN_FFS */ #if HAVE_MMAP #ifndef LACKS_SYS_MMAN_H /* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ #if (defined(linux) && !defined(__USE_GNU)) #define __USE_GNU 1 #include <sys/mman.h> /* for mmap */ #undef __USE_GNU #else #include <sys/mman.h> /* for mmap */ #endif /* linux */ #endif /* LACKS_SYS_MMAN_H */ #ifndef LACKS_FCNTL_H #include <fcntl.h> #endif /* LACKS_FCNTL_H */ #endif /* HAVE_MMAP */ #ifndef LACKS_UNISTD_H #include <unistd.h> /* for sbrk, sysconf */ #else /* LACKS_UNISTD_H */ #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) extern void* sbrk(ptrdiff_t); #endif /* FreeBSD etc */ #endif /* LACKS_UNISTD_H */ /* Declarations for locking */ #if USE_LOCKS #ifndef WIN32 #if defined (__SVR4) && defined (__sun) /* solaris */ #include <thread.h> #elif !defined(LACKS_SCHED_H) #include <sched.h> #endif /* solaris or LACKS_SCHED_H */ #if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS #include <pthread.h> #endif /* USE_RECURSIVE_LOCKS ... */ #elif defined(_MSC_VER) #ifndef _M_AMD64 /* These are already defined on AMD64 builds */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* _M_AMD64 */ #pragma intrinsic (_InterlockedCompareExchange) #pragma intrinsic (_InterlockedExchange) #define interlockedcompareexchange _InterlockedCompareExchange #define interlockedexchange _InterlockedExchange #elif defined(WIN32) && defined(__GNUC__) #define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) #define interlockedexchange __sync_lock_test_and_set #endif /* Win32 */ #else /* USE_LOCKS */ #endif /* USE_LOCKS */ #ifndef LOCK_AT_FORK #define LOCK_AT_FORK 0 #endif /* Declarations for bit scanning on win32 */ #if defined(_MSC_VER) && _MSC_VER>=1300 #ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ unsigned char _BitScanForward(unsigned long *index, unsigned long mask); unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); #ifdef __cplusplus } #endif /* __cplusplus */ #define BitScanForward _BitScanForward #define BitScanReverse _BitScanReverse #pragma intrinsic(_BitScanForward) #pragma intrinsic(_BitScanReverse) #endif /* BitScanForward */ #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ #ifndef WIN32 #ifndef malloc_getpagesize # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ # ifndef _SC_PAGE_SIZE # define _SC_PAGE_SIZE _SC_PAGESIZE # endif # endif # ifdef _SC_PAGE_SIZE # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) # else # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) extern size_t getpagesize(); # define malloc_getpagesize getpagesize() # else # ifdef WIN32 /* use supplied emulation of getpagesize */ # define malloc_getpagesize getpagesize() # else # ifndef LACKS_SYS_PARAM_H # include <sys/param.h> # endif # ifdef EXEC_PAGESIZE # define malloc_getpagesize EXEC_PAGESIZE # else # ifdef NBPG # ifndef CLSIZE # define malloc_getpagesize NBPG # else # define malloc_getpagesize (NBPG * CLSIZE) # endif # else # ifdef NBPC # define malloc_getpagesize NBPC # else # ifdef PAGESIZE # define malloc_getpagesize PAGESIZE # else /* just guess */ # define malloc_getpagesize ((size_t)4096U) # endif # endif # endif # endif # endif # endif # endif #endif #endif /* ------------------- size_t and alignment properties -------------------- */ /* The byte and bit size of a size_t */ #define SIZE_T_SIZE (sizeof(size_t)) #define SIZE_T_BITSIZE (sizeof(size_t) << 3) /* Some constants coerced to size_t */ /* Annoying but necessary to avoid errors on some platforms */ #define SIZE_T_ZERO ((size_t)0) #define SIZE_T_ONE ((size_t)1) #define SIZE_T_TWO ((size_t)2) #define SIZE_T_FOUR ((size_t)4) #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) /* The bit mask value corresponding to MALLOC_ALIGNMENT */ #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) /* True if address a has acceptable alignment */ #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) /* the number of bytes to offset an address to align it */ #define align_offset(A)\ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) /* -------------------------- MMAP preliminaries ------------------------- */ /* If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and checks to fail so compiler optimizer can delete code rather than using so many "#if"s. */ /* MORECORE and MMAP must return MFAIL on failure */ #define MFAIL ((void*)(MAX_SIZE_T)) #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ #if HAVE_MMAP #ifndef WIN32 #define MUNMAP_DEFAULT(a, s) munmap((a), (s)) #define MMAP_PROT (PROT_READ|PROT_WRITE) #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) #define MAP_ANONYMOUS MAP_ANON #endif /* MAP_ANON */ #ifdef MAP_ANONYMOUS #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) #define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) #else /* MAP_ANONYMOUS */ /* Nearly all versions of mmap support MAP_ANONYMOUS, so the following is unlikely to be needed, but is supplied just in case. */ #define MMAP_FLAGS (MAP_PRIVATE) static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ (dev_zero_fd = open("/dev/zero", O_RDWR), \ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) #endif /* MAP_ANONYMOUS */ #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) #else /* WIN32 */ /* Win32 MMAP via VirtualAlloc */ static FORCEINLINE void* win32mmap(size_t size) { void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); return (ptr != 0)? ptr: MFAIL; } /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ static FORCEINLINE void* win32direct_mmap(size_t size) { void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE); return (ptr != 0)? ptr: MFAIL; } /* This function supports releasing coalesed segments */ static FORCEINLINE int win32munmap(void* ptr, size_t size) { MEMORY_BASIC_INFORMATION minfo; char* cptr = (char*)ptr; while (size) { if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) return -1; if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || minfo.State != MEM_COMMIT || minfo.RegionSize > size) return -1; if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) return -1; cptr += minfo.RegionSize; size -= minfo.RegionSize; } return 0; } #define MMAP_DEFAULT(s) win32mmap(s) #define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) #define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) #endif /* WIN32 */ #endif /* HAVE_MMAP */ #if HAVE_MREMAP #ifndef WIN32 #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) #endif /* WIN32 */ #endif /* HAVE_MREMAP */ /** * Define CALL_MORECORE */ #if HAVE_MORECORE #ifdef MORECORE #define CALL_MORECORE(S) MORECORE(S) #else /* MORECORE */ #define CALL_MORECORE(S) MORECORE_DEFAULT(S) #endif /* MORECORE */ #else /* HAVE_MORECORE */ #define CALL_MORECORE(S) MFAIL #endif /* HAVE_MORECORE */ /** * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP */ #if HAVE_MMAP #define USE_MMAP_BIT (SIZE_T_ONE) #ifdef MMAP #define CALL_MMAP(s) MMAP(s) #else /* MMAP */ #define CALL_MMAP(s) MMAP_DEFAULT(s) #endif /* MMAP */ #ifdef MUNMAP #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) #else /* MUNMAP */ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) #endif /* MUNMAP */ #ifdef DIRECT_MMAP #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) #else /* DIRECT_MMAP */ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) #endif /* DIRECT_MMAP */ #else /* HAVE_MMAP */ #define USE_MMAP_BIT (SIZE_T_ZERO) #define MMAP(s) MFAIL #define MUNMAP(a, s) (-1) #define DIRECT_MMAP(s) MFAIL #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) #define CALL_MMAP(s) MMAP(s) #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) #endif /* HAVE_MMAP */ /** * Define CALL_MREMAP */ #if HAVE_MMAP && HAVE_MREMAP #ifdef MREMAP #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) #else /* MREMAP */ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) #endif /* MREMAP */ #else /* HAVE_MMAP && HAVE_MREMAP */ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL #endif /* HAVE_MMAP && HAVE_MREMAP */ /* mstate bit set if continguous morecore disabled or failed */ #define USE_NONCONTIGUOUS_BIT (4U) /* mstate bit set if no expansion allowed */ #define USE_NOEXPAND_BIT (8U) /* trace allocations if set */ #define USE_TRACE_BIT (16U) /* segment bit set in create_mspace_with_base */ #define EXTERN_BIT (8U) /* --------------------------- Lock preliminaries ------------------------ */ /* When locks are defined, there is one global lock, plus one per-mspace lock. The global lock_ensures that mparams.magic and other unique mparams values are initialized only once. It also protects sequences of calls to MORECORE. In many cases sys_alloc requires two calls, that should not be interleaved with calls by other threads. This does not protect against direct calls to MORECORE by other threads not using this lock, so there is still code to cope the best we can on interference. Per-mspace locks surround calls to malloc, free, etc. By default, locks are simple non-reentrant mutexes. Because lock-protected regions generally have bounded times, it is OK to use the supplied simple spinlocks. Spinlocks are likely to improve performance for lightly contended applications, but worsen performance under heavy contention. If USE_LOCKS is > 1, the definitions of lock routines here are bypassed, in which case you will need to define the type MLOCK_T, and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and TRY_LOCK. You must also declare a static MLOCK_T malloc_global_mutex = { initialization values };. */ #if !USE_LOCKS #define USE_LOCK_BIT (0U) #define INITIAL_LOCK(l) (0) #define DESTROY_LOCK(l) (0) #define ACQUIRE_MALLOC_GLOBAL_LOCK() #define RELEASE_MALLOC_GLOBAL_LOCK() #else #if USE_LOCKS > 1 /* ----------------------- User-defined locks ------------------------ */ /* Define your own lock implementation here */ /* #define INITIAL_LOCK(lk) ... */ /* #define DESTROY_LOCK(lk) ... */ /* #define ACQUIRE_LOCK(lk) ... */ /* #define RELEASE_LOCK(lk) ... */ /* #define TRY_LOCK(lk) ... */ /* static MLOCK_T malloc_global_mutex = ... */ #elif USE_SPIN_LOCKS /* First, define CAS_LOCK and CLEAR_LOCK on ints */ /* Note CAS_LOCK defined to return 0 on success */ #if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) #define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) #define CLEAR_LOCK(sl) __sync_lock_release(sl) #elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) /* Custom spin locks for older gcc on x86 */ static FORCEINLINE int x86_cas_lock(int *sl) { int ret; int val = 1; int cmp = 0; __asm__ __volatile__ ("lock; cmpxchgl %1, %2" : "=a" (ret) : "r" (val), "m" (*(sl)), "0"(cmp) : "memory", "cc"); return ret; } static FORCEINLINE void x86_clear_lock(int* sl) { assert(*sl != 0); int prev = 0; int ret; __asm__ __volatile__ ("lock; xchgl %0, %1" : "=r" (ret) : "m" (*(sl)), "0"(prev) : "memory"); } #define CAS_LOCK(sl) x86_cas_lock(sl) #define CLEAR_LOCK(sl) x86_clear_lock(sl) #else /* Win32 MSC */ #define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1) #define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0) #endif /* ... gcc spins locks ... */ /* How to yield for a spin lock */ #define SPINS_PER_YIELD 63 #if defined(_MSC_VER) #define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ #define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) #elif defined (__SVR4) && defined (__sun) /* solaris */ #define SPIN_LOCK_YIELD thr_yield(); #elif !defined(LACKS_SCHED_H) #define SPIN_LOCK_YIELD sched_yield(); #else #define SPIN_LOCK_YIELD #endif /* ... yield ... */ #if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 /* Plain spin locks use single word (embedded in malloc_states) */ static int spin_acquire_lock(int *sl) { int spins = 0; while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { if ((++spins & SPINS_PER_YIELD) == 0) { SPIN_LOCK_YIELD; } } return 0; } #define MLOCK_T int #define TRY_LOCK(sl) !CAS_LOCK(sl) #define RELEASE_LOCK(sl) CLEAR_LOCK(sl) #define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) #define INITIAL_LOCK(sl) (*sl = 0) #define DESTROY_LOCK(sl) (0) static MLOCK_T malloc_global_mutex = 0; #else /* USE_RECURSIVE_LOCKS */ /* types for lock owners */ #ifdef WIN32 #define THREAD_ID_T DWORD #define CURRENT_THREAD GetCurrentThreadId() #define EQ_OWNER(X,Y) ((X) == (Y)) #else /* Note: the following assume that pthread_t is a type that can be initialized to (casted) zero. If this is not the case, you will need to somehow redefine these or not use spin locks. */ #define THREAD_ID_T pthread_t #define CURRENT_THREAD pthread_self() #define EQ_OWNER(X,Y) pthread_equal(X, Y) #endif struct malloc_recursive_lock { int sl; unsigned int c; THREAD_ID_T threadid; }; #define MLOCK_T struct malloc_recursive_lock static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { assert(lk->sl != 0); if (--lk->c == 0) { CLEAR_LOCK(&lk->sl); } } static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { THREAD_ID_T mythreadid = CURRENT_THREAD; int spins = 0; for (;;) { if (*((volatile int *)(&lk->sl)) == 0) { if (!CAS_LOCK(&lk->sl)) { lk->threadid = mythreadid; lk->c = 1; return 0; } } else if (EQ_OWNER(lk->threadid, mythreadid)) { ++lk->c; return 0; } if ((++spins & SPINS_PER_YIELD) == 0) { SPIN_LOCK_YIELD; } } } static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { THREAD_ID_T mythreadid = CURRENT_THREAD; if (*((volatile int *)(&lk->sl)) == 0) { if (!CAS_LOCK(&lk->sl)) { lk->threadid = mythreadid; lk->c = 1; return 1; } } else if (EQ_OWNER(lk->threadid, mythreadid)) { ++lk->c; return 1; } return 0; } #define RELEASE_LOCK(lk) recursive_release_lock(lk) #define TRY_LOCK(lk) recursive_try_lock(lk) #define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) #define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) #define DESTROY_LOCK(lk) (0) #endif /* USE_RECURSIVE_LOCKS */ #elif defined(WIN32) /* Win32 critical sections */ #define MLOCK_T CRITICAL_SECTION #define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) #define RELEASE_LOCK(lk) LeaveCriticalSection(lk) #define TRY_LOCK(lk) TryEnterCriticalSection(lk) #define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) #define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) #define NEED_GLOBAL_LOCK_INIT static MLOCK_T malloc_global_mutex; static volatile LONG malloc_global_mutex_status; /* Use spin loop to initialize global lock */ static void init_malloc_global_mutex() { for (;;) { long stat = malloc_global_mutex_status; if (stat > 0) return; /* transition to < 0 while initializing, then to > 0) */ if (stat == 0 && interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) { InitializeCriticalSection(&malloc_global_mutex); interlockedexchange(&malloc_global_mutex_status, (LONG)1); return; } SleepEx(0, FALSE); } } #else /* pthreads-based locks */ #define MLOCK_T pthread_mutex_t #define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) #define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) #define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) #define INITIAL_LOCK(lk) pthread_init_lock(lk) #define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) #if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) /* Cope with old-style linux recursive lock initialization by adding */ /* skipped internal declaration from pthread.h */ extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, int __kind)); #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) #endif /* USE_RECURSIVE_LOCKS ... */ static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; static int pthread_init_lock (MLOCK_T *lk) { pthread_mutexattr_t attr; if (pthread_mutexattr_init(&attr)) return 1; #if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; #endif if (pthread_mutex_init(lk, &attr)) return 1; if (pthread_mutexattr_destroy(&attr)) return 1; return 0; } #endif /* ... lock types ... */ /* Common code for all lock types */ #define USE_LOCK_BIT (2U) #ifndef ACQUIRE_MALLOC_GLOBAL_LOCK #define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); #endif #ifndef RELEASE_MALLOC_GLOBAL_LOCK #define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); #endif #endif /* USE_LOCKS */ /* ----------------------- Chunk representations ------------------------ */ /* (The following includes lightly edited explanations by Colin Plumb.) The malloc_chunk declaration below is misleading (but accurate and necessary). It declares a "view" into memory allowing access to necessary fields at known offsets from a given base. Chunks of memory are maintained using a `boundary tag' method as originally described by Knuth. (See the paper by Paul Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such techniques.) Sizes of free chunks are stored both in the front of each chunk and at the end. This makes consolidating fragmented chunks into bigger chunks fast. The head fields also hold bits representing whether chunks are free or in use. Here are some pictures to make it clearer. They are "exploded" to show that the state of a chunk can be thought of as extending from the high 31 bits of the head field of its header through the prev_foot and PINUSE_BIT bit of the following chunk header. A chunk that's in use looks like: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk (if P = 0) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | Size of this chunk 1| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | +- -+ | | +- -+ | : +- size - sizeof(size_t) available payload bytes -+ : | chunk-> +- -+ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| | Size of next chunk (may or may not be in use) | +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ And if it's free, it looks like this: chunk-> +- -+ | User payload (must be in use, or we would have merged!) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| | Size of this chunk 0| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next pointer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prev pointer | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +- size - sizeof(struct chunk) unused bytes -+ : | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of this chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| | Size of next chunk (must be in use, or we would have merged)| +-+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | : +- User payload -+ : | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| +-+ Note that since we always merge adjacent free chunks, the chunks adjacent to a free chunk must be in use. Given a pointer to a chunk (which can be derived trivially from the payload pointer) we can, in O(1) time, find out whether the adjacent chunks are free, and if so, unlink them from the lists that they are on and merge them with the current chunk. Chunks always begin on even word boundaries, so the mem portion (which is returned to the user) is also on an even word boundary, and thus at least double-word aligned. The P (PINUSE_BIT) bit, stored in the unused low-order bit of the chunk size (which is always a multiple of two words), is an in-use bit for the *previous* chunk. If that bit is *clear*, then the word before the current chunk size contains the previous chunk size, and can be used to find the front of the previous chunk. The very first chunk allocated always has this bit set, preventing access to non-existent (or non-owned) memory. If pinuse is set for any given chunk, then you CANNOT determine the size of the previous chunk, and might even get a memory addressing fault when trying to do so. The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of the chunk size redundantly records whether the current chunk is inuse (unless the chunk is mmapped). This redundancy enables usage checks within free and realloc, and reduces indirection when freeing and consolidating chunks. Each freshly allocated chunk must have both cinuse and pinuse set. That is, each allocated chunk borders either a previously allocated and still in-use chunk, or the base of its memory arena. This is ensured by making all allocations from the `lowest' part of any found chunk. Further, no free chunk physically borders another one, so each free chunk is known to be preceded and followed by either inuse chunks or the ends of memory. Note that the `foot' of the current chunk is actually represented as the prev_foot of the NEXT chunk. This makes it easier to deal with alignments etc but can be very confusing when trying to extend or adapt this code. The exceptions to all this are 1. The special chunk `top' is the top-most available chunk (i.e., the one bordering the end of available memory). It is treated specially. Top is never included in any bin, is used only if no other chunk is available, and is released back to the system if it is very large (see M_TRIM_THRESHOLD). In effect, the top chunk is treated as larger (and thus less well fitting) than any other available chunk. The top chunk doesn't update its trailing size field since there is no next contiguous chunk that would have to index off it. However, space is still allocated for it (TOP_FOOT_SIZE) to enable separation or merging when space is extended. 3. Chunks allocated via mmap, have both cinuse and pinuse bits cleared in their head fields. Because they are allocated one-by-one, each must carry its own prev_foot field, which is also used to hold the offset this chunk has within its mmapped region, which is needed to preserve alignment. Each mmapped chunk is trailed by the first two fields of a fake next-chunk for sake of usage checks. */ struct malloc_chunk { size_t prev_foot; /* Size of previous chunk (if free). */ size_t head; /* Size and inuse bits. */ struct malloc_chunk* fd; /* double links -- used only if free. */ struct malloc_chunk* bk; }; typedef struct malloc_chunk mchunk; typedef struct malloc_chunk* mchunkptr; typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ typedef unsigned int bindex_t; /* Described below */ typedef unsigned int binmap_t; /* Described below */ typedef unsigned int flag_t; /* The type of various bit flag sets */ /* ------------------- Chunks sizes and alignments ----------------------- */ #define MCHUNK_SIZE (sizeof(mchunk)) #if FOOTERS #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) #else /* FOOTERS */ #define CHUNK_OVERHEAD (SIZE_T_SIZE) #endif /* FOOTERS */ /* MMapped chunks need a second word of overhead ... */ #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) /* ... and additional padding for fake next-chunk at foot */ #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) /* The smallest size we can malloc is an aligned minimal chunk */ #define MIN_CHUNK_SIZE\ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* conversion from malloc headers to user pointers, and back */ #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) /* chunk associated with aligned address A */ #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) /* Bounds on request (not chunk) sizes. */ #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) /* pad request bytes into a usable size */ #define pad_request(req) \ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) /* pad request, checking for minimum (but not maximum) */ #define request2size(req) \ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) /* ------------------ Operations on head and foot fields ----------------- */ /* The head field of a chunk is or'ed with PINUSE_BIT when previous adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in use, unless mmapped, in which case both bits are cleared. FLAG4_BIT is not used by this malloc, but might be useful in extensions. */ #define PINUSE_BIT (SIZE_T_ONE) #define CINUSE_BIT (SIZE_T_TWO) #define FLAG4_BIT (SIZE_T_FOUR) #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) #define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) /* Head value for fenceposts */ #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) /* extraction of fields from head words */ #define cinuse(p) ((p)->head & CINUSE_BIT) #define pinuse(p) ((p)->head & PINUSE_BIT) #define flag4inuse(p) ((p)->head & FLAG4_BIT) #define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) #define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) #define chunksize(p) ((p)->head & ~(FLAG_BITS)) #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) #define set_flag4(p) ((p)->head |= FLAG4_BIT) #define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) /* Treat space at ptr +/- offset as a chunk */ #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) /* Ptr to next or previous physical malloc_chunk. */ #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) /* extract next chunk's pinuse bit */ #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) /* Get/set size at footer */ #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) /* Set size, pinuse bit, and foot */ #define set_size_and_pinuse_of_free_chunk(p, s)\ ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) /* Set size, pinuse bit, foot, and clear next pinuse */ #define set_free_with_pinuse(p, s, n)\ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) /* Get the internal overhead associated with chunk p */ #define overhead_for(p)\ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) /* Return true if malloced space is not necessarily cleared */ #if MMAP_CLEARS #define calloc_must_clear(p) (!is_mmapped(p)) #else /* MMAP_CLEARS */ #define calloc_must_clear(p) (1) #endif /* MMAP_CLEARS */ /* ---------------------- Overlaid data structures ----------------------- */ /* When chunks are not in use, they are treated as nodes of either lists or trees. "Small" chunks are stored in circular doubly-linked lists, and look like this: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `head:' | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forward pointer to next chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Back pointer to previous chunk in list | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unused space (may be 0 bytes long) . . . . | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `foot:' | Size of chunk, in bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Larger chunks are kept in a form of bitwise digital trees (aka tries) keyed on chunksizes. Because malloc_tree_chunks are only for free chunks greater than 256 bytes, their size doesn't impose any constraints on user chunk sizes. Each node looks like: chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Size of previous chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `head:' | Size of chunk, in bytes |P| mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Forward pointer to next chunk of same size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Back pointer to previous chunk of same size | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to left child (child[0]) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to right child (child[1]) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Pointer to parent | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | bin index of this chunk | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unused space . . | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ `foot:' | Size of chunk, in bytes | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks of the same size are arranged in a circularly-linked list, with only the oldest chunk (the next to be used, in our FIFO ordering) actually in the tree. (Tree members are distinguished by a non-null parent pointer.) If a chunk with the same size an an existing node is inserted, it is linked off the existing node using pointers that work in the same way as fd/bk pointers of small chunks. Each tree contains a power of 2 sized range of chunk sizes (the smallest is 0x100 <= x < 0x180), which is is divided in half at each tree level, with the chunks in the smaller half of the range (0x100 <= x < 0x140 for the top nose) in the left subtree and the larger half (0x140 <= x < 0x180) in the right subtree. This is, of course, done by inspecting individual bits. Using these rules, each node's left subtree contains all smaller sizes than its right subtree. However, the node at the root of each subtree has no particular ordering relationship to either. (The dividing line between the subtree sizes is based on trie relation.) If we remove the last chunk of a given size from the interior of the tree, we need to replace it with a leaf node. The tree ordering rules permit a node to be replaced by any leaf below it. The smallest chunk in a tree (a common operation in a best-fit allocator) can be found by walking a path to the leftmost leaf in the tree. Unlike a usual binary tree, where we follow left child pointers until we reach a null, here we follow the right child pointer any time the left one is null, until we reach a leaf with both child pointers null. The smallest chunk in the tree will be somewhere along that path. The worst case number of steps to add, find, or remove a node is bounded by the number of bits differentiating chunks within bins. Under current bin calculations, this ranges from 6 up to 21 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case is of course much better. */ struct malloc_tree_chunk { /* The first four fields must be compatible with malloc_chunk */ size_t prev_foot; size_t head; struct malloc_tree_chunk* fd; struct malloc_tree_chunk* bk; struct malloc_tree_chunk* child[2]; struct malloc_tree_chunk* parent; bindex_t index; }; typedef struct malloc_tree_chunk tchunk; typedef struct malloc_tree_chunk* tchunkptr; typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ /* A little helper macro for trees */ #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) /* ----------------------------- Segments -------------------------------- */ /* Each malloc space may include non-contiguous segments, held in a list headed by an embedded malloc_segment record representing the top-most space. Segments also include flags holding properties of the space. Large chunks that are directly allocated by mmap are not included in this list. They are instead independently created and destroyed without otherwise keeping track of them. Segment management mainly comes into play for spaces allocated by MMAP. Any call to MMAP might or might not return memory that is adjacent to an existing segment. MORECORE normally contiguously extends the current space, so this space is almost always adjacent, which is simpler and faster to deal with. (This is why MORECORE is used preferentially to MMAP when both are available -- see sys_alloc.) When allocating using MMAP, we don't use any of the hinting mechanisms (inconsistently) supported in various implementations of unix mmap, or distinguish reserving from committing memory. Instead, we just ask for space, and exploit contiguity when we get it. It is probably possible to do better than this on some systems, but no general scheme seems to be significantly better. Management entails a simpler variant of the consolidation scheme used for chunks to reduce fragmentation -- new adjacent memory is normally prepended or appended to an existing segment. However, there are limitations compared to chunk consolidation that mostly reflect the fact that segment processing is relatively infrequent (occurring only when getting memory from system) and that we don't expect to have huge numbers of segments: * Segments are not indexed, so traversal requires linear scans. (It would be possible to index these, but is not worth the extra overhead and complexity for most programs on most platforms.) * New segments are only appended to old ones when holding top-most memory; if they cannot be prepended to others, they are held in different segments. Except for the top-most segment of an mstate, each segment record is kept at the tail of its segment. Segments are added by pushing segment records onto the list headed by &mstate.seg for the containing mstate. Segment flags control allocation/merge/deallocation policies: * If EXTERN_BIT set, then we did not allocate this segment, and so should not try to deallocate or merge with others. (This currently holds only for the initial segment passed into create_mspace_with_base.) * If USE_MMAP_BIT set, the segment may be merged with other surrounding mmapped segments and trimmed/de-allocated using munmap. * If neither bit is set, then the segment was obtained using MORECORE so can be merged with surrounding MORECORE'd segments and deallocated/trimmed using MORECORE with negative arguments. */ struct malloc_segment { char* base; /* base address */ size_t size; /* allocated size */ struct malloc_segment* next; /* ptr to next segment */ flag_t sflags; /* mmap and extern flag */ }; #define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) #define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) typedef struct malloc_segment msegment; typedef struct malloc_segment* msegmentptr; /* ---------------------------- malloc_state ----------------------------- */ /* A malloc_state holds all of the bookkeeping for a space. The main fields are: Top The topmost chunk of the currently active segment. Its size is cached in topsize. The actual size of topmost space is topsize+TOP_FOOT_SIZE, which includes space reserved for adding fenceposts and segment records if necessary when getting more space from the system. The size at which to autotrim top is cached from mparams in trim_check, except that it is disabled if an autotrim fails. Designated victim (dv) This is the preferred chunk for servicing small requests that don't have exact fits. It is normally the chunk split off most recently to service another small request. Its size is cached in dvsize. The link fields of this chunk are not maintained since it is not kept in a bin. SmallBins An array of bin headers for free chunks. These bins hold chunks with sizes less than MIN_LARGE_SIZE bytes. Each bin contains chunks of all the same size, spaced 8 bytes apart. To simplify use in double-linked lists, each bin header acts as a malloc_chunk pointing to the real first node, if it exists (else pointing to itself). This avoids special-casing for headers. But to avoid waste, we allocate only the fd/bk pointers of bins, and then use repositioning tricks to treat these as the fields of a chunk. TreeBins Treebins are pointers to the roots of trees holding a range of sizes. There are 2 equally spaced treebins for each power of two from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything larger. Bin maps There is one bit map for small bins ("smallmap") and one for treebins ("treemap). Each bin sets its bit when non-empty, and clears the bit when empty. Bit operations are then used to avoid bin-by-bin searching -- nearly all "search" is done without ever looking at bins that won't be selected. The bit maps conservatively use 32 bits per map word, even if on 64bit system. For a good description of some of the bit-based techniques used here, see Henry S. Warren Jr's book "Hacker's Delight" (and supplement at http://hackersdelight.org/). Many of these are intended to reduce the branchiness of paths through malloc etc, as well as to reduce the number of memory locations read or written. Segments A list of segments headed by an embedded malloc_segment record representing the initial space. Address check support The least_addr field is the least address ever obtained from MORECORE or MMAP. Attempted frees and reallocs of any address less than this are trapped (unless INSECURE is defined). Magic tag A cross-check field that should always hold same value as mparams.magic. Max allowed footprint The maximum allowed bytes to allocate from system (zero means no limit) Flags Bits recording whether to use MMAP, locks, or contiguous MORECORE Statistics Each space keeps track of current and maximum system memory obtained via MORECORE or MMAP. Trim support Fields holding the amount of unused topmost memory that should trigger trimming, and a counter to force periodic scanning to release unused non-topmost segments. Locking If USE_LOCKS is defined, the "mutex" lock is acquired and released around every public call using this mspace. Extension support A void* pointer and a size_t field that can be used to help implement extensions to this malloc. */ /* Bin types, widths and sizes */ #define NSMALLBINS (32U) #define NTREEBINS (32U) #define SMALLBIN_SHIFT (3U) #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) #define TREEBIN_SHIFT (8U) #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) struct malloc_state { binmap_t smallmap; binmap_t treemap; size_t dvsize; size_t topsize; char* least_addr; mchunkptr dv; mchunkptr top; size_t trim_check; size_t release_checks; size_t magic; mchunkptr smallbins[(NSMALLBINS+1)*2]; tbinptr treebins[NTREEBINS]; size_t footprint; size_t max_footprint; size_t footprint_limit; /* zero means no limit */ flag_t mflags; #if USE_LOCKS MLOCK_T mutex; /* locate lock among fields that rarely change */ #endif /* USE_LOCKS */ msegment seg; void* extp; /* Unused but available for extensions */ size_t exts; }; typedef struct malloc_state* mstate; /* ------------- Global malloc_state and malloc_params ------------------- */ /* malloc_params holds global properties, including those that can be dynamically set using mallopt. There is a single instance, mparams, initialized in init_mparams. Note that the non-zeroness of "magic" also serves as an initialization flag. */ struct malloc_params { size_t magic; size_t page_size; size_t granularity; size_t mmap_threshold; size_t trim_threshold; flag_t default_mflags; }; static struct malloc_params mparams; /* Ensure mparams initialized */ #define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) #if !ONLY_MSPACES /* The global malloc_state used for all non-"mspace" calls */ static struct malloc_state _gm_; #define gm (&_gm_) #define is_global(M) ((M) == &_gm_) #endif /* !ONLY_MSPACES */ #define is_initialized(M) ((M)->top != 0) /* -------------------------- system alloc setup ------------------------- */ /* Operations on mflags */ #define use_lock(M) ((M)->mflags & USE_LOCK_BIT) #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) #if USE_LOCKS #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) #else #define disable_lock(M) #endif #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) #if HAVE_MMAP #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) #else #define disable_mmap(M) #endif #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) #define use_noexpand(M) ((M)->mflags & USE_NOEXPAND_BIT) #define disable_expand(M) ((M)->mflags |= USE_NOEXPAND_BIT) #define use_trace(M) ((M)->mflags & USE_TRACE_BIT) #define enable_trace(M) ((M)->mflags |= USE_TRACE_BIT) #define disable_trace(M) ((M)->mflags |= USE_TRACE_BIT) #define set_lock(M,L)\ ((M)->mflags = (L)?\ ((M)->mflags | USE_LOCK_BIT) :\ ((M)->mflags & ~USE_LOCK_BIT)) /* page-align a size */ #define page_align(S)\ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) /* granularity-align a size */ #define granularity_align(S)\ (((S) + (mparams.granularity - SIZE_T_ONE))\ & ~(mparams.granularity - SIZE_T_ONE)) /* For mmap, use granularity alignment on windows, else page-align */ #ifdef WIN32 #define mmap_align(S) granularity_align(S) #else #define mmap_align(S) page_align(S) #endif /* For sys_alloc, enough padding to ensure can malloc request on success */ #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) #define is_page_aligned(S)\ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) #define is_granularity_aligned(S)\ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) /* True if segment S holds address A */ #define segment_holds(S, A)\ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) /* Return segment holding given address */ static msegmentptr segment_holding(mstate m, char* addr) { msegmentptr sp = &m->seg; for (;;) { if (addr >= sp->base && addr < sp->base + sp->size) return sp; if ((sp = sp->next) == 0) return 0; } } /* Return true if segment contains a segment link */ static int has_segment_link(mstate m, msegmentptr ss) { msegmentptr sp = &m->seg; for (;;) { if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) return 1; if ((sp = sp->next) == 0) return 0; } } #ifndef MORECORE_CANNOT_TRIM #define should_trim(M,s) ((s) > (M)->trim_check) #else /* MORECORE_CANNOT_TRIM */ #define should_trim(M,s) (0) #endif /* MORECORE_CANNOT_TRIM */ /* TOP_FOOT_SIZE is padding at the end of a segment, including space that may be needed to place segment records and fenceposts when new noncontiguous segments are added. */ #define TOP_FOOT_SIZE\ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) /* ------------------------------- Hooks -------------------------------- */ /* PREACTION should be defined to return 0 on success, and nonzero on failure. If you are not using locking, you can redefine these to do anything you like. */ #if USE_LOCKS #define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } #else /* USE_LOCKS */ #ifndef PREACTION #define PREACTION(M) (0) #endif /* PREACTION */ #ifndef POSTACTION #define POSTACTION(M) #endif /* POSTACTION */ #endif /* USE_LOCKS */ /* CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. USAGE_ERROR_ACTION is triggered on detected bad frees and reallocs. The argument p is an address that might have triggered the fault. It is ignored by the two predefined actions, but might be useful in custom actions that try to help diagnose errors. */ #if PROCEED_ON_ERROR /* A count of the number of corruption errors causing resets */ int malloc_corruption_error_count; /* default corruption action */ static void reset_on_error(mstate m); #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) #define USAGE_ERROR_ACTION(m, p) #else /* PROCEED_ON_ERROR */ #ifndef CORRUPTION_ERROR_ACTION #define CORRUPTION_ERROR_ACTION(m) DLM_ABORT #endif /* CORRUPTION_ERROR_ACTION */ #ifndef USAGE_ERROR_ACTION #define USAGE_ERROR_ACTION(m,p) DLM_ABORT #endif /* USAGE_ERROR_ACTION */ #endif /* PROCEED_ON_ERROR */ /* -------------------------- Debugging setup ---------------------------- */ #if ! DEBUG #define check_free_chunk(M,P) #define check_inuse_chunk(M,P) #define check_malloced_chunk(M,P,N) #define check_mmapped_chunk(M,P) #define check_malloc_state(M) #define check_top_chunk(M,P) #else /* DEBUG */ #define check_free_chunk(M,P) do_check_free_chunk(M,P) #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) #define check_top_chunk(M,P) do_check_top_chunk(M,P) #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) #define check_malloc_state(M) do_check_malloc_state(M) static void do_check_any_chunk(mstate m, mchunkptr p); static void do_check_top_chunk(mstate m, mchunkptr p); static void do_check_mmapped_chunk(mstate m, mchunkptr p); static void do_check_inuse_chunk(mstate m, mchunkptr p); static void do_check_free_chunk(mstate m, mchunkptr p); static void do_check_malloced_chunk(mstate m, void* mem, size_t s); static void do_check_tree(mstate m, tchunkptr t); static void do_check_treebin(mstate m, bindex_t i); static void do_check_smallbin(mstate m, bindex_t i); static void do_check_malloc_state(mstate m); static int bin_find(mstate m, mchunkptr x); static size_t traverse_and_check(mstate m); #endif /* DEBUG */ /* ---------------------------- Indexing Bins ---------------------------- */ #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) #define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) #define small_index2size(i) ((i) << SMALLBIN_SHIFT) #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) /* addressing by index. See above about smallbin repositioning */ #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) #define treebin_at(M,i) (&((M)->treebins[i])) /* assign tree index for size S to variable I. Use x86 asm if possible */ #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) #define compute_tree_index(S, I)\ {\ unsigned int X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } #elif defined (__INTEL_COMPILER) #define compute_tree_index(S, I)\ {\ size_t X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int K = _bit_scan_reverse (X); \ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } #elif defined(_MSC_VER) && _MSC_VER>=1300 #define compute_tree_index(S, I)\ {\ size_t X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int K;\ _BitScanReverse((DWORD *) &K, (DWORD) X);\ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ }\ } #else /* GNUC */ #define compute_tree_index(S, I)\ {\ size_t X = S >> TREEBIN_SHIFT;\ if (X == 0)\ I = 0;\ else if (X > 0xFFFF)\ I = NTREEBINS-1;\ else {\ unsigned int Y = (unsigned int)X;\ unsigned int N = ((Y - 0x100) >> 16) & 8;\ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ N += K;\ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ K = 14 - N + ((Y <<= K) >> 15);\ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ }\ } #endif /* GNUC */ /* Bit representing maximum resolved size in a treebin at i */ #define bit_for_tree_index(i) \ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) /* Shift placing maximum resolved bit in a treebin at i as sign bit */ #define leftshift_for_tree_index(i) \ ((i == NTREEBINS-1)? 0 : \ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) /* The size of the smallest chunk held in bin with index i */ #define minsize_for_tree_index(i) \ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) /* ------------------------ Operations on bin maps ----------------------- */ /* bit corresponding to given index */ #define idx2bit(i) ((binmap_t)(1) << (i)) /* Mark/Clear bits with given index */ #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) /* isolate the least set bit of a bitmap */ #define least_bit(x) ((x) & -(x)) /* mask with all bits to left of least bit of x on */ #define left_bits(x) ((x<<1) | -(x<<1)) /* mask with all bits to left of or equal to least bit of x on */ #define same_or_left_bits(x) ((x) | -(x)) /* index corresponding to given bit. Use x86 asm if possible */ #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) #define compute_bit2idx(X, I)\ {\ unsigned int J;\ J = __builtin_ctz(X); \ I = (bindex_t)J;\ } #elif defined (__INTEL_COMPILER) #define compute_bit2idx(X, I)\ {\ unsigned int J;\ J = _bit_scan_forward (X); \ I = (bindex_t)J;\ } #elif defined(_MSC_VER) && _MSC_VER>=1300 #define compute_bit2idx(X, I)\ {\ unsigned int J;\ _BitScanForward((DWORD *) &J, X);\ I = (bindex_t)J;\ } #elif USE_BUILTIN_FFS #define compute_bit2idx(X, I) I = ffs(X)-1 #else #define compute_bit2idx(X, I)\ {\ unsigned int Y = X - 1;\ unsigned int K = Y >> (16-4) & 16;\ unsigned int N = K; Y >>= K;\ N += K = Y >> (8-3) & 8; Y >>= K;\ N += K = Y >> (4-2) & 4; Y >>= K;\ N += K = Y >> (2-1) & 2; Y >>= K;\ N += K = Y >> (1-0) & 1; Y >>= K;\ I = (bindex_t)(N + Y);\ } #endif /* GNUC */ /* ----------------------- Runtime Check Support ------------------------- */ /* For security, the main invariant is that malloc/free/etc never writes to a static address other than malloc_state, unless static malloc_state itself has been corrupted, which cannot occur via malloc (because of these checks). In essence this means that we believe all pointers, sizes, maps etc held in malloc_state, but check all of those linked or offsetted from other embedded data structures. These checks are interspersed with main code in a way that tends to minimize their run-time cost. When FOOTERS is defined, in addition to range checking, we also verify footer fields of inuse chunks, which can be used guarantee that the mstate controlling malloc/free is intact. This is a streamlined version of the approach described by William Robertson et al in "Run-time Detection of Heap-based Overflows" LISA'03 http://www.usenix.org/events/lisa03/tech/robertson.html The footer of an inuse chunk holds the xor of its mstate and a random seed, that is checked upon calls to free() and realloc(). This is (probabalistically) unguessable from outside the program, but can be computed by any code successfully malloc'ing any chunk, so does not itself provide protection against code that has already broken security through some other means. Unlike Robertson et al, we always dynamically check addresses of all offset chunks (previous, next, etc). This turns out to be cheaper than relying on hashes. */ #if !INSECURE /* Check if address a is at least as high as any from MORECORE or MMAP */ #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) /* Check if address of next chunk n is higher than base chunk p */ #define ok_next(p, n) ((char*)(p) < (char*)(n)) /* Check if p has inuse status */ #define ok_inuse(p) is_inuse(p) /* Check if p has its pinuse bit on */ #define ok_pinuse(p) pinuse(p) #else /* !INSECURE */ #define ok_address(M, a) (1) #define ok_next(b, n) (1) #define ok_inuse(p) (1) #define ok_pinuse(p) (1) #endif /* !INSECURE */ #if (FOOTERS && !INSECURE) /* Check if (alleged) mstate m has expected magic field */ static inline int ok_magic (const mstate m) { return (m->magic == mparams.magic); } #else /* (FOOTERS && !INSECURE) */ #define ok_magic(M) (1) #endif /* (FOOTERS && !INSECURE) */ /* In gcc, use __builtin_expect to minimize impact of checks */ #if !INSECURE #if defined(__GNUC__) && __GNUC__ >= 3 #define RTCHECK(e) __builtin_expect(e, 1) #else /* GNUC */ #define RTCHECK(e) (e) #endif /* GNUC */ #else /* !INSECURE */ #define RTCHECK(e) (1) #endif /* !INSECURE */ /* macros to set up inuse chunks with or without footers */ #if !FOOTERS #define mark_inuse_foot(M,p,s) /* Macros for setting head/foot of non-mmapped chunks */ /* Set cinuse bit and pinuse bit of next chunk */ #define set_inuse(M,p,s)\ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ #define set_inuse_and_pinuse(M,p,s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) /* Set size, cinuse and pinuse bit of this chunk */ #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) #else /* FOOTERS */ /* Set foot of inuse chunk to be xor of mstate and seed */ #define mark_inuse_foot(M,p,s)\ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) #define get_mstate_for(p)\ ((mstate)(((mchunkptr)((char*)(p) +\ (chunksize(p))))->prev_foot ^ mparams.magic)) #define set_inuse(M,p,s)\ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ mark_inuse_foot(M,p,s)) #define set_inuse_and_pinuse(M,p,s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ mark_inuse_foot(M,p,s)) #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ mark_inuse_foot(M, p, s)) #endif /* !FOOTERS */ /* ---------------------------- setting mparams -------------------------- */ #if LOCK_AT_FORK static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); } static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); } static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); } #endif /* LOCK_AT_FORK */ /* Initialize mparams */ static int init_mparams(void) { #ifdef NEED_GLOBAL_LOCK_INIT if (malloc_global_mutex_status <= 0) init_malloc_global_mutex(); #endif ACQUIRE_MALLOC_GLOBAL_LOCK(); if (mparams.magic == 0) { size_t magic; size_t psize; size_t gsize; #ifndef WIN32 psize = malloc_getpagesize; gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); #else /* WIN32 */ { SYSTEM_INFO system_info; GetSystemInfo(&system_info); psize = system_info.dwPageSize; gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); } #endif /* WIN32 */ /* Sanity-check configuration: size_t must be unsigned and as wide as pointer type. ints must be at least 4 bytes. alignment must be at least 8. Alignment, min chunk size, and page size must all be powers of 2. */ if ((sizeof(size_t) != sizeof(char*)) || (MAX_SIZE_T < MIN_CHUNK_SIZE) || (sizeof(int) < 4) || (MALLOC_ALIGNMENT < (size_t)8U) || ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || ((gsize & (gsize-SIZE_T_ONE)) != 0) || ((psize & (psize-SIZE_T_ONE)) != 0)) DLM_ABORT; mparams.granularity = gsize; mparams.page_size = psize; mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; #if MORECORE_CONTIGUOUS mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; #else /* MORECORE_CONTIGUOUS */ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; #endif /* MORECORE_CONTIGUOUS */ #if !ONLY_MSPACES /* Set up lock for main malloc area */ gm->mflags = mparams.default_mflags; (void)INITIAL_LOCK(&gm->mutex); #endif #if LOCK_AT_FORK pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); #endif { #ifndef DLM_MAGIC_CONSTANT #if USE_DEV_RANDOM int fd; unsigned char buf[sizeof(size_t)]; /* Try to use /dev/urandom, else fall back on using time */ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && read(fd, buf, sizeof(buf)) == sizeof(buf)) { magic = *((size_t *) buf); close(fd); } else #endif /* USE_DEV_RANDOM */ #ifdef WIN32 magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); #elif defined(LACKS_TIME_H) magic = (size_t)&magic ^ (size_t)0x55555555U; #else magic = (size_t)(time(0) ^ (size_t)0x55555555U); #endif magic |= (size_t)8U; /* ensure nonzero */ magic &= ~(size_t)7U; /* improve chances of fault for bad values */ #else magic = DLM_MAGIC_CONSTANT; #endif /* Until memory modes commonly available, use volatile-write */ (*(volatile size_t *)(&(mparams.magic))) = magic; } } RELEASE_MALLOC_GLOBAL_LOCK(); return 1; } /* support for mallopt */ static int change_mparam(int param_number, int value) { size_t val; ensure_initialization(); val = (value == -1)? MAX_SIZE_T : (size_t)value; switch(param_number) { case M_TRIM_THRESHOLD: mparams.trim_threshold = val; return 1; case M_GRANULARITY: if (val >= mparams.page_size && ((val & (val-1)) == 0)) { mparams.granularity = val; return 1; } else return 0; case M_MMAP_THRESHOLD: mparams.mmap_threshold = val; return 1; default: return 0; } } #if DEBUG /* ------------------------- Debugging Support --------------------------- */ /* Check properties of any chunk, whether free, inuse, mmapped etc */ static void do_check_any_chunk(mstate m, mchunkptr p) { assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); assert(ok_address(m, p)); } /* Check properties of top chunk */ static void do_check_top_chunk(mstate m, mchunkptr p) { msegmentptr sp = segment_holding(m, (char*)p); size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ assert(sp != 0); assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); assert(ok_address(m, p)); assert(sz == m->topsize); assert(sz > 0); assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); assert(pinuse(p)); assert(!pinuse(chunk_plus_offset(p, sz))); } /* Check properties of (inuse) mmapped chunks */ static void do_check_mmapped_chunk(mstate m, mchunkptr p) { size_t sz = chunksize(p); size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); assert(is_mmapped(p)); assert(use_mmap(m)); assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); assert(ok_address(m, p)); assert(!is_small(sz)); assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); } /* Check properties of inuse chunks */ static void do_check_inuse_chunk(mstate m, mchunkptr p) { do_check_any_chunk(m, p); assert(is_inuse(p)); assert(next_pinuse(p)); /* If not pinuse and not mmapped, previous chunk has OK offset */ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); if (is_mmapped(p)) do_check_mmapped_chunk(m, p); } /* Check properties of free chunks */ static void do_check_free_chunk(mstate m, mchunkptr p) { size_t sz = chunksize(p); mchunkptr next = chunk_plus_offset(p, sz); do_check_any_chunk(m, p); assert(!is_inuse(p)); assert(!next_pinuse(p)); assert (!is_mmapped(p)); if (p != m->dv && p != m->top) { if (sz >= MIN_CHUNK_SIZE) { assert((sz & CHUNK_ALIGN_MASK) == 0); assert(is_aligned(chunk2mem(p))); assert(next->prev_foot == sz); assert(pinuse(p)); assert (next == m->top || is_inuse(next)); assert(p->fd->bk == p); assert(p->bk->fd == p); } else /* markers are always of size SIZE_T_SIZE */ assert(sz == SIZE_T_SIZE); } } /* Check properties of malloced chunks at the point they are malloced */ static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { if (mem != 0) { mchunkptr p = mem2chunk(mem); size_t sz = p->head & ~INUSE_BITS; do_check_inuse_chunk(m, p); assert((sz & CHUNK_ALIGN_MASK) == 0); assert(sz >= MIN_CHUNK_SIZE); assert(sz >= s); /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); } } /* Check a tree and its subtrees. */ static void do_check_tree(mstate m, tchunkptr t) { tchunkptr head = 0; tchunkptr u = t; bindex_t tindex = t->index; size_t tsize = chunksize(t); bindex_t idx; compute_tree_index(tsize, idx); assert(tindex == idx); assert(tsize >= MIN_LARGE_SIZE); assert(tsize >= minsize_for_tree_index(idx)); assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); do { /* traverse through chain of same-sized nodes */ do_check_any_chunk(m, ((mchunkptr)u)); assert(u->index == tindex); assert(chunksize(u) == tsize); assert(!is_inuse(u)); assert(!next_pinuse(u)); assert(u->fd->bk == u); assert(u->bk->fd == u); if (u->parent == 0) { assert(u->child[0] == 0); assert(u->child[1] == 0); } else { assert(head == 0); /* only one node on chain has parent */ head = u; assert(u->parent != u); assert (u->parent->child[0] == u || u->parent->child[1] == u || *((tbinptr*)(u->parent)) == u); if (u->child[0] != 0) { assert(u->child[0]->parent == u); assert(u->child[0] != u); do_check_tree(m, u->child[0]); } if (u->child[1] != 0) { assert(u->child[1]->parent == u); assert(u->child[1] != u); do_check_tree(m, u->child[1]); } if (u->child[0] != 0 && u->child[1] != 0) { assert(chunksize(u->child[0]) < chunksize(u->child[1])); } } u = u->fd; } while (u != t); assert(head != 0); } /* Check all the chunks in a treebin. */ static void do_check_treebin(mstate m, bindex_t i) { tbinptr* tb = treebin_at(m, i); tchunkptr t = *tb; int empty = (m->treemap & (1U << i)) == 0; if (t == 0) assert(empty); if (!empty) do_check_tree(m, t); } /* Check all the chunks in a smallbin. */ static void do_check_smallbin(mstate m, bindex_t i) { sbinptr b = smallbin_at(m, i); mchunkptr p = b->bk; unsigned int empty = (m->smallmap & (1U << i)) == 0; if (p == b) assert(empty); if (!empty) { for (; p != b; p = p->bk) { size_t size = chunksize(p); mchunkptr q; /* each chunk claims to be free */ do_check_free_chunk(m, p); /* chunk belongs in bin */ assert(small_index(size) == i); assert(p->bk == b || chunksize(p->bk) == chunksize(p)); /* chunk is followed by an inuse chunk */ q = next_chunk(p); if (q->head != FENCEPOST_HEAD) do_check_inuse_chunk(m, q); } } } /* Find x in a bin. Used in other check functions. */ static int bin_find(mstate m, mchunkptr x) { size_t size = chunksize(x); if (is_small(size)) { bindex_t sidx = small_index(size); sbinptr b = smallbin_at(m, sidx); if (smallmap_is_marked(m, sidx)) { mchunkptr p = b; do { if (p == x) return 1; } while ((p = p->fd) != b); } } else { bindex_t tidx; compute_tree_index(size, tidx); if (treemap_is_marked(m, tidx)) { tchunkptr t = *treebin_at(m, tidx); size_t sizebits = size << leftshift_for_tree_index(tidx); while (t != 0 && chunksize(t) != size) { t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; sizebits <<= 1; } if (t != 0) { tchunkptr u = t; do { if (u == (tchunkptr)x) return 1; } while ((u = u->fd) != t); } } } return 0; } /* Traverse each chunk and check it; return total */ static size_t traverse_and_check(mstate m) { size_t sum = 0; if (is_initialized(m)) { msegmentptr s = &m->seg; sum += m->topsize + TOP_FOOT_SIZE; while (s != 0) { mchunkptr q = align_as_chunk(s->base); mchunkptr lastq = 0; assert(pinuse(q)); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { sum += chunksize(q); if (is_inuse(q)) { assert(!bin_find(m, q)); do_check_inuse_chunk(m, q); } else { assert(q == m->dv || bin_find(m, q)); assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ do_check_free_chunk(m, q); } lastq = q; q = next_chunk(q); } s = s->next; } } return sum; } /* Check all properties of malloc_state. */ static void do_check_malloc_state(mstate m) { bindex_t i; size_t total; /* check bins */ for (i = 0; i < NSMALLBINS; ++i) do_check_smallbin(m, i); for (i = 0; i < NTREEBINS; ++i) do_check_treebin(m, i); if (m->dvsize != 0) { /* check dv chunk */ do_check_any_chunk(m, m->dv); assert(m->dvsize == chunksize(m->dv)); assert(m->dvsize >= MIN_CHUNK_SIZE); assert(bin_find(m, m->dv) == 0); } if (m->top != 0) { /* check top chunk */ do_check_top_chunk(m, m->top); /*assert(m->topsize == chunksize(m->top)); redundant */ assert(m->topsize > 0); assert(bin_find(m, m->top) == 0); } total = traverse_and_check(m); assert(total <= m->footprint); assert(m->footprint <= m->max_footprint); } #endif /* DEBUG */ /* ----------------------------- statistics ------------------------------ */ #if !NO_MALLINFO static struct dlmallinfo internal_mallinfo(mstate m) { struct dlmallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ensure_initialization(); if (!PREACTION(m)) { check_malloc_state(m); if (is_initialized(m)) { size_t nfree = SIZE_T_ONE; /* top always free */ size_t mfree = m->topsize + TOP_FOOT_SIZE; size_t sum = mfree; msegmentptr s = &m->seg; while (s != 0) { mchunkptr q = align_as_chunk(s->base); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { size_t sz = chunksize(q); sum += sz; if (!is_inuse(q)) { mfree += sz; ++nfree; } q = next_chunk(q); } s = s->next; } nm.arena = sum; nm.ordblks = nfree; nm.hblkhd = m->footprint - sum; nm.usmblks = m->max_footprint; nm.uordblks = m->footprint - mfree; nm.fordblks = mfree; nm.keepcost = m->topsize; } POSTACTION(m); } return nm; } #endif /* !NO_MALLINFO */ #if !NO_MALLOC_STATS static void internal_malloc_stats(mstate m) { ensure_initialization(); if (!PREACTION(m)) { size_t maxfp = 0; size_t fp = 0; size_t used = 0; check_malloc_state(m); if (is_initialized(m)) { msegmentptr s = &m->seg; maxfp = m->max_footprint; fp = m->footprint; used = fp - (m->topsize + TOP_FOOT_SIZE); while (s != 0) { mchunkptr q = align_as_chunk(s->base); while (segment_holds(s, q) && q != m->top && q->head != FENCEPOST_HEAD) { if (!is_inuse(q)) used -= chunksize(q); q = next_chunk(q); } s = s->next; } } POSTACTION(m); /* drop lock */ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); } } #endif /* NO_MALLOC_STATS */ /* ----------------------- Operations on smallbins ----------------------- */ /* Various forms of linking and unlinking are defined as macros. Even the ones for trees, which are very long but have very short typical paths. This is ugly but reduces reliance on inlining support of compilers. */ /* Link a free chunk into a smallbin */ #define insert_small_chunk(M, P, S) {\ bindex_t I = small_index(S);\ mchunkptr B = smallbin_at(M, I);\ mchunkptr F = B;\ assert(S >= MIN_CHUNK_SIZE);\ if (!smallmap_is_marked(M, I))\ mark_smallmap(M, I);\ else if (RTCHECK(ok_address(M, B->fd)))\ F = B->fd;\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ B->fd = P;\ F->bk = P;\ P->fd = F;\ P->bk = B;\ } /* Unlink a chunk from a smallbin */ #define unlink_small_chunk(M, P, S) {\ mchunkptr F = P->fd;\ mchunkptr B = P->bk;\ bindex_t I = small_index(S);\ assert(P != B);\ assert(P != F);\ assert(chunksize(P) == small_index2size(I));\ if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ if (B == F) {\ clear_smallmap(M, I);\ }\ else if (RTCHECK(B == smallbin_at(M,I) ||\ (ok_address(M, B) && B->fd == P))) {\ F->bk = B;\ B->fd = F;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ } /* Unlink the first chunk from a smallbin */ #define unlink_first_small_chunk(M, B, P, I) {\ mchunkptr F = P->fd;\ assert(P != B);\ assert(P != F);\ assert(chunksize(P) == small_index2size(I));\ if (B == F) {\ clear_smallmap(M, I);\ }\ else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ F->bk = B;\ B->fd = F;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ } /* Replace dv node, binning the old one */ /* Used only when dvsize known to be small */ #define replace_dv(M, P, S) {\ size_t DVS = M->dvsize;\ assert(is_small(DVS));\ if (DVS != 0) {\ mchunkptr DV = M->dv;\ insert_small_chunk(M, DV, DVS);\ }\ M->dvsize = S;\ M->dv = P;\ } /* ------------------------- Operations on trees ------------------------- */ /* Insert chunk into tree */ #define insert_large_chunk(M, X, S) {\ tbinptr* H;\ bindex_t I;\ compute_tree_index(S, I);\ H = treebin_at(M, I);\ X->index = I;\ X->child[0] = X->child[1] = 0;\ if (!treemap_is_marked(M, I)) {\ mark_treemap(M, I);\ *H = X;\ X->parent = (tchunkptr)H;\ X->fd = X->bk = X;\ }\ else {\ tchunkptr T = *H;\ size_t K = S << leftshift_for_tree_index(I);\ for (;;) {\ if (chunksize(T) != S) {\ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ K <<= 1;\ if (*C != 0)\ T = *C;\ else if (RTCHECK(ok_address(M, C))) {\ *C = X;\ X->parent = T;\ X->fd = X->bk = X;\ break;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ break;\ }\ }\ else {\ tchunkptr F = T->fd;\ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ T->fd = F->bk = X;\ X->fd = F;\ X->bk = T;\ X->parent = 0;\ break;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ break;\ }\ }\ }\ }\ } /* Unlink steps: 1. If x is a chained node, unlink it from its same-sized fd/bk links and choose its bk node as its replacement. 2. If x was the last node of its size, but not a leaf node, it must be replaced with a leaf node (not merely one with an open left or right), to make sure that lefts and rights of descendents correspond properly to bit masks. We use the rightmost descendent of x. We could use any other leaf, but this is easy to locate and tends to counteract removal of leftmosts elsewhere, and so keeps paths shorter than minimally guaranteed. This doesn't loop much because on average a node in a tree is near the bottom. 3. If x is the base of a chain (i.e., has parent links) relink x's parent and children to x's replacement (or null if none). */ #define unlink_large_chunk(M, X) {\ tchunkptr XP = X->parent;\ tchunkptr R;\ if (X->bk != X) {\ tchunkptr F = X->fd;\ R = X->bk;\ if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ F->bk = R;\ R->fd = F;\ }\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ else {\ tchunkptr* RP;\ if (((R = *(RP = &(X->child[1]))) != 0) ||\ ((R = *(RP = &(X->child[0]))) != 0)) {\ tchunkptr* CP;\ while ((*(CP = &(R->child[1])) != 0) ||\ (*(CP = &(R->child[0])) != 0)) {\ R = *(RP = CP);\ }\ if (RTCHECK(ok_address(M, RP)))\ *RP = 0;\ else {\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ }\ if (XP != 0) {\ tbinptr* H = treebin_at(M, X->index);\ if (X == *H) {\ if ((*H = R) == 0) \ clear_treemap(M, X->index);\ }\ else if (RTCHECK(ok_address(M, XP))) {\ if (XP->child[0] == X) \ XP->child[0] = R;\ else \ XP->child[1] = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ if (R != 0) {\ if (RTCHECK(ok_address(M, R))) {\ tchunkptr C0, C1;\ R->parent = XP;\ if ((C0 = X->child[0]) != 0) {\ if (RTCHECK(ok_address(M, C0))) {\ R->child[0] = C0;\ C0->parent = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ if ((C1 = X->child[1]) != 0) {\ if (RTCHECK(ok_address(M, C1))) {\ R->child[1] = C1;\ C1->parent = R;\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ else\ CORRUPTION_ERROR_ACTION(M);\ }\ }\ } /* Relays to large vs small bin operations */ #define insert_chunk(M, P, S)\ if (is_small(S)) insert_small_chunk(M, P, S)\ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } #define unlink_chunk(M, P, S)\ if (is_small(S)) unlink_small_chunk(M, P, S)\ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } /* Relays to internal calls to malloc/free from realloc, memalign etc */ #if ONLY_MSPACES #define internal_malloc(m, b) mspace_malloc(m, b) #define internal_free(m, mem) mspace_free(m,mem); #else /* ONLY_MSPACES */ #if MSPACES #define internal_malloc(m, b)\ ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) #define internal_free(m, mem)\ if (m == gm) dlfree(mem); else mspace_free(m,mem); #else /* MSPACES */ #define internal_malloc(m, b) dlmalloc(b) #define internal_free(m, mem) dlfree(mem) #endif /* MSPACES */ #endif /* ONLY_MSPACES */ /* ----------------------- Direct-mmapping chunks ----------------------- */ /* Directly mmapped chunks are set up with an offset to the start of the mmapped region stored in the prev_foot field of the chunk. This allows reconstruction of the required argument to MUNMAP when freed, and also allows adjustment of the returned chunk to meet alignment requirements (especially in memalign). */ /* Malloc using mmap */ static void* mmap_alloc(mstate m, size_t nb) { size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); if (m->footprint_limit != 0) { size_t fp = m->footprint + mmsize; if (fp <= m->footprint || fp > m->footprint_limit) return 0; } if (mmsize > nb) { /* Check for wrap around 0 */ char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); if (mm != CMFAIL) { size_t offset = align_offset(chunk2mem(mm)); size_t psize = mmsize - offset - MMAP_FOOT_PAD; mchunkptr p = (mchunkptr)(mm + offset); p->prev_foot = offset; p->head = psize; mark_inuse_foot(m, p, psize); chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; if (m->least_addr == 0 || mm < m->least_addr) m->least_addr = mm; if ((m->footprint += mmsize) > m->max_footprint) m->max_footprint = m->footprint; assert(is_aligned(chunk2mem(p))); check_mmapped_chunk(m, p); return chunk2mem(p); } } return 0; } /* Realloc using mmap */ static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { size_t oldsize = chunksize(oldp); (void)flags; /* placate people compiling -Wunused */ if (is_small(nb)) /* Can't shrink mmap regions below small size */ return 0; /* Keep old chunk if big enough but not too big */ if (oldsize >= nb + SIZE_T_SIZE && (oldsize - nb) <= (mparams.granularity << 1)) return oldp; else { size_t offset = oldp->prev_foot; size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); char* cp = (char*)CALL_MREMAP((char*)oldp - offset, oldmmsize, newmmsize, flags); if (cp != CMFAIL) { mchunkptr newp = (mchunkptr)(cp + offset); size_t psize = newmmsize - offset - MMAP_FOOT_PAD; newp->head = psize; mark_inuse_foot(m, newp, psize); chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; if (cp < m->least_addr) m->least_addr = cp; if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) m->max_footprint = m->footprint; check_mmapped_chunk(m, newp); return newp; } } return 0; } /* -------------------------- mspace management -------------------------- */ /* Initialize top chunk and its size */ static void init_top(mstate m, mchunkptr p, size_t psize) { /* Ensure alignment */ size_t offset = align_offset(chunk2mem(p)); p = (mchunkptr)((char*)p + offset); psize -= offset; m->top = p; m->topsize = psize; p->head = psize | PINUSE_BIT; /* set size of fake trailing chunk holding overhead space only once */ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; m->trim_check = mparams.trim_threshold; /* reset on each update */ } /* Initialize bins for a new mstate that is otherwise zeroed out */ static void init_bins(mstate m) { /* Establish circular links for smallbins */ bindex_t i; for (i = 0; i < NSMALLBINS; ++i) { sbinptr bin = smallbin_at(m,i); bin->fd = bin->bk = bin; } } #if PROCEED_ON_ERROR /* default corruption action */ static void reset_on_error(mstate m) { int i; ++malloc_corruption_error_count; /* Reinitialize fields to forget about all memory */ m->smallmap = m->treemap = 0; m->dvsize = m->topsize = 0; m->seg.base = 0; m->seg.size = 0; m->seg.next = 0; m->top = m->dv = 0; for (i = 0; i < NTREEBINS; ++i) *treebin_at(m, i) = 0; init_bins(m); } #endif /* PROCEED_ON_ERROR */ /* Allocate chunk and prepend remainder with chunk in successor base. */ static void* prepend_alloc(mstate m, char* newbase, char* oldbase, size_t nb) { mchunkptr p = align_as_chunk(newbase); mchunkptr oldfirst = align_as_chunk(oldbase); size_t psize = (char*)oldfirst - (char*)p; mchunkptr q = chunk_plus_offset(p, nb); size_t qsize = psize - nb; set_size_and_pinuse_of_inuse_chunk(m, p, nb); assert((char*)oldfirst > (char*)q); assert(pinuse(oldfirst)); assert(qsize >= MIN_CHUNK_SIZE); /* consolidate remainder with first chunk of old base */ if (oldfirst == m->top) { size_t tsize = m->topsize += qsize; m->top = q; q->head = tsize | PINUSE_BIT; check_top_chunk(m, q); } else if (oldfirst == m->dv) { size_t dsize = m->dvsize += qsize; m->dv = q; set_size_and_pinuse_of_free_chunk(q, dsize); } else { if (!is_inuse(oldfirst)) { size_t nsize = chunksize(oldfirst); unlink_chunk(m, oldfirst, nsize); oldfirst = chunk_plus_offset(oldfirst, nsize); qsize += nsize; } set_free_with_pinuse(q, qsize, oldfirst); insert_chunk(m, q, qsize); check_free_chunk(m, q); } check_malloced_chunk(m, chunk2mem(p), nb); return chunk2mem(p); } /* Add a segment to hold a new noncontiguous region */ static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { /* Determine locations and sizes of segment, fenceposts, old top */ char* old_top = (char*)m->top; msegmentptr oldsp = segment_holding(m, old_top); char* old_end = oldsp->base + oldsp->size; size_t ssize = pad_request(sizeof(struct malloc_segment)); char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); size_t offset = align_offset(chunk2mem(rawsp)); char* asp = rawsp + offset; char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; mchunkptr sp = (mchunkptr)csp; msegmentptr ss = (msegmentptr)(chunk2mem(sp)); mchunkptr tnext = chunk_plus_offset(sp, ssize); mchunkptr p = tnext; int nfences = 0; /* reset top to new space */ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); /* Set up segment record */ assert(is_aligned(ss)); set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); *ss = m->seg; /* Push current record */ m->seg.base = tbase; m->seg.size = tsize; m->seg.sflags = mmapped; m->seg.next = ss; /* Insert trailing fenceposts */ for (;;) { mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); p->head = FENCEPOST_HEAD; ++nfences; if ((char*)(&(nextp->head)) < old_end) p = nextp; else break; } assert(nfences >= 2); /* Insert the rest of old top into a bin as an ordinary free chunk */ if (csp != old_top) { mchunkptr q = (mchunkptr)old_top; size_t psize = csp - old_top; mchunkptr tn = chunk_plus_offset(q, psize); set_free_with_pinuse(q, psize, tn); insert_chunk(m, q, psize); } check_top_chunk(m, m->top); } /* -------------------------- System allocation -------------------------- */ /* Get memory from system using MORECORE or MMAP */ static void* sys_alloc(mstate m, size_t nb) { char* tbase = CMFAIL; size_t tsize = 0; flag_t mmap_flag = 0; size_t asize; /* allocation size */ ensure_initialization(); if (use_noexpand(m)) return 0; /* Directly map large chunks, but only if already initialized */ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { void* mem = mmap_alloc(m, nb); if (mem != 0) return mem; } asize = granularity_align(nb + SYS_ALLOC_PADDING); if (asize <= nb) return 0; /* wraparound */ if (m->footprint_limit != 0) { size_t fp = m->footprint + asize; if (fp <= m->footprint || fp > m->footprint_limit) return 0; } /* Try getting memory in any of three ways (in most-preferred to least-preferred order): 1. A call to MORECORE that can normally contiguously extend memory. (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or or main space is mmapped or a previous contiguous call failed) 2. A call to MMAP new space (disabled if not HAVE_MMAP). Note that under the default settings, if MORECORE is unable to fulfill a request, and HAVE_MMAP is true, then mmap is used as a noncontiguous system allocator. This is a useful backup strategy for systems with holes in address spaces -- in this case sbrk cannot contiguously expand the heap, but mmap may be able to find space. 3. A call to MORECORE that cannot usually contiguously extend memory. (disabled if not HAVE_MORECORE) In all cases, we need to request enough bytes from system to ensure we can malloc nb bytes upon success, so pad with enough space for top_foot, plus alignment-pad to make sure we don't lose bytes if not on boundary, and round this up to a granularity unit. */ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { char* br = CMFAIL; size_t ssize = asize; /* sbrk call size */ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); ACQUIRE_MALLOC_GLOBAL_LOCK(); if (ss == 0) { /* First time through or recovery */ char* base = (char*)CALL_MORECORE(0); if (base != CMFAIL) { size_t fp; /* Adjust to end on a page boundary */ if (!is_page_aligned(base)) ssize += (page_align((size_t)base) - (size_t)base); fp = m->footprint + ssize; /* recheck limits */ if (ssize > nb && ssize < HALF_MAX_SIZE_T && (m->footprint_limit == 0 || (fp > m->footprint && fp <= m->footprint_limit)) && (br = (char*)(CALL_MORECORE(ssize))) == base) { tbase = base; tsize = ssize; } } } else { /* Subtract out existing available top space from MORECORE request. */ ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); /* Use mem here only if it did continuously extend old space */ if (ssize < HALF_MAX_SIZE_T && (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) { tbase = br; tsize = ssize; } } if (tbase == CMFAIL) { /* Cope with partial failure */ if (br != CMFAIL) { /* Try to use/extend the space we did get */ if (ssize < HALF_MAX_SIZE_T && ssize < nb + SYS_ALLOC_PADDING) { size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize); if (esize < HALF_MAX_SIZE_T) { char* end = (char*)CALL_MORECORE(esize); if (end != CMFAIL) ssize += esize; else { /* Can't use; try to release */ (void) CALL_MORECORE(-ssize); br = CMFAIL; } } } } if (br != CMFAIL) { /* Use the space we did get */ tbase = br; tsize = ssize; } else disable_contiguous(m); /* Don't try contiguous path in the future */ } RELEASE_MALLOC_GLOBAL_LOCK(); } if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ char* mp = (char*)(CALL_MMAP(asize)); if (mp != CMFAIL) { tbase = mp; tsize = asize; mmap_flag = USE_MMAP_BIT; } } if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ if (asize < HALF_MAX_SIZE_T) { char* br = CMFAIL; char* end = CMFAIL; ACQUIRE_MALLOC_GLOBAL_LOCK(); br = (char*)(CALL_MORECORE(asize)); end = (char*)(CALL_MORECORE(0)); RELEASE_MALLOC_GLOBAL_LOCK(); if (br != CMFAIL && end != CMFAIL && br < end) { size_t ssize = end - br; if (ssize > nb + TOP_FOOT_SIZE) { tbase = br; tsize = ssize; } } } } if (tbase != CMFAIL) { if ((m->footprint += tsize) > m->max_footprint) m->max_footprint = m->footprint; if (!is_initialized(m)) { /* first-time initialization */ if (m->least_addr == 0 || tbase < m->least_addr) m->least_addr = tbase; m->seg.base = tbase; m->seg.size = tsize; m->seg.sflags = mmap_flag; m->magic = mparams.magic; m->release_checks = MAX_RELEASE_CHECK_RATE; init_bins(m); #if !ONLY_MSPACES if (is_global(m)) init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); else #endif { /* Offset top by embedded malloc_state */ mchunkptr mn = next_chunk(mem2chunk(m)); init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); } } else { /* Try to merge with an existing segment */ msegmentptr sp = &m->seg; /* Only consider most recent segment if traversal suppressed */ while (sp != 0 && tbase != sp->base + sp->size) sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; if (sp != 0 && !is_extern_segment(sp) && (sp->sflags & USE_MMAP_BIT) == mmap_flag && segment_holds(sp, m->top)) { /* append */ sp->size += tsize; init_top(m, m->top, m->topsize + tsize); } else { if (tbase < m->least_addr) m->least_addr = tbase; sp = &m->seg; while (sp != 0 && sp->base != tbase + tsize) sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; if (sp != 0 && !is_extern_segment(sp) && (sp->sflags & USE_MMAP_BIT) == mmap_flag) { char* oldbase = sp->base; sp->base = tbase; sp->size += tsize; return prepend_alloc(m, tbase, oldbase, nb); } else add_segment(m, tbase, tsize, mmap_flag); } } if (nb < m->topsize) { /* Allocate from new or extended top space */ size_t rsize = m->topsize -= nb; mchunkptr p = m->top; mchunkptr r = m->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(m, p, nb); check_top_chunk(m, m->top); check_malloced_chunk(m, chunk2mem(p), nb); return chunk2mem(p); } } MALLOC_FAILURE_ACTION; return 0; } /* ----------------------- system deallocation -------------------------- */ /* Unmap and unlink any mmapped segments that don't contain used chunks */ static size_t release_unused_segments(mstate m) { size_t released = 0; int nsegs = 0; msegmentptr pred = &m->seg; msegmentptr sp = pred->next; while (sp != 0) { char* base = sp->base; size_t size = sp->size; msegmentptr next = sp->next; ++nsegs; if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { mchunkptr p = align_as_chunk(base); size_t psize = chunksize(p); /* Can unmap if first chunk holds entire segment and not pinned */ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { tchunkptr tp = (tchunkptr)p; assert(segment_holds(sp, (char*)sp)); if (p == m->dv) { m->dv = 0; m->dvsize = 0; } else { unlink_large_chunk(m, tp); } if (CALL_MUNMAP(base, size) == 0) { released += size; m->footprint -= size; /* unlink obsoleted record */ sp = pred; sp->next = next; } else { /* back out if cannot unmap */ insert_large_chunk(m, tp, psize); } } } if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ break; pred = sp; sp = next; } /* Reset check counter */ m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)? (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE); return released; } static int sys_trim(mstate m, size_t pad) { size_t released = 0; ensure_initialization(); if (pad < MAX_REQUEST && is_initialized(m)) { pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ if (m->topsize > pad) { /* Shrink top space in granularity-size units, keeping at least one */ size_t unit = mparams.granularity; size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - SIZE_T_ONE) * unit; msegmentptr sp = segment_holding(m, (char*)m->top); if (!is_extern_segment(sp)) { if (is_mmapped_segment(sp)) { if (HAVE_MMAP && sp->size >= extra && !has_segment_link(m, sp)) { /* can't shrink if pinned */ size_t newsize = sp->size - extra; (void)newsize; /* placate people compiling -Wunused-variable */ /* Prefer mremap, fall back to munmap */ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { released = extra; } } } else if (HAVE_MORECORE) { if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; ACQUIRE_MALLOC_GLOBAL_LOCK(); { /* Make sure end of memory is where we last set it. */ char* old_br = (char*)(CALL_MORECORE(0)); if (old_br == sp->base + sp->size) { char* rel_br = (char*)(CALL_MORECORE(-extra)); char* new_br = (char*)(CALL_MORECORE(0)); if (rel_br != CMFAIL && new_br < old_br) released = old_br - new_br; } } RELEASE_MALLOC_GLOBAL_LOCK(); } } if (released != 0) { sp->size -= released; m->footprint -= released; init_top(m, m->top, m->topsize - released); check_top_chunk(m, m->top); } } /* Unmap any unused mmapped segments */ if (HAVE_MMAP) released += release_unused_segments(m); /* On failure, disable autotrim to avoid repeated failed future calls */ if (released == 0 && m->topsize > m->trim_check) m->trim_check = MAX_SIZE_T; } return (released != 0)? 1 : 0; } /* Consolidate and bin a chunk. Differs from exported versions of free mainly in that the chunk need not be marked as inuse. */ static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { mchunkptr prev; size_t prevsize = p->prev_foot; if (is_mmapped(p)) { psize += prevsize + MMAP_FOOT_PAD; if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) m->footprint -= psize; return; } prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ if (p != m->dv) { unlink_chunk(m, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { m->dvsize = psize; set_free_with_pinuse(p, psize, next); return; } } else { CORRUPTION_ERROR_ACTION(m); return; } } if (RTCHECK(ok_address(m, next))) { if (!cinuse(next)) { /* consolidate forward */ if (next == m->top) { size_t tsize = m->topsize += psize; m->top = p; p->head = tsize | PINUSE_BIT; if (p == m->dv) { m->dv = 0; m->dvsize = 0; } return; } else if (next == m->dv) { size_t dsize = m->dvsize += psize; m->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); return; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(m, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == m->dv) { m->dvsize = psize; return; } } } else { set_free_with_pinuse(p, psize, next); } insert_chunk(m, p, psize); } else { CORRUPTION_ERROR_ACTION(m); } } /* ---------------------------- malloc --------------------------- */ /* allocate a large request from the best fitting chunk in a treebin */ static void* tmalloc_large(mstate m, size_t nb) { tchunkptr v = 0; size_t rsize = -nb; /* Unsigned negation */ tchunkptr t; bindex_t idx; compute_tree_index(nb, idx); if ((t = *treebin_at(m, idx)) != 0) { /* Traverse tree for this bin looking for node with size == nb */ size_t sizebits = nb << leftshift_for_tree_index(idx); tchunkptr rst = 0; /* The deepest untaken right subtree */ for (;;) { tchunkptr rt; size_t trem = chunksize(t) - nb; if (trem < rsize) { v = t; if ((rsize = trem) == 0) break; } rt = t->child[1]; t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; if (rt != 0 && rt != t) rst = rt; if (t == 0) { t = rst; /* set t to least subtree holding sizes > nb */ break; } sizebits <<= 1; } } if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; if (leftbits != 0) { bindex_t i; binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); t = *treebin_at(m, i); } } while (t != 0) { /* find smallest of tree or subtree */ size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } t = leftmost_child(t); } /* If dv is a better fit, return 0 so malloc will use it */ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { if (RTCHECK(ok_address(m, v))) { /* split */ mchunkptr r = chunk_plus_offset(v, nb); assert(chunksize(v) == rsize + nb); if (RTCHECK(ok_next(v, r))) { unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(m, v, (rsize + nb)); else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); insert_chunk(m, r, rsize); } return chunk2mem(v); } } CORRUPTION_ERROR_ACTION(m); } return 0; } /* allocate a small request from the best fitting chunk in a treebin */ static void* tmalloc_small(mstate m, size_t nb) { tchunkptr t, v; size_t rsize; bindex_t i; binmap_t leastbit = least_bit(m->treemap); compute_bit2idx(leastbit, i); v = t = *treebin_at(m, i); rsize = chunksize(t) - nb; while ((t = leftmost_child(t)) != 0) { size_t trem = chunksize(t) - nb; if (trem < rsize) { rsize = trem; v = t; } } if (RTCHECK(ok_address(m, v))) { mchunkptr r = chunk_plus_offset(v, nb); assert(chunksize(v) == rsize + nb); if (RTCHECK(ok_next(v, r))) { unlink_large_chunk(m, v); if (rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(m, v, (rsize + nb)); else { set_size_and_pinuse_of_inuse_chunk(m, v, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(m, r, rsize); } return chunk2mem(v); } } CORRUPTION_ERROR_ACTION(m); return 0; } #if !ONLY_MSPACES void* dlmalloc(size_t bytes) { /* Basic algorithm: If a small request (< 256 bytes minus per-chunk overhead): 1. If one exists, use a remainderless chunk in associated smallbin. (Remainderless means that there are too few excess bytes to represent as a chunk.) 2. If it is big enough, use the dv chunk, which is normally the chunk adjacent to the one used for the most recent small request. 3. If one exists, split the smallest available chunk in a bin, saving remainder in dv. 4. If it is big enough, use the top chunk. 5. If available, get memory from system and use it Otherwise, for a large request: 1. Find the smallest available binned chunk that fits, and use it if it is better fitting than dv chunk, splitting if necessary. 2. If better fitting than any binned chunk, use the dv chunk. 3. If it is big enough, use the top chunk. 4. If request size >= mmap threshold, try to directly mmap this chunk. 5. If available, get memory from system and use it The ugly goto's here ensure that postaction occurs along all paths. */ #if USE_LOCKS ensure_initialization(); /* initialize in sys_alloc if not using locks */ #endif if (!PREACTION(gm)) { void* mem; size_t nb; if (bytes <= MAX_SMALL_REQUEST) { bindex_t idx; binmap_t smallbits; nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); idx = small_index(nb); smallbits = gm->smallmap >> idx; if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ b = smallbin_at(gm, idx); p = b->fd; assert(chunksize(p) == small_index2size(idx)); unlink_first_small_chunk(gm, b, p, idx); set_inuse_and_pinuse(gm, p, small_index2size(idx)); mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (nb > gm->dvsize) { if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ mchunkptr b, p, r; size_t rsize; bindex_t i; binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); b = smallbin_at(gm, i); p = b->fd; assert(chunksize(p) == small_index2size(i)); unlink_first_small_chunk(gm, b, p, i); rsize = small_index2size(i) - nb; /* Fit here cannot be remainderless if 4byte sizes */ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(gm, p, small_index2size(i)); else { set_size_and_pinuse_of_inuse_chunk(gm, p, nb); r = chunk_plus_offset(p, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(gm, r, rsize); } mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { check_malloced_chunk(gm, mem, nb); goto postaction; } } } else if (bytes >= MAX_REQUEST) nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ else { nb = pad_request(bytes); if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { check_malloced_chunk(gm, mem, nb); goto postaction; } } if (nb <= gm->dvsize) { size_t rsize = gm->dvsize - nb; mchunkptr p = gm->dv; if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ mchunkptr r = gm->dv = chunk_plus_offset(p, nb); gm->dvsize = rsize; set_size_and_pinuse_of_free_chunk(r, rsize); set_size_and_pinuse_of_inuse_chunk(gm, p, nb); } else { /* exhaust dv */ size_t dvs = gm->dvsize; gm->dvsize = 0; gm->dv = 0; set_inuse_and_pinuse(gm, p, dvs); } mem = chunk2mem(p); check_malloced_chunk(gm, mem, nb); goto postaction; } else if (nb < gm->topsize) { /* Split top */ size_t rsize = gm->topsize -= nb; mchunkptr p = gm->top; mchunkptr r = gm->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(gm, p, nb); mem = chunk2mem(p); check_top_chunk(gm, gm->top); check_malloced_chunk(gm, mem, nb); goto postaction; } mem = sys_alloc(gm, nb); postaction: POSTACTION(gm); return mem; } return 0; } /* ---------------------------- free --------------------------- */ void dlfree(void* mem) { /* Consolidate freed chunks with preceeding or succeeding bordering free chunks, if they exist, and then place in a bin. Intermixed with special cases for top, dv, mmapped chunks, and usage errors. */ if (mem != 0) { mchunkptr p = mem2chunk(mem); #if FOOTERS mstate fm = get_mstate_for(p); if (!ok_magic(fm)) { USAGE_ERROR_ACTION(fm, p); return; } #else /* FOOTERS */ #define fm gm #endif /* FOOTERS */ if (!PREACTION(fm)) { check_inuse_chunk(fm, p); if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { size_t psize = chunksize(p); mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { size_t prevsize = p->prev_foot; if (is_mmapped(p)) { psize += prevsize + MMAP_FOOT_PAD; if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) fm->footprint -= psize; goto postaction; } else { mchunkptr prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ if (p != fm->dv) { unlink_chunk(fm, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { fm->dvsize = psize; set_free_with_pinuse(p, psize, next); goto postaction; } } else goto erroraction; } } if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { if (!cinuse(next)) { /* consolidate forward */ if (next == fm->top) { size_t tsize = fm->topsize += psize; fm->top = p; p->head = tsize | PINUSE_BIT; if (p == fm->dv) { fm->dv = 0; fm->dvsize = 0; } if (should_trim(fm, tsize)) sys_trim(fm, 0); goto postaction; } else if (next == fm->dv) { size_t dsize = fm->dvsize += psize; fm->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); goto postaction; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(fm, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == fm->dv) { fm->dvsize = psize; goto postaction; } } } else set_free_with_pinuse(p, psize, next); if (is_small(psize)) { insert_small_chunk(fm, p, psize); check_free_chunk(fm, p); } else { tchunkptr tp = (tchunkptr)p; insert_large_chunk(fm, tp, psize); check_free_chunk(fm, p); if (--fm->release_checks == 0) release_unused_segments(fm); } goto postaction; } } erroraction: USAGE_ERROR_ACTION(fm, p); postaction: POSTACTION(fm); } } #if !FOOTERS #undef fm #endif /* FOOTERS */ } void* dlcalloc(size_t n_elements, size_t elem_size) { void* mem; size_t req = 0; if (n_elements != 0) { req = n_elements * elem_size; if (((n_elements | elem_size) & ~(size_t)0xffff) && (req / n_elements != elem_size)) req = MAX_SIZE_T; /* force downstream failure on overflow */ } mem = dlmalloc(req); if (mem != 0 && calloc_must_clear(mem2chunk(mem))) memset(mem, 0, req); return mem; } #endif /* !ONLY_MSPACES */ /* ------------ Internal support for realloc, memalign, etc -------------- */ /* Try to realloc; only in-place unless can_move true */ static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, int can_move) { mchunkptr newp = 0; size_t oldsize = chunksize(p); mchunkptr next = chunk_plus_offset(p, oldsize); if (RTCHECK(ok_address(m, p) && ok_inuse(p) && ok_next(p, next) && ok_pinuse(next))) { if (is_mmapped(p)) { newp = mmap_resize(m, p, nb, can_move); } else if (oldsize >= nb) { /* already big enough */ size_t rsize = oldsize - nb; if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ mchunkptr r = chunk_plus_offset(p, nb); set_inuse(m, p, nb); set_inuse(m, r, rsize); dispose_chunk(m, r, rsize); } newp = p; } else if (next == m->top) { /* extend into top */ if (oldsize + m->topsize > nb) { size_t newsize = oldsize + m->topsize; size_t newtopsize = newsize - nb; mchunkptr newtop = chunk_plus_offset(p, nb); set_inuse(m, p, nb); newtop->head = newtopsize |PINUSE_BIT; m->top = newtop; m->topsize = newtopsize; newp = p; } } else if (next == m->dv) { /* extend into dv */ size_t dvs = m->dvsize; if (oldsize + dvs >= nb) { size_t dsize = oldsize + dvs - nb; if (dsize >= MIN_CHUNK_SIZE) { mchunkptr r = chunk_plus_offset(p, nb); mchunkptr n = chunk_plus_offset(r, dsize); set_inuse(m, p, nb); set_size_and_pinuse_of_free_chunk(r, dsize); clear_pinuse(n); m->dvsize = dsize; m->dv = r; } else { /* exhaust dv */ size_t newsize = oldsize + dvs; set_inuse(m, p, newsize); m->dvsize = 0; m->dv = 0; } newp = p; } } else if (!cinuse(next)) { /* extend into next free chunk */ size_t nextsize = chunksize(next); if (oldsize + nextsize >= nb) { size_t rsize = oldsize + nextsize - nb; unlink_chunk(m, next, nextsize); if (rsize < MIN_CHUNK_SIZE) { size_t newsize = oldsize + nextsize; set_inuse(m, p, newsize); } else { mchunkptr r = chunk_plus_offset(p, nb); set_inuse(m, p, nb); set_inuse(m, r, rsize); dispose_chunk(m, r, rsize); } newp = p; } } } else { USAGE_ERROR_ACTION(m, chunk2mem(p)); } return newp; } static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { void* mem = 0; if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ alignment = MIN_CHUNK_SIZE; if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ size_t a = MALLOC_ALIGNMENT << 1; while (a < alignment) a <<= 1; alignment = a; } if (bytes >= MAX_REQUEST - alignment) { if (m != 0) { /* Test isn't needed but avoids compiler warning */ MALLOC_FAILURE_ACTION; } } else { size_t nb = request2size(bytes); size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; mem = internal_malloc(m, req); if (mem != 0) { mchunkptr p = mem2chunk(mem); if (PREACTION(m)) return 0; if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ /* Find an aligned spot inside chunk. Since we need to give back leading space in a chunk of at least MIN_CHUNK_SIZE, if the first calculation places us at a spot with less than MIN_CHUNK_SIZE leader, we can move to the next aligned spot. We've allocated enough total room so that this is always possible. */ char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - SIZE_T_ONE)) & -alignment)); char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? br : br+alignment; mchunkptr newp = (mchunkptr)pos; size_t leadsize = pos - (char*)(p); size_t newsize = chunksize(p) - leadsize; if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ newp->prev_foot = p->prev_foot + leadsize; newp->head = newsize; } else { /* Otherwise, give back leader, use the rest */ set_inuse(m, newp, newsize); set_inuse(m, p, leadsize); dispose_chunk(m, p, leadsize); } p = newp; } /* Give back spare room at the end */ if (!is_mmapped(p)) { size_t size = chunksize(p); if (size > nb + MIN_CHUNK_SIZE) { size_t remainder_size = size - nb; mchunkptr remainder = chunk_plus_offset(p, nb); set_inuse(m, p, nb); set_inuse(m, remainder, remainder_size); dispose_chunk(m, remainder, remainder_size); } } mem = chunk2mem(p); assert (chunksize(p) >= nb); assert(((size_t)mem & (alignment - 1)) == 0); check_inuse_chunk(m, p); POSTACTION(m); } } return mem; } /* Common support for independent_X routines, handling all of the combinations that can result. The opts arg has: bit 0 set if all elements are same size (using sizes[0]) bit 1 set if elements should be zeroed */ static void** ialloc(mstate m, size_t n_elements, size_t* sizes, int opts, void* chunks[]) { size_t element_size; /* chunksize of each element, if all same */ size_t contents_size; /* total size of elements */ size_t array_size; /* request size of pointer array */ void* mem; /* malloced aggregate space */ mchunkptr p; /* corresponding chunk */ size_t remainder_size; /* remaining bytes while splitting */ void** marray; /* either "chunks" or malloced ptr array */ mchunkptr array_chunk; /* chunk for malloced ptr array */ flag_t was_enabled; /* to disable mmap */ size_t size; size_t i; ensure_initialization(); /* compute array length, if needed */ if (chunks != 0) { if (n_elements == 0) return chunks; /* nothing to do */ marray = chunks; array_size = 0; } else { /* if empty req, must still return chunk representing empty array */ if (n_elements == 0) return (void**)internal_malloc(m, 0); marray = 0; array_size = request2size(n_elements * (sizeof(void*))); } /* compute total element size */ if (opts & 0x1) { /* all-same-size */ element_size = request2size(*sizes); contents_size = n_elements * element_size; } else { /* add up all the sizes */ element_size = 0; contents_size = 0; for (i = 0; i != n_elements; ++i) contents_size += request2size(sizes[i]); } size = contents_size + array_size; /* Allocate the aggregate chunk. First disable direct-mmapping so malloc won't use it, since we would not be able to later free/realloc space internal to a segregated mmap region. */ was_enabled = use_mmap(m); disable_mmap(m); mem = internal_malloc(m, size - CHUNK_OVERHEAD); if (was_enabled) enable_mmap(m); if (mem == 0) return 0; if (PREACTION(m)) return 0; p = mem2chunk(mem); remainder_size = chunksize(p); assert(!is_mmapped(p)); if (opts & 0x2) { /* optionally clear the elements */ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); } /* If not provided, allocate the pointer array as final part of chunk */ if (marray == 0) { size_t array_chunk_size; array_chunk = chunk_plus_offset(p, contents_size); array_chunk_size = remainder_size - contents_size; marray = (void**) (chunk2mem(array_chunk)); set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); remainder_size = contents_size; } /* split out elements */ for (i = 0; ; ++i) { marray[i] = chunk2mem(p); if (i != n_elements-1) { if (element_size != 0) size = element_size; else size = request2size(sizes[i]); remainder_size -= size; set_size_and_pinuse_of_inuse_chunk(m, p, size); p = chunk_plus_offset(p, size); } else { /* the final element absorbs any overallocation slop */ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); break; } } #if DEBUG if (marray != chunks) { /* final element must have exactly exhausted chunk */ if (element_size != 0) { assert(remainder_size == element_size); } else { assert(remainder_size == request2size(sizes[i])); } check_inuse_chunk(m, mem2chunk(marray)); } for (i = 0; i != n_elements; ++i) check_inuse_chunk(m, mem2chunk(marray[i])); #endif /* DEBUG */ POSTACTION(m); return marray; } /* Try to free all pointers in the given array. Note: this could be made faster, by delaying consolidation, at the price of disabling some user integrity checks, We still optimize some consolidations by combining adjacent chunks before freeing, which will occur often if allocated with ialloc or the array is sorted. */ static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { size_t unfreed = 0; if (!PREACTION(m)) { void** a; void** fence = &(array[nelem]); for (a = array; a != fence; ++a) { void* mem = *a; if (mem != 0) { mchunkptr p = mem2chunk(mem); size_t psize = chunksize(p); #if FOOTERS if (get_mstate_for(p) != m) { ++unfreed; continue; } #endif check_inuse_chunk(m, p); *a = 0; if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { void ** b = a + 1; /* try to merge with next chunk */ mchunkptr next = next_chunk(p); if (b != fence && *b == chunk2mem(next)) { size_t newsize = chunksize(next) + psize; set_inuse(m, p, newsize); *b = chunk2mem(p); } else dispose_chunk(m, p, psize); } else { CORRUPTION_ERROR_ACTION(m); break; } } } if (should_trim(m, m->topsize)) sys_trim(m, 0); POSTACTION(m); } return unfreed; } /* Traversal */ #if MALLOC_INSPECT_ALL static void internal_inspect_all(mstate m, void(*handler)(void *start, void *end, size_t used_bytes, void* callback_arg), void* arg) { if (is_initialized(m)) { mchunkptr top = m->top; msegmentptr s; for (s = &m->seg; s != 0; s = s->next) { mchunkptr q = align_as_chunk(s->base); while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { mchunkptr next = next_chunk(q); size_t sz = chunksize(q); size_t used; void* start; if (is_inuse(q)) { used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ start = chunk2mem(q); } else { used = 0; if (is_small(sz)) { /* offset by possible bookkeeping */ start = (void*)((char*)q + sizeof(struct malloc_chunk)); } else { start = (void*)((char*)q + sizeof(struct malloc_tree_chunk)); } } if (start < (void*)next) /* skip if all space is bookkeeping */ handler(start, next, used, arg); if (q == top) break; q = next; } } } } #endif /* MALLOC_INSPECT_ALL */ /* ------------------ Exported realloc, memalign, etc -------------------- */ #if !ONLY_MSPACES void* dlrealloc(void* oldmem, size_t bytes) { void* mem = 0; if (oldmem == 0) { mem = dlmalloc(bytes); } else if (bytes >= MAX_REQUEST) { MALLOC_FAILURE_ACTION; } #ifdef REALLOC_ZERO_BYTES_FREES else if (bytes == 0) { dlfree(oldmem); } #endif /* REALLOC_ZERO_BYTES_FREES */ else { size_t nb = request2size(bytes); mchunkptr oldp = mem2chunk(oldmem); #if ! FOOTERS mstate m = gm; #else /* FOOTERS */ mstate m = get_mstate_for(oldp); if (!ok_magic(m)) { USAGE_ERROR_ACTION(m, oldmem); return 0; } #endif /* FOOTERS */ if (!PREACTION(m)) { mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); POSTACTION(m); if (newp != 0) { check_inuse_chunk(m, newp); mem = chunk2mem(newp); } else { mem = internal_malloc(m, bytes); if (mem != 0) { size_t oc = chunksize(oldp) - overhead_for(oldp); memcpy(mem, oldmem, (oc < bytes)? oc : bytes); internal_free(m, oldmem); } } } } return mem; } void* dlrealloc_in_place(void* oldmem, size_t bytes) { void* mem = 0; if (oldmem != 0) { if (bytes >= MAX_REQUEST) { MALLOC_FAILURE_ACTION; } else { size_t nb = request2size(bytes); mchunkptr oldp = mem2chunk(oldmem); #if ! FOOTERS mstate m = gm; #else /* FOOTERS */ mstate m = get_mstate_for(oldp); if (!ok_magic(m)) { USAGE_ERROR_ACTION(m, oldmem); return 0; } #endif /* FOOTERS */ if (!PREACTION(m)) { mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); POSTACTION(m); if (newp == oldp) { check_inuse_chunk(m, newp); mem = oldmem; } } } } return mem; } void* dlmemalign(size_t alignment, size_t bytes) { if (alignment <= MALLOC_ALIGNMENT) { return dlmalloc(bytes); } return internal_memalign(gm, alignment, bytes); } int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { void* mem = 0; if (alignment == MALLOC_ALIGNMENT) mem = dlmalloc(bytes); else { size_t d = alignment / sizeof(void*); size_t r = alignment % sizeof(void*); if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) return EINVAL; else if (bytes <= MAX_REQUEST - alignment) { if (alignment < MIN_CHUNK_SIZE) alignment = MIN_CHUNK_SIZE; mem = internal_memalign(gm, alignment, bytes); } } if (mem == 0) return ENOMEM; else { *pp = mem; return 0; } } void* dlvalloc(size_t bytes) { size_t pagesz; ensure_initialization(); pagesz = mparams.page_size; return dlmemalign(pagesz, bytes); } void* dlpvalloc(size_t bytes) { size_t pagesz; ensure_initialization(); pagesz = mparams.page_size; return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); } void** dlindependent_calloc(size_t n_elements, size_t elem_size, void* chunks[]) { size_t sz = elem_size; /* serves as 1-element array */ return ialloc(gm, n_elements, &sz, 3, chunks); } void** dlindependent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]) { return ialloc(gm, n_elements, sizes, 0, chunks); } size_t dlbulk_free(void* array[], size_t nelem) { return internal_bulk_free(gm, array, nelem); } #if MALLOC_INSPECT_ALL void dlmalloc_inspect_all(void(*handler)(void *start, void *end, size_t used_bytes, void* callback_arg), void* arg) { ensure_initialization(); if (!PREACTION(gm)) { internal_inspect_all(gm, handler, arg); POSTACTION(gm); } } #endif /* MALLOC_INSPECT_ALL */ int dlmalloc_trim(size_t pad) { int result = 0; ensure_initialization(); if (!PREACTION(gm)) { result = sys_trim(gm, pad); POSTACTION(gm); } return result; } size_t dlmalloc_footprint(void) { return gm->footprint; } size_t dlmalloc_max_footprint(void) { return gm->max_footprint; } size_t dlmalloc_footprint_limit(void) { size_t maf = gm->footprint_limit; return maf == 0 ? MAX_SIZE_T : maf; } size_t dlmalloc_set_footprint_limit(size_t bytes) { size_t result; /* invert sense of 0 */ if (bytes == 0) result = granularity_align(1); /* Use minimal size */ if (bytes == MAX_SIZE_T) result = 0; /* disable */ else result = granularity_align(bytes); return gm->footprint_limit = result; } #if !NO_MALLINFO struct dlmallinfo dlmallinfo(void) { return internal_mallinfo(gm); } #endif /* NO_MALLINFO */ #if !NO_MALLOC_STATS void dlmalloc_stats() { internal_malloc_stats(gm); } #endif /* NO_MALLOC_STATS */ int dlmallopt(int param_number, int value) { return change_mparam(param_number, value); } size_t dlmalloc_usable_size(void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); if (is_inuse(p)) return chunksize(p) - overhead_for(p); } return 0; } #endif /* !ONLY_MSPACES */ /* ----------------------------- user mspaces ---------------------------- */ #if MSPACES static mstate init_user_mstate(char* tbase, size_t tsize) { size_t msize = pad_request(sizeof(struct malloc_state)); mchunkptr mn; mchunkptr msp = align_as_chunk(tbase); mstate m = (mstate)(chunk2mem(msp)); memset(m, 0, msize); (void)INITIAL_LOCK(&m->mutex); msp->head = (msize|INUSE_BITS); m->seg.base = m->least_addr = tbase; m->seg.size = m->footprint = m->max_footprint = tsize; m->magic = mparams.magic; m->release_checks = MAX_RELEASE_CHECK_RATE; m->mflags = mparams.default_mflags; m->extp = 0; m->exts = 0; disable_contiguous(m); init_bins(m); mn = next_chunk(mem2chunk(m)); init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); check_top_chunk(m, m->top); return m; } mspace create_mspace(size_t capacity, int locked) { mstate m = 0; size_t msize; ensure_initialization(); msize = pad_request(sizeof(struct malloc_state)); if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { size_t rs = ((capacity == 0)? mparams.granularity : (capacity + TOP_FOOT_SIZE + msize)); size_t tsize = granularity_align(rs); char* tbase = (char*)(CALL_MMAP(tsize)); if (tbase != CMFAIL) { m = init_user_mstate(tbase, tsize); m->seg.sflags = USE_MMAP_BIT; set_lock(m, locked); } } return (mspace)m; } mspace create_mspace_with_base(void* base, size_t capacity, int locked) { mstate m = 0; size_t msize; ensure_initialization(); msize = pad_request(sizeof(struct malloc_state)); if (capacity > msize + TOP_FOOT_SIZE && capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { m = init_user_mstate((char*)base, capacity); m->seg.sflags = EXTERN_BIT; set_lock(m, locked); } return (mspace)m; } int mspace_track_large_chunks(mspace msp, int enable) { int ret = 0; mstate ms = (mstate)msp; if (!PREACTION(ms)) { if (!use_mmap(ms)) { ret = 1; } if (!enable) { enable_mmap(ms); } else { disable_mmap(ms); } POSTACTION(ms); } return ret; } size_t destroy_mspace(mspace msp) { size_t freed = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { msegmentptr sp = &ms->seg; (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */ while (sp != 0) { char* base = sp->base; size_t size = sp->size; flag_t flag = sp->sflags; (void)base; /* placate people compiling -Wunused-variable */ sp = sp->next; if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && CALL_MUNMAP(base, size) == 0) freed += size; } } else { USAGE_ERROR_ACTION(ms,ms); } return freed; } void mspace_get_address_and_size (mspace msp, unsigned long long *addrp, unsigned long long *sizep) { mstate ms; msegment *this_seg; ms = (mstate)msp; this_seg = &ms->seg; *addrp = (unsigned long long) this_seg->base; *sizep = this_seg->size; } int mspace_is_heap_object (mspace msp, void *p) { msegment *this_seg; char *pp, *base; mstate ms; ms = (mstate)msp; this_seg = &ms->seg; pp = (char *) p; while (this_seg) { base = this_seg->base; if (pp >= base && pp < (base + this_seg->size)) return 1; this_seg = this_seg->next; } if (pp > ms->least_addr && pp <= ms->least_addr + ms->footprint) return 1; return 0; } void *mspace_least_addr (mspace msp) { mstate ms = (mstate) msp; return (void *) ms->least_addr; } void mspace_disable_expand (mspace msp) { mstate ms = (mstate)msp; disable_expand (ms); } int mspace_enable_disable_trace (mspace msp, int enable) { mstate ms = (mstate)msp; int was_enabled = 0; if (use_trace(ms)) was_enabled = 1; if (enable) enable_trace (ms); else disable_trace (ms); return (was_enabled); } void* mspace_get_aligned (mspace msp, unsigned long long n_user_data_bytes, unsigned long long align, unsigned long long align_offset) { char *rv; unsigned long long searchp; unsigned *wwp; /* "where's Waldo" pointer */ mstate ms = (mstate)msp; /* * Allocate space for the "Where's Waldo?" pointer * the base of the dlmalloc object */ n_user_data_bytes += sizeof(unsigned); /* * Alignment requests less than the size of an mmx vector are ignored */ if (align < 16) { rv = mspace_malloc (msp, n_user_data_bytes); if (rv == 0) return rv; if (use_trace(ms)) { mchunkptr p = mem2chunk(rv); size_t psize = chunksize(p); mheap_get_trace ((u64)rv + sizeof (unsigned), psize); } wwp = (unsigned *)rv; *wwp = 0; rv += sizeof (unsigned); return rv; } /* * Alignment requests greater than 4K must be at offset zero, * and must be freed using mspace_free_no_offset - or never freed - * since the "Where's Waldo?" pointer would waste too much space. * * Waldo is the address of the chunk of memory returned by mspace_malloc, * which we need later to call mspace_free... */ if (align > 4<<10 || align_offset == ~0ULL) { n_user_data_bytes -= sizeof(unsigned); assert(align_offset == 0); rv = internal_memalign(ms, (size_t)align, n_user_data_bytes); /* Trace the allocation */ if (rv && use_trace(ms)) { mchunkptr p = mem2chunk(rv); size_t psize = chunksize(p); mheap_get_trace ((u64)rv, psize); } return rv; } align = clib_max (align, MALLOC_ALIGNMENT); align = max_pow2 (align); /* Correct align offset to be smaller than alignment. */ align_offset &= (align - 1); n_user_data_bytes += align; rv = mspace_malloc (msp, n_user_data_bytes); if (rv == 0) return rv; /* Honor the alignment request */ searchp = (unsigned long long)(rv + sizeof (unsigned)); #if 0 /* this is the idea... */ while ((searchp + align_offset) % align) searchp++; #endif { unsigned long long where_now, delta; where_now = (searchp + align_offset) % align; delta = align - where_now; searchp += delta; } wwp = (unsigned *)(searchp - sizeof(unsigned)); *wwp = (searchp - (((unsigned long long) rv) + sizeof (*wwp))); assert (*wwp < align); if (use_trace(ms)) { mchunkptr p = mem2chunk(rv); size_t psize = chunksize(p); mheap_get_trace ((u64)rv, psize); } return (void *) searchp; } void mspace_put (mspace msp, void *p_arg) { char *object_header; unsigned *wwp; mstate ms = (mstate)msp; /* Find the object header delta */ wwp = (unsigned *)p_arg; wwp --; /* Recover the dlmalloc object pointer */ object_header = (char *)wwp; object_header -= *wwp; /* Tracing (if enabled) */ if (use_trace(ms)) { mchunkptr p = mem2chunk(object_header); size_t psize = chunksize(p); mheap_put_trace ((u64)p_arg, psize); } #if CLIB_DEBUG > 0 /* Poison the object */ { size_t psize = mspace_usable_size (object_header); memset (object_header, 0x13, psize); } #endif /* And free it... */ mspace_free (msp, object_header); } void mspace_put_no_offset (mspace msp, void *p_arg) { mstate ms = (mstate)msp; if (use_trace(ms)) { mchunkptr p = mem2chunk(p_arg); size_t psize = chunksize(p); mheap_put_trace ((u64)p_arg, psize); } mspace_free (msp, p_arg); } size_t mspace_usable_size_with_delta (const void *p) { size_t usable_size; char *object_header; unsigned *wwp; /* Find the object header delta */ wwp = (unsigned *)p; wwp --; /* Recover the dlmalloc object pointer */ object_header = (char *)wwp; object_header -= *wwp; usable_size = mspace_usable_size (object_header); /* account for the offset and the size of the offset... */ usable_size -= (*wwp + sizeof (*wwp)); return usable_size; } /* mspace versions of routines are near-clones of the global versions. This is not so nice but better than the alternatives. */ void* mspace_malloc(mspace msp, size_t bytes) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } if (!PREACTION(ms)) { void* mem; size_t nb; if (bytes <= MAX_SMALL_REQUEST) { bindex_t idx; binmap_t smallbits; nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); idx = small_index(nb); smallbits = ms->smallmap >> idx; if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ mchunkptr b, p; idx += ~smallbits & 1; /* Uses next bin if idx empty */ b = smallbin_at(ms, idx); p = b->fd; assert(chunksize(p) == small_index2size(idx)); unlink_first_small_chunk(ms, b, p, idx); set_inuse_and_pinuse(ms, p, small_index2size(idx)); mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (nb > ms->dvsize) { if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ mchunkptr b, p, r; size_t rsize; bindex_t i; binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); binmap_t leastbit = least_bit(leftbits); compute_bit2idx(leastbit, i); b = smallbin_at(ms, i); p = b->fd; assert(chunksize(p) == small_index2size(i)); unlink_first_small_chunk(ms, b, p, i); rsize = small_index2size(i) - nb; /* Fit here cannot be remainderless if 4byte sizes */ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) set_inuse_and_pinuse(ms, p, small_index2size(i)); else { set_size_and_pinuse_of_inuse_chunk(ms, p, nb); r = chunk_plus_offset(p, nb); set_size_and_pinuse_of_free_chunk(r, rsize); replace_dv(ms, r, rsize); } mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { check_malloced_chunk(ms, mem, nb); goto postaction; } } } else if (bytes >= MAX_REQUEST) nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ else { nb = pad_request(bytes); if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { check_malloced_chunk(ms, mem, nb); goto postaction; } } if (nb <= ms->dvsize) { size_t rsize = ms->dvsize - nb; mchunkptr p = ms->dv; if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ mchunkptr r = ms->dv = chunk_plus_offset(p, nb); ms->dvsize = rsize; set_size_and_pinuse_of_free_chunk(r, rsize); set_size_and_pinuse_of_inuse_chunk(ms, p, nb); } else { /* exhaust dv */ size_t dvs = ms->dvsize; ms->dvsize = 0; ms->dv = 0; set_inuse_and_pinuse(ms, p, dvs); } mem = chunk2mem(p); check_malloced_chunk(ms, mem, nb); goto postaction; } else if (nb < ms->topsize) { /* Split top */ size_t rsize = ms->topsize -= nb; mchunkptr p = ms->top; mchunkptr r = ms->top = chunk_plus_offset(p, nb); r->head = rsize | PINUSE_BIT; set_size_and_pinuse_of_inuse_chunk(ms, p, nb); mem = chunk2mem(p); check_top_chunk(ms, ms->top); check_malloced_chunk(ms, mem, nb); goto postaction; } mem = sys_alloc(ms, nb); postaction: POSTACTION(ms); return mem; } return 0; } void mspace_free(mspace msp, void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); #if FOOTERS mstate fm = get_mstate_for(p); (void)msp; /* placate people compiling -Wunused */ #else /* FOOTERS */ mstate fm = (mstate)msp; #endif /* FOOTERS */ if (!ok_magic(fm)) { USAGE_ERROR_ACTION(fm, p); return; } if (!PREACTION(fm)) { check_inuse_chunk(fm, p); if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { size_t psize = chunksize(p); mchunkptr next = chunk_plus_offset(p, psize); if (!pinuse(p)) { size_t prevsize = p->prev_foot; if (is_mmapped(p)) { psize += prevsize + MMAP_FOOT_PAD; if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) fm->footprint -= psize; goto postaction; } else { mchunkptr prev = chunk_minus_offset(p, prevsize); psize += prevsize; p = prev; if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ if (p != fm->dv) { unlink_chunk(fm, p, prevsize); } else if ((next->head & INUSE_BITS) == INUSE_BITS) { fm->dvsize = psize; set_free_with_pinuse(p, psize, next); goto postaction; } } else goto erroraction; } } if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { if (!cinuse(next)) { /* consolidate forward */ if (next == fm->top) { size_t tsize = fm->topsize += psize; fm->top = p; p->head = tsize | PINUSE_BIT; if (p == fm->dv) { fm->dv = 0; fm->dvsize = 0; } if (should_trim(fm, tsize)) sys_trim(fm, 0); goto postaction; } else if (next == fm->dv) { size_t dsize = fm->dvsize += psize; fm->dv = p; set_size_and_pinuse_of_free_chunk(p, dsize); goto postaction; } else { size_t nsize = chunksize(next); psize += nsize; unlink_chunk(fm, next, nsize); set_size_and_pinuse_of_free_chunk(p, psize); if (p == fm->dv) { fm->dvsize = psize; goto postaction; } } } else set_free_with_pinuse(p, psize, next); if (is_small(psize)) { insert_small_chunk(fm, p, psize); check_free_chunk(fm, p); } else { tchunkptr tp = (tchunkptr)p; insert_large_chunk(fm, tp, psize); check_free_chunk(fm, p); if (--fm->release_checks == 0) release_unused_segments(fm); } goto postaction; } } erroraction: USAGE_ERROR_ACTION(fm, p); postaction: POSTACTION(fm); } } } void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { void* mem; size_t req = 0; mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } if (n_elements != 0) { req = n_elements * elem_size; if (((n_elements | elem_size) & ~(size_t)0xffff) && (req / n_elements != elem_size)) req = MAX_SIZE_T; /* force downstream failure on overflow */ } mem = internal_malloc(ms, req); if (mem != 0 && calloc_must_clear(mem2chunk(mem))) memset(mem, 0, req); return mem; } void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { void* mem = 0; if (oldmem == 0) { mem = mspace_malloc(msp, bytes); } else if (bytes >= MAX_REQUEST) { MALLOC_FAILURE_ACTION; } #ifdef REALLOC_ZERO_BYTES_FREES else if (bytes == 0) { mspace_free(msp, oldmem); } #endif /* REALLOC_ZERO_BYTES_FREES */ else { size_t nb = request2size(bytes); mchunkptr oldp = mem2chunk(oldmem); #if ! FOOTERS mstate m = (mstate)msp; #else /* FOOTERS */ mstate m = get_mstate_for(oldp); if (!ok_magic(m)) { USAGE_ERROR_ACTION(m, oldmem); return 0; } #endif /* FOOTERS */ if (!PREACTION(m)) { mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); POSTACTION(m); if (newp != 0) { check_inuse_chunk(m, newp); mem = chunk2mem(newp); } else { mem = mspace_malloc(m, bytes); if (mem != 0) { size_t oc = chunksize(oldp) - overhead_for(oldp); memcpy(mem, oldmem, (oc < bytes)? oc : bytes); mspace_free(m, oldmem); } } } } return mem; } void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) { void* mem = 0; if (oldmem != 0) { if (bytes >= MAX_REQUEST) { MALLOC_FAILURE_ACTION; } else { size_t nb = request2size(bytes); mchunkptr oldp = mem2chunk(oldmem); #if ! FOOTERS mstate m = (mstate)msp; #else /* FOOTERS */ mstate m = get_mstate_for(oldp); (void)msp; /* placate people compiling -Wunused */ if (!ok_magic(m)) { USAGE_ERROR_ACTION(m, oldmem); return 0; } #endif /* FOOTERS */ if (!PREACTION(m)) { mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); POSTACTION(m); if (newp == oldp) { check_inuse_chunk(m, newp); mem = oldmem; } } } } return mem; } void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } if (alignment <= MALLOC_ALIGNMENT) return mspace_malloc(msp, bytes); return internal_memalign(ms, alignment, bytes); } void** mspace_independent_calloc(mspace msp, size_t n_elements, size_t elem_size, void* chunks[]) { size_t sz = elem_size; /* serves as 1-element array */ mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return ialloc(ms, n_elements, &sz, 3, chunks); } void** mspace_independent_comalloc(mspace msp, size_t n_elements, size_t sizes[], void* chunks[]) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); return 0; } return ialloc(ms, n_elements, sizes, 0, chunks); } size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) { return internal_bulk_free((mstate)msp, array, nelem); } #if MALLOC_INSPECT_ALL void mspace_inspect_all(mspace msp, void(*handler)(void *start, void *end, size_t used_bytes, void* callback_arg), void* arg) { mstate ms = (mstate)msp; if (ok_magic(ms)) { if (!PREACTION(ms)) { internal_inspect_all(ms, handler, arg); POSTACTION(ms); } } else { USAGE_ERROR_ACTION(ms,ms); } } #endif /* MALLOC_INSPECT_ALL */ int mspace_trim(mspace msp, size_t pad) { int result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { if (!PREACTION(ms)) { result = sys_trim(ms, pad); POSTACTION(ms); } } else { USAGE_ERROR_ACTION(ms,ms); } return result; } #if !NO_MALLOC_STATS void mspace_malloc_stats(mspace msp) { mstate ms = (mstate)msp; if (ok_magic(ms)) { internal_malloc_stats(ms); } else { USAGE_ERROR_ACTION(ms,ms); } } #endif /* NO_MALLOC_STATS */ size_t mspace_footprint(mspace msp) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { result = ms->footprint; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } size_t mspace_max_footprint(mspace msp) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { result = ms->max_footprint; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } size_t mspace_footprint_limit(mspace msp) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { size_t maf = ms->footprint_limit; result = (maf == 0) ? MAX_SIZE_T : maf; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } size_t mspace_set_footprint_limit(mspace msp, size_t bytes) { size_t result = 0; mstate ms = (mstate)msp; if (ok_magic(ms)) { if (bytes == 0) result = granularity_align(1); /* Use minimal size */ if (bytes == MAX_SIZE_T) result = 0; /* disable */ else result = granularity_align(bytes); ms->footprint_limit = result; } else { USAGE_ERROR_ACTION(ms,ms); } return result; } #if !NO_MALLINFO struct dlmallinfo mspace_mallinfo(mspace msp) { mstate ms = (mstate)msp; if (!ok_magic(ms)) { USAGE_ERROR_ACTION(ms,ms); } return internal_mallinfo(ms); } #endif /* NO_MALLINFO */ size_t mspace_usable_size(const void* mem) { if (mem != 0) { mchunkptr p = mem2chunk(mem); if (is_inuse(p)) return chunksize(p) - overhead_for(p); } return 0; } int mspace_mallopt(int param_number, int value) { return change_mparam(param_number, value); } #endif /* MSPACES */ /* -------------------- Alternative MORECORE functions ------------------- */ /* Guidelines for creating a custom version of MORECORE: * For best performance, MORECORE should allocate in multiples of pagesize. * MORECORE may allocate more memory than requested. (Or even less, but this will usually result in a malloc failure.) * MORECORE must not allocate memory when given argument zero, but instead return one past the end address of memory from previous nonzero call. * For best performance, consecutive calls to MORECORE with positive arguments should return increasing addresses, indicating that space has been contiguously extended. * Even though consecutive calls to MORECORE need not return contiguous addresses, it must be OK for malloc'ed chunks to span multiple regions in those cases where they do happen to be contiguous. * MORECORE need not handle negative arguments -- it may instead just return MFAIL when given negative arguments. Negative arguments are always multiples of pagesize. MORECORE must not misinterpret negative args as large positive unsigned args. You can suppress all such calls from even occurring by defining MORECORE_CANNOT_TRIM, As an example alternative MORECORE, here is a custom allocator kindly contributed for pre-OSX macOS. It uses virtually but not necessarily physically contiguous non-paged memory (locked in, present and won't get swapped out). You can use it by uncommenting this section, adding some #includes, and setting up the appropriate defines above: #define MORECORE osMoreCore There is also a shutdown routine that should somehow be called for cleanup upon program exit. #define MAX_POOL_ENTRIES 100 #define MINIMUM_MORECORE_SIZE (64 * 1024U) static int next_os_pool; void *our_os_pools[MAX_POOL_ENTRIES]; void *osMoreCore(int size) { void *ptr = 0; static void *sbrk_top = 0; if (size > 0) { if (size < MINIMUM_MORECORE_SIZE) size = MINIMUM_MORECORE_SIZE; if (CurrentExecutionLevel() == kTaskLevel) ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); if (ptr == 0) { return (void *) MFAIL; } // save ptrs so they can be freed during cleanup our_os_pools[next_os_pool] = ptr; next_os_pool++; ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); sbrk_top = (char *) ptr + size; return ptr; } else if (size < 0) { // we don't currently support shrink behavior return (void *) MFAIL; } else { return sbrk_top; } } // cleanup any allocated memory pools // called as last thing before shutting down driver void osCleanupMem(void) { void **ptr; for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) if (*ptr) { PoolDeallocate(*ptr); *ptr = 0; } } */ /* ----------------------------------------------------------------------- History: v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea * fix bad comparison in dlposix_memalign * don't reuse adjusted asize in sys_alloc * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion * reduce compiler warnings -- thanks to all who reported/suggested these v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) * Always perform unlink checks unless INSECURE * Add posix_memalign. * Improve realloc to expand in more cases; expose realloc_in_place. Thanks to Peter Buhr for the suggestion. * Add footprint_limit, inspect_all, bulk_free. Thanks to Barry Hayes and others for the suggestions. * Internal refactorings to avoid calls while holding locks * Use non-reentrant locks by default. Thanks to Roland McGrath for the suggestion. * Small fixes to mspace_destroy, reset_on_error. * Various configuration extensions/changes. Thanks to all who contributed these. V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) * Update Creative Commons URL V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) * Use zeros instead of prev foot for is_mmapped * Add mspace_track_large_chunks; thanks to Jean Brouwers * Fix set_inuse in internal_realloc; thanks to Jean Brouwers * Fix insufficient sys_alloc padding when using 16byte alignment * Fix bad error check in mspace_footprint * Adaptations for ptmalloc; thanks to Wolfram Gloger. * Reentrant spin locks; thanks to Earl Chew and others * Win32 improvements; thanks to Niall Douglas and Earl Chew * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options * Extension hook in malloc_state * Various small adjustments to reduce warnings on some compilers * Various configuration extensions/changes for more platforms. Thanks to all who contributed these. V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) * Add max_footprint functions * Ensure all appropriate literals are size_t * Fix conditional compilation problem for some #define settings * Avoid concatenating segments with the one provided in create_mspace_with_base * Rename some variables to avoid compiler shadowing warnings * Use explicit lock initialization. * Better handling of sbrk interference. * Simplify and fix segment insertion, trimming and mspace_destroy * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x * Thanks especially to Dennis Flanagan for help on these. V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) * Fix memalign brace error. V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) * Fix improper #endif nesting in C++ * Add explicit casts needed for C++ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) * Use trees for large bins * Support mspaces * Use segments to unify sbrk-based and mmap-based system allocation, removing need for emulation on most platforms without sbrk. * Default safety checks * Optional footer checks. Thanks to William Robertson for the idea. * Internal code refactoring * Incorporate suggestions and platform-specific changes. Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, Aaron Bachmann, Emery Berger, and others. * Speed up non-fastbin processing enough to remove fastbins. * Remove useless cfree() to avoid conflicts with other apps. * Remove internal memcpy, memset. Compilers handle builtins better. * Remove some options that no one ever used and rename others. V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) * Fix malloc_state bitmap array misdeclaration V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) * Allow tuning of FIRST_SORTED_BIN_SIZE * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. * Better detection and support for non-contiguousness of MORECORE. Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger * Bypass most of malloc if no frees. Thanks To Emery Berger. * Fix freeing of old top non-contiguous chunk im sysmalloc. * Raised default trim and map thresholds to 256K. * Fix mmap-related #defines. Thanks to Lubos Lunak. * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. * Branch-free bin calculation * Default trim and mmap thresholds now 256K. V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) * Introduce independent_comalloc and independent_calloc. Thanks to Michael Pachos for motivation and help. * Make optional .h file available * Allow > 2GB requests on 32bit systems. * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. Thanks also to Andreas Mueller <a.mueller at paradatec.de>, and Anonymous. * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for helping test this.) * memalign: check alignment arg * realloc: don't try to shift chunks backwards, since this leads to more fragmentation in some programs and doesn't seem to help in any others. * Collect all cases in malloc requiring system memory into sysmalloc * Use mmap as backup to sbrk * Place all internal state in malloc_state * Introduce fastbins (although similar to 2.5.1) * Many minor tunings and cosmetic improvements * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. * Include errno.h to support default failure action. V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) * return null for negative arguments * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' (e.g. WIN32 platforms) * Cleanup header file inclusion for WIN32 platforms * Cleanup code to avoid Microsoft Visual C++ compiler complaints * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing memory allocation routines * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to usage of 'assert' in non-WIN32 code * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to avoid infinite loop * Always call 'fREe()' rather than 'free()' V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) * Fixed ordering problem with boundary-stamping V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) * Added pvalloc, as recommended by H.J. Liu * Added 64bit pointer support mainly from Wolfram Gloger * Added anonymously donated WIN32 sbrk emulation * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen * malloc_extend_top: fix mask error that caused wastage after foreign sbrks * Add linux mremap support code from HJ Liu V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) * Integrated most documentation with the code. * Add support for mmap, with help from Wolfram Gloger (Gloger@lrz.uni-muenchen.de). * Use last_remainder in more cases. * Pack bins using idea from colin@nyx10.cs.du.edu * Use ordered bins instead of best-fit threshhold * Eliminate block-local decls to simplify tracing and debugging. * Support another case of realloc via move into top * Fix error occuring when initial sbrk_base not word-aligned. * Rely on page size for units instead of SBRK_UNIT to avoid surprises about sbrk alignment conventions. * Add mallinfo, mallopt. Thanks to Raymond Nijssen (raymond@es.ele.tue.nl) for the suggestion. * Add `pad' argument to malloc_trim and top_pad mallopt parameter. * More precautions for cases where other routines call sbrk, courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). * Added macros etc., allowing use in linux libc from H.J. Lu (hjl@gnu.ai.mit.edu) * Inverted this history list V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) * Re-tuned and fixed to behave more nicely with V2.6.0 changes. * Removed all preallocation code since under current scheme the work required to undo bad preallocations exceeds the work saved in good cases for most test programs. * No longer use return list or unconsolidated bins since no scheme using them consistently outperforms those that don't given above changes. * Use best fit for very large chunks to prevent some worst-cases. * Added some support for debugging V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) * Removed footers when chunks are in use. Thanks to Paul Wilson (wilson@cs.texas.edu) for the suggestion. V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) * Added malloc_trim, with help from Wolfram Gloger (wmglo@Dent.MED.Uni-Muenchen.DE). V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) * realloc: try to expand in both directions * malloc: swap order of clean-bin strategy; * realloc: only conditionally expand backwards * Try not to scavenge used bins * Use bin counts as a guide to preallocation * Occasionally bin return list chunks in first scan * Add a few optimizations from colin@nyx10.cs.du.edu V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) * faster bin computation & slightly different binning * merged all consolidations to one part of malloc proper (eliminating old malloc_find_space & malloc_clean_bin) * Scan 2 returns chunks (not just 1) * Propagate failure in realloc if malloc returns 0 * Add stuff to allow compilation on non-ANSI compilers from kpv@research.att.com V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) * removed potential for odd address access in prev_chunk * removed dependency on getpagesize.h * misc cosmetics and a bit more internal documentation * anticosmetics: mangled names in macros to evade debugger strangeness * tested on sparc, hp-700, dec-mips, rs6000 with gcc & native cc (hp, dec only) allowing Detlefs & Zorn comparison study (in SIGPLAN Notices.) Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) * Based loosely on libg++-1.2X malloc. (It retains some of the overall structure of old version, but most details differ.) */