/* * Copyright (c) 2015 Cisco and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "dpdk_priv.h" #include #define foreach_dpdk_tx_func_error \ _(BAD_RETVAL, "DPDK tx function returned an error") \ _(RING_FULL, "Tx packet drops (ring full)") \ _(PKT_DROP, "Tx packet drops (dpdk tx failure)") \ _(REPL_FAIL, "Tx packet drops (replication failure)") typedef enum { #define _(f,s) DPDK_TX_FUNC_ERROR_##f, foreach_dpdk_tx_func_error #undef _ DPDK_TX_FUNC_N_ERROR, } dpdk_tx_func_error_t; static char * dpdk_tx_func_error_strings[] = { #define _(n,s) s, foreach_dpdk_tx_func_error #undef _ }; clib_error_t * dpdk_set_mac_address (vnet_hw_interface_t * hi, char * address) { int error; dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd = vec_elt_at_index (dm->devices, hi->dev_instance); error=rte_eth_dev_default_mac_addr_set(xd->device_index, (struct ether_addr *) address); if (error) { return clib_error_return (0, "mac address set failed: %d", error); } else { return NULL; } } clib_error_t * dpdk_set_mc_filter (vnet_hw_interface_t * hi, struct ether_addr mc_addr_vec[], int naddr) { int error; dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd = vec_elt_at_index (dm->devices, hi->dev_instance); error=rte_eth_dev_set_mc_addr_list(xd->device_index, mc_addr_vec, naddr); if (error) { return clib_error_return (0, "mc addr list failed: %d", error); } else { return NULL; } } struct rte_mbuf * dpdk_replicate_packet_mb (vlib_buffer_t * b) { vlib_main_t * vm = vlib_get_main(); vlib_buffer_main_t * bm = vm->buffer_main; struct rte_mbuf * first_mb = 0, * new_mb, * pkt_mb, ** prev_mb_next = 0; u8 nb_segs, nb_segs_left; u32 copy_bytes; unsigned socket_id = rte_socket_id(); ASSERT (bm->pktmbuf_pools[socket_id]); pkt_mb = rte_mbuf_from_vlib_buffer(b); nb_segs = pkt_mb->nb_segs; for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--) { if (PREDICT_FALSE(pkt_mb == 0)) { clib_warning ("Missing %d mbuf chain segment(s): " "(nb_segs = %d, nb_segs_left = %d)!", nb_segs - nb_segs_left, nb_segs, nb_segs_left); if (first_mb) rte_pktmbuf_free(first_mb); return NULL; } new_mb = rte_pktmbuf_alloc (bm->pktmbuf_pools[socket_id]); if (PREDICT_FALSE(new_mb == 0)) { if (first_mb) rte_pktmbuf_free(first_mb); return NULL; } /* * Copy packet info into 1st segment. */ if (first_mb == 0) { first_mb = new_mb; rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len; first_mb->nb_segs = pkt_mb->nb_segs; first_mb->port = pkt_mb->port; #ifdef DAW_FIXME // TX Offload support TBD first_mb->vlan_macip = pkt_mb->vlan_macip; first_mb->hash = pkt_mb->hash; first_mb->ol_flags = pkt_mb->ol_flags #endif } else { ASSERT(prev_mb_next != 0); *prev_mb_next = new_mb; } /* * Copy packet segment data into new mbuf segment. */ rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len; copy_bytes = pkt_mb->data_len + RTE_PKTMBUF_HEADROOM; ASSERT(copy_bytes <= pkt_mb->buf_len); clib_memcpy(new_mb->buf_addr, pkt_mb->buf_addr, copy_bytes); prev_mb_next = &new_mb->next; pkt_mb = pkt_mb->next; } ASSERT(pkt_mb == 0); __rte_mbuf_sanity_check(first_mb, 1); return first_mb; } struct rte_mbuf * dpdk_zerocopy_replicate_packet_mb (vlib_buffer_t * b) { vlib_main_t * vm = vlib_get_main(); vlib_buffer_main_t * bm = vm->buffer_main; struct rte_mbuf * first_mb = 0, * new_mb, * pkt_mb, ** prev_mb_next = 0; u8 nb_segs, nb_segs_left; unsigned socket_id = rte_socket_id(); ASSERT (bm->pktmbuf_pools[socket_id]); pkt_mb = rte_mbuf_from_vlib_buffer(b); nb_segs = pkt_mb->nb_segs; for (nb_segs_left = nb_segs; nb_segs_left; nb_segs_left--) { if (PREDICT_FALSE(pkt_mb == 0)) { clib_warning ("Missing %d mbuf chain segment(s): " "(nb_segs = %d, nb_segs_left = %d)!", nb_segs - nb_segs_left, nb_segs, nb_segs_left); if (first_mb) rte_pktmbuf_free(first_mb); return NULL; } new_mb = rte_pktmbuf_clone(pkt_mb, bm->pktmbuf_pools[socket_id]); if (PREDICT_FALSE(new_mb == 0)) { if (first_mb) rte_pktmbuf_free(first_mb); return NULL; } /* * Copy packet info into 1st segment. */ if (first_mb == 0) { first_mb = new_mb; rte_pktmbuf_pkt_len (first_mb) = pkt_mb->pkt_len; first_mb->nb_segs = pkt_mb->nb_segs; first_mb->port = pkt_mb->port; #ifdef DAW_FIXME // TX Offload support TBD first_mb->vlan_macip = pkt_mb->vlan_macip; first_mb->hash = pkt_mb->hash; first_mb->ol_flags = pkt_mb->ol_flags #endif } else { ASSERT(prev_mb_next != 0); *prev_mb_next = new_mb; } /* * Copy packet segment data into new mbuf segment. */ rte_pktmbuf_data_len (new_mb) = pkt_mb->data_len; prev_mb_next = &new_mb->next; pkt_mb = pkt_mb->next; } ASSERT(pkt_mb == 0); __rte_mbuf_sanity_check(first_mb, 1); return first_mb; } static void dpdk_tx_trace_buffer (dpdk_main_t * dm, vlib_node_runtime_t * node, dpdk_device_t * xd, u16 queue_id, u32 buffer_index, vlib_buffer_t * buffer) { vlib_main_t * vm = vlib_get_main(); dpdk_tx_dma_trace_t * t0; struct rte_mbuf * mb; mb = rte_mbuf_from_vlib_buffer(buffer); t0 = vlib_add_trace (vm, node, buffer, sizeof (t0[0])); t0->queue_index = queue_id; t0->device_index = xd->device_index; t0->buffer_index = buffer_index; clib_memcpy (&t0->mb, mb, sizeof (t0->mb)); clib_memcpy (&t0->buffer, buffer, sizeof (buffer[0]) - sizeof (buffer->pre_data)); clib_memcpy (t0->buffer.pre_data, buffer->data + buffer->current_data, sizeof (t0->buffer.pre_data)); } /* * This function calls the dpdk's tx_burst function to transmit the packets * on the tx_vector. It manages a lock per-device if the device does not * support multiple queues. It returns the number of packets untransmitted * on the tx_vector. If all packets are transmitted (the normal case), the * function returns 0. * * The tx_burst function may not be able to transmit all packets because the * dpdk ring is full. If a flowcontrol callback function has been configured * then the function simply returns. If no callback has been configured, the * function will retry calling tx_burst with the remaining packets. This will * continue until all packets are transmitted or tx_burst indicates no packets * could be transmitted. (The caller can drop the remaining packets.) * * The function assumes there is at least one packet on the tx_vector. */ static_always_inline u32 tx_burst_vector_internal (vlib_main_t * vm, dpdk_device_t * xd, struct rte_mbuf ** tx_vector) { dpdk_main_t * dm = &dpdk_main; u32 n_packets; u32 tx_head; u32 tx_tail; u32 n_retry; int rv; int queue_id; tx_ring_hdr_t *ring; ring = vec_header(tx_vector, sizeof(*ring)); n_packets = ring->tx_head - ring->tx_tail; tx_head = ring->tx_head % DPDK_TX_RING_SIZE; /* * Ensure rte_eth_tx_burst is not called with 0 packets, which can lead to * unpredictable results. */ ASSERT(n_packets > 0); /* * Check for tx_vector overflow. If this fails it is a system configuration * error. The ring should be sized big enough to handle the largest un-flowed * off burst from a traffic manager. A larger size also helps performance * a bit because it decreases the probability of having to issue two tx_burst * calls due to a ring wrap. */ ASSERT(n_packets < DPDK_TX_RING_SIZE); /* * If there is no flowcontrol callback, there is only temporary buffering * on the tx_vector and so the tail should always be 0. */ ASSERT(dm->flowcontrol_callback || ring->tx_tail == 0); /* * If there is a flowcontrol callback, don't retry any incomplete tx_bursts. * Apply backpressure instead. If there is no callback, keep retrying until * a tx_burst sends no packets. n_retry of 255 essentially means no retry * limit. */ n_retry = dm->flowcontrol_callback ? 0 : 255; queue_id = vm->cpu_index; do { /* start the burst at the tail */ tx_tail = ring->tx_tail % DPDK_TX_RING_SIZE; /* * This device only supports one TX queue, * and we're running multi-threaded... */ if (PREDICT_FALSE(xd->dev_type != VNET_DPDK_DEV_VHOST_USER && xd->lockp != 0)) { queue_id = queue_id % xd->tx_q_used; while (__sync_lock_test_and_set (xd->lockp[queue_id], 1)) /* zzzz */ queue_id = (queue_id + 1) % xd->tx_q_used; } if (PREDICT_TRUE(xd->dev_type == VNET_DPDK_DEV_ETH)) { if (PREDICT_TRUE(tx_head > tx_tail)) { /* no wrap, transmit in one burst */ rv = rte_eth_tx_burst(xd->device_index, (uint16_t) queue_id, &tx_vector[tx_tail], (uint16_t) (tx_head-tx_tail)); } else { /* * This can only happen if there is a flowcontrol callback. * We need to split the transmit into two calls: one for * the packets up to the wrap point, and one to continue * at the start of the ring. * Transmit pkts up to the wrap point. */ rv = rte_eth_tx_burst(xd->device_index, (uint16_t) queue_id, &tx_vector[tx_tail], (uint16_t) (DPDK_TX_RING_SIZE - tx_tail)); /* * If we transmitted everything we wanted, then allow 1 retry * so we can try to transmit the rest. If we didn't transmit * everything, stop now. */ n_retry = (rv == DPDK_TX_RING_SIZE - tx_tail) ? 1 : 0; } } else if (xd->dev_type == VNET_DPDK_DEV_VHOST_USER) { u32 offset = 0; if (xd->need_txlock) { queue_id = 0; while (__sync_lock_test_and_set (xd->lockp[queue_id], 1)); } #if RTE_VERSION >= RTE_VERSION_NUM(2, 2, 0, 0) else { dpdk_device_and_queue_t * dq; vec_foreach (dq, dm->devices_by_cpu[vm->cpu_index]) { if (xd->device_index == dq->device) break; } assert (dq); offset = dq->queue_id * VIRTIO_QNUM; } #endif if (PREDICT_TRUE(tx_head > tx_tail)) { int i; u32 bytes = 0; struct rte_mbuf **pkts = &tx_vector[tx_tail]; for (i = 0; i < (tx_head - tx_tail); i++) { struct rte_mbuf *buff = pkts[i]; bytes += rte_pktmbuf_data_len(buff); } /* no wrap, transmit in one burst */ rv = rte_vhost_enqueue_burst(&xd->vu_vhost_dev, offset + VIRTIO_RXQ, &tx_vector[tx_tail], (uint16_t) (tx_head-tx_tail)); if (PREDICT_TRUE(rv > 0)) { dpdk_vu_vring *vring = &(xd->vu_intf->vrings[offset + VIRTIO_TXQ]); vring->packets += rv; vring->bytes += bytes; if (dpdk_vhost_user_want_interrupt(xd, offset + VIRTIO_RXQ)) { vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]); vring->n_since_last_int += rv; f64 now = vlib_time_now (vm); if (vring->int_deadline < now || vring->n_since_last_int > dm->vhost_coalesce_frames) dpdk_vhost_user_send_interrupt(vm, xd, offset + VIRTIO_RXQ); } int c = rv; while(c--) rte_pktmbuf_free (tx_vector[tx_tail+c]); } } else { /* * If we transmitted everything we wanted, then allow 1 retry * so we can try to transmit the rest. If we didn't transmit * everything, stop now. */ int i; u32 bytes = 0; struct rte_mbuf **pkts = &tx_vector[tx_tail]; for (i = 0; i < (DPDK_TX_RING_SIZE - tx_tail); i++) { struct rte_mbuf *buff = pkts[i]; bytes += rte_pktmbuf_data_len(buff); } rv = rte_vhost_enqueue_burst(&xd->vu_vhost_dev, offset + VIRTIO_RXQ, &tx_vector[tx_tail], (uint16_t) (DPDK_TX_RING_SIZE - tx_tail)); if (PREDICT_TRUE(rv > 0)) { dpdk_vu_vring *vring = &(xd->vu_intf->vrings[offset + VIRTIO_TXQ]); vring->packets += rv; vring->bytes += bytes; if (dpdk_vhost_user_want_interrupt(xd, offset + VIRTIO_RXQ)) { vring = &(xd->vu_intf->vrings[offset + VIRTIO_RXQ]); vring->n_since_last_int += rv; f64 now = vlib_time_now (vm); if (vring->int_deadline < now || vring->n_since_last_int > dm->vhost_coalesce_frames) dpdk_vhost_user_send_interrupt(vm, xd, offset + VIRTIO_RXQ); } int c = rv; while(c--) rte_pktmbuf_free (tx_vector[tx_tail+c]); } n_retry = (rv == DPDK_TX_RING_SIZE - tx_tail) ? 1 : 0; } if (xd->need_txlock) *xd->lockp[queue_id] = 0; } #if RTE_LIBRTE_KNI else if (xd->dev_type == VNET_DPDK_DEV_KNI) { if (PREDICT_TRUE(tx_head > tx_tail)) { /* no wrap, transmit in one burst */ rv = rte_kni_tx_burst(xd->kni, &tx_vector[tx_tail], (uint16_t) (tx_head-tx_tail)); } else { /* * This can only happen if there is a flowcontrol callback. * We need to split the transmit into two calls: one for * the packets up to the wrap point, and one to continue * at the start of the ring. * Transmit pkts up to the wrap point. */ rv = rte_kni_tx_burst(xd->kni, &tx_vector[tx_tail], (uint16_t) (DPDK_TX_RING_SIZE - tx_tail)); /* * If we transmitted everything we wanted, then allow 1 retry * so we can try to transmit the rest. If we didn't transmit * everything, stop now. */ n_retry = (rv == DPDK_TX_RING_SIZE - tx_tail) ? 1 : 0; } } #endif else { ASSERT(0); rv = 0; } if (PREDICT_FALSE(xd->dev_type != VNET_DPDK_DEV_VHOST_USER && xd->lockp != 0)) *xd->lockp[queue_id] = 0; if (PREDICT_FALSE(rv < 0)) { // emit non-fatal message, bump counter vnet_main_t * vnm = dm->vnet_main; vnet_interface_main_t * im = &vnm->interface_main; u32 node_index; node_index = vec_elt_at_index(im->hw_interfaces, xd->vlib_hw_if_index)->tx_node_index; vlib_error_count (vm, node_index, DPDK_TX_FUNC_ERROR_BAD_RETVAL, 1); clib_warning ("rte_eth_tx_burst[%d]: error %d", xd->device_index, rv); return n_packets; // untransmitted packets } ring->tx_tail += (u16)rv; n_packets -= (uint16_t) rv; } while (rv && n_packets && (n_retry>0)); return n_packets; } /* * This function transmits any packets on the interface's tx_vector and returns * the number of packets untransmitted on the tx_vector. If the tx_vector is * empty the function simply returns 0. * * It is intended to be called by a traffic manager which has flowed-off an * interface to see if the interface can be flowed-on again. */ u32 dpdk_interface_tx_vector (vlib_main_t * vm, u32 dev_instance) { dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd; int queue_id; struct rte_mbuf ** tx_vector; tx_ring_hdr_t *ring; /* param is dev_instance and not hw_if_index to save another lookup */ xd = vec_elt_at_index (dm->devices, dev_instance); queue_id = vm->cpu_index; tx_vector = xd->tx_vectors[queue_id]; /* If no packets on the ring, don't bother calling tx function */ ring = vec_header(tx_vector, sizeof(*ring)); if (ring->tx_head == ring->tx_tail) { return 0; } return tx_burst_vector_internal (vm, xd, tx_vector); } /* * Transmits the packets on the frame to the interface associated with the * node. It first copies packets on the frame to a tx_vector containing the * rte_mbuf pointers. It then passes this vector to tx_burst_vector_internal * which calls the dpdk tx_burst function. * * The tx_vector is treated slightly differently depending on whether or * not a flowcontrol callback function has been configured. If there is no * callback, the tx_vector is a temporary array of rte_mbuf packet pointers. * Its entries are written and consumed before the function exits. * * If there is a callback then the transmit is being invoked in the presence * of a traffic manager. Here the tx_vector is treated like a ring of rte_mbuf * pointers. If not all packets can be transmitted, the untransmitted packets * stay on the tx_vector until the next call. The callback allows the traffic * manager to flow-off dequeues to the interface. The companion function * dpdk_interface_tx_vector() allows the traffic manager to detect when * it should flow-on the interface again. */ static uword dpdk_interface_tx (vlib_main_t * vm, vlib_node_runtime_t * node, vlib_frame_t * f) { dpdk_main_t * dm = &dpdk_main; vnet_interface_output_runtime_t * rd = (void *) node->runtime_data; dpdk_device_t * xd = vec_elt_at_index (dm->devices, rd->dev_instance); u32 n_packets = f->n_vectors; u32 n_left; u32 * from; struct rte_mbuf ** tx_vector; int i; int queue_id; u32 my_cpu; u32 tx_pkts = 0; tx_ring_hdr_t *ring; u32 n_on_ring; my_cpu = vm->cpu_index; queue_id = my_cpu; tx_vector = xd->tx_vectors[queue_id]; ring = vec_header(tx_vector, sizeof(*ring)); n_on_ring = ring->tx_head - ring->tx_tail; from = vlib_frame_vector_args (f); ASSERT(n_packets <= VLIB_FRAME_SIZE); if (PREDICT_FALSE(n_on_ring + n_packets > DPDK_TX_RING_SIZE)) { /* * Overflowing the ring should never happen. * If it does then drop the whole frame. */ vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_RING_FULL, n_packets); while (n_packets--) { u32 bi0 = from[n_packets]; vlib_buffer_t *b0 = vlib_get_buffer (vm, bi0); struct rte_mbuf *mb0 = rte_mbuf_from_vlib_buffer(b0); rte_pktmbuf_free (mb0); } return n_on_ring; } if (PREDICT_FALSE(dm->tx_pcap_enable)) { n_left = n_packets; while (n_left > 0) { u32 bi0 = from[0]; vlib_buffer_t * b0 = vlib_get_buffer (vm, bi0); if (dm->pcap_sw_if_index == 0 || dm->pcap_sw_if_index == vnet_buffer(b0)->sw_if_index [VLIB_TX]) pcap_add_buffer (&dm->pcap_main, vm, bi0, 512); from++; n_left--; } } from = vlib_frame_vector_args (f); n_left = n_packets; i = ring->tx_head % DPDK_TX_RING_SIZE; while (n_left >= 4) { u32 bi0, bi1; u32 pi0, pi1; struct rte_mbuf * mb0, * mb1; struct rte_mbuf * prefmb0, * prefmb1; vlib_buffer_t * b0, * b1; vlib_buffer_t * pref0, * pref1; i16 delta0, delta1; u16 new_data_len0, new_data_len1; u16 new_pkt_len0, new_pkt_len1; u32 any_clone; pi0 = from[2]; pi1 = from[3]; pref0 = vlib_get_buffer (vm, pi0); pref1 = vlib_get_buffer (vm, pi1); prefmb0 = rte_mbuf_from_vlib_buffer(pref0); prefmb1 = rte_mbuf_from_vlib_buffer(pref1); CLIB_PREFETCH(prefmb0, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH(pref0, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH(prefmb1, CLIB_CACHE_LINE_BYTES, LOAD); CLIB_PREFETCH(pref1, CLIB_CACHE_LINE_BYTES, LOAD); bi0 = from[0]; bi1 = from[1]; from += 2; b0 = vlib_get_buffer (vm, bi0); b1 = vlib_get_buffer (vm, bi1); mb0 = rte_mbuf_from_vlib_buffer(b0); mb1 = rte_mbuf_from_vlib_buffer(b1); any_clone = b0->clone_count | b1->clone_count; if (PREDICT_FALSE(any_clone != 0)) { if (PREDICT_FALSE(b0->clone_count != 0)) { struct rte_mbuf * mb0_new = dpdk_replicate_packet_mb (b0); if (PREDICT_FALSE(mb0_new == 0)) { vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); b0->flags |= VLIB_BUFFER_REPL_FAIL; } else mb0 = mb0_new; vec_add1 (dm->recycle[my_cpu], bi0); } if (PREDICT_FALSE(b1->clone_count != 0)) { struct rte_mbuf * mb1_new = dpdk_replicate_packet_mb (b1); if (PREDICT_FALSE(mb1_new == 0)) { vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); b1->flags |= VLIB_BUFFER_REPL_FAIL; } else mb1 = mb1_new; vec_add1 (dm->recycle[my_cpu], bi1); } } delta0 = PREDICT_FALSE(b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len; delta1 = PREDICT_FALSE(b1->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : vlib_buffer_length_in_chain (vm, b1) - (i16) mb1->pkt_len; new_data_len0 = (u16)((i16) mb0->data_len + delta0); new_data_len1 = (u16)((i16) mb1->data_len + delta1); new_pkt_len0 = (u16)((i16) mb0->pkt_len + delta0); new_pkt_len1 = (u16)((i16) mb1->pkt_len + delta1); b0->current_length = new_data_len0; b1->current_length = new_data_len1; mb0->data_len = new_data_len0; mb1->data_len = new_data_len1; mb0->pkt_len = new_pkt_len0; mb1->pkt_len = new_pkt_len1; mb0->data_off = (PREDICT_FALSE(b0->flags & VLIB_BUFFER_REPL_FAIL)) ? mb0->data_off : (u16)(RTE_PKTMBUF_HEADROOM + b0->current_data); mb1->data_off = (PREDICT_FALSE(b1->flags & VLIB_BUFFER_REPL_FAIL)) ? mb1->data_off : (u16)(RTE_PKTMBUF_HEADROOM + b1->current_data); if (PREDICT_FALSE(node->flags & VLIB_NODE_FLAG_TRACE)) { if (b0->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); if (b1->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi1, b1); } if (PREDICT_TRUE(any_clone == 0)) { tx_vector[i % DPDK_TX_RING_SIZE] = mb0; i++; tx_vector[i % DPDK_TX_RING_SIZE] = mb1; i++; } else { /* cloning was done, need to check for failure */ if (PREDICT_TRUE((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) { tx_vector[i % DPDK_TX_RING_SIZE] = mb0; i++; } if (PREDICT_TRUE((b1->flags & VLIB_BUFFER_REPL_FAIL) == 0)) { tx_vector[i % DPDK_TX_RING_SIZE] = mb1; i++; } } n_left -= 2; } while (n_left > 0) { u32 bi0; struct rte_mbuf * mb0; vlib_buffer_t * b0; i16 delta0; u16 new_data_len0; u16 new_pkt_len0; bi0 = from[0]; from++; b0 = vlib_get_buffer (vm, bi0); mb0 = rte_mbuf_from_vlib_buffer(b0); if (PREDICT_FALSE(b0->clone_count != 0)) { struct rte_mbuf * mb0_new = dpdk_replicate_packet_mb (b0); if (PREDICT_FALSE(mb0_new == 0)) { vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_REPL_FAIL, 1); b0->flags |= VLIB_BUFFER_REPL_FAIL; } else mb0 = mb0_new; vec_add1 (dm->recycle[my_cpu], bi0); } delta0 = PREDICT_FALSE(b0->flags & VLIB_BUFFER_REPL_FAIL) ? 0 : vlib_buffer_length_in_chain (vm, b0) - (i16) mb0->pkt_len; new_data_len0 = (u16)((i16) mb0->data_len + delta0); new_pkt_len0 = (u16)((i16) mb0->pkt_len + delta0); b0->current_length = new_data_len0; mb0->data_len = new_data_len0; mb0->pkt_len = new_pkt_len0; mb0->data_off = (PREDICT_FALSE(b0->flags & VLIB_BUFFER_REPL_FAIL)) ? mb0->data_off : (u16)(RTE_PKTMBUF_HEADROOM + b0->current_data); if (PREDICT_FALSE(node->flags & VLIB_NODE_FLAG_TRACE)) if (b0->flags & VLIB_BUFFER_IS_TRACED) dpdk_tx_trace_buffer (dm, node, xd, queue_id, bi0, b0); if (PREDICT_TRUE((b0->flags & VLIB_BUFFER_REPL_FAIL) == 0)) { tx_vector[i % DPDK_TX_RING_SIZE] = mb0; i++; } n_left--; } /* account for additional packets in the ring */ ring->tx_head += n_packets; n_on_ring = ring->tx_head - ring->tx_tail; /* transmit as many packets as possible */ n_packets = tx_burst_vector_internal (vm, xd, tx_vector); /* * tx_pkts is the number of packets successfully transmitted * This is the number originally on ring minus the number remaining on ring */ tx_pkts = n_on_ring - n_packets; if (PREDICT_FALSE(dm->flowcontrol_callback != 0)) { if (PREDICT_FALSE(n_packets)) { /* Callback may want to enable flowcontrol */ dm->flowcontrol_callback(vm, xd->vlib_hw_if_index, ring->tx_head - ring->tx_tail); } else { /* Reset head/tail to avoid unnecessary wrap */ ring->tx_head = 0; ring->tx_tail = 0; } } else { /* If there is no callback then drop any non-transmitted packets */ if (PREDICT_FALSE(n_packets)) { vlib_simple_counter_main_t * cm; vnet_main_t * vnm = vnet_get_main(); cm = vec_elt_at_index (vnm->interface_main.sw_if_counters, VNET_INTERFACE_COUNTER_TX_ERROR); vlib_increment_simple_counter (cm, my_cpu, xd->vlib_sw_if_index, n_packets); vlib_error_count (vm, node->node_index, DPDK_TX_FUNC_ERROR_PKT_DROP, n_packets); while (n_packets--) rte_pktmbuf_free (tx_vector[ring->tx_tail + n_packets]); } /* Reset head/tail to avoid unnecessary wrap */ ring->tx_head = 0; ring->tx_tail = 0; } /* Recycle replicated buffers */ if (PREDICT_FALSE(vec_len(dm->recycle[my_cpu]))) { vlib_buffer_free (vm, dm->recycle[my_cpu], vec_len(dm->recycle[my_cpu])); _vec_len(dm->recycle[my_cpu]) = 0; } ASSERT(ring->tx_head >= ring->tx_tail); return tx_pkts; } static int dpdk_device_renumber (vnet_hw_interface_t * hi, u32 new_dev_instance) { dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd = vec_elt_at_index (dm->devices, hi->dev_instance); if (!xd || xd->dev_type != VNET_DPDK_DEV_VHOST_USER) { clib_warning("cannot renumber non-vhost-user interface (sw_if_index: %d)", hi->sw_if_index); return 0; } xd->vu_if_id = new_dev_instance; return 0; } static void dpdk_clear_hw_interface_counters (u32 instance) { dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd = vec_elt_at_index (dm->devices, instance); /* * DAW-FIXME: VMXNET3 device stop/start doesn't work, * therefore fake the stop in the dpdk driver by * silently dropping all of the incoming pkts instead of * stopping the driver / hardware. */ if (xd->admin_up != 0xff) { /* * Set the "last_cleared_stats" to the current stats, so that * things appear to clear from a display perspective. */ dpdk_update_counters (xd, vlib_time_now (dm->vlib_main)); clib_memcpy (&xd->last_cleared_stats, &xd->stats, sizeof(xd->stats)); clib_memcpy (xd->last_cleared_xstats, xd->xstats, vec_len(xd->last_cleared_xstats) * sizeof(xd->last_cleared_xstats[0])); } else { /* * Internally rte_eth_xstats_reset() is calling rte_eth_stats_reset(), * so we're only calling xstats_reset() here. */ rte_eth_xstats_reset (xd->device_index); memset (&xd->stats, 0, sizeof(xd->stats)); memset (&xd->last_stats, 0, sizeof (xd->last_stats)); } if (PREDICT_FALSE(xd->dev_type == VNET_DPDK_DEV_VHOST_USER)) { int i; for (i = 0; i < xd->rx_q_used * VIRTIO_QNUM; i++) { xd->vu_intf->vrings[i].packets = 0; xd->vu_intf->vrings[i].bytes = 0; } } } #ifdef RTE_LIBRTE_KNI static int kni_config_network_if(u8 port_id, u8 if_up) { vnet_main_t * vnm = vnet_get_main(); dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd; uword *p; p = hash_get (dm->dpdk_device_by_kni_port_id, port_id); if (p == 0) { clib_warning("unknown interface"); return 0; } else { xd = vec_elt_at_index (dm->devices, p[0]); } vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, if_up ? VNET_HW_INTERFACE_FLAG_LINK_UP | ETH_LINK_FULL_DUPLEX : 0); return 0; } static int kni_change_mtu(u8 port_id, unsigned new_mtu) { vnet_main_t * vnm = vnet_get_main(); dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd; uword *p; vnet_hw_interface_t * hif; p = hash_get (dm->dpdk_device_by_kni_port_id, port_id); if (p == 0) { clib_warning("unknown interface"); return 0; } else { xd = vec_elt_at_index (dm->devices, p[0]); } hif = vnet_get_hw_interface (vnm, xd->vlib_hw_if_index); hif->max_packet_bytes = new_mtu; return 0; } #endif static clib_error_t * dpdk_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags) { vnet_hw_interface_t * hif = vnet_get_hw_interface (vnm, hw_if_index); uword is_up = (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0; dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd = vec_elt_at_index (dm->devices, hif->dev_instance); int rv = 0; #ifdef RTE_LIBRTE_KNI if (xd->dev_type == VNET_DPDK_DEV_KNI) { if (is_up) { struct rte_kni_conf conf; struct rte_kni_ops ops; vlib_main_t * vm = vlib_get_main(); vlib_buffer_main_t * bm = vm->buffer_main; memset(&conf, 0, sizeof(conf)); snprintf(conf.name, RTE_KNI_NAMESIZE, "vpp%u", xd->kni_port_id); conf.mbuf_size = VLIB_BUFFER_DATA_SIZE; memset(&ops, 0, sizeof(ops)); ops.port_id = xd->kni_port_id; ops.change_mtu = kni_change_mtu; ops.config_network_if = kni_config_network_if; xd->kni = rte_kni_alloc(bm->pktmbuf_pools[rte_socket_id()], &conf, &ops); if (!xd->kni) { clib_warning("failed to allocate kni interface"); } else { hif->max_packet_bytes = 1500; /* kni interface default value */ xd->admin_up = 1; } } else { xd->admin_up = 0; rte_kni_release(xd->kni); } return 0; } #endif if (xd->dev_type == VNET_DPDK_DEV_VHOST_USER) { if (is_up) { if (xd->vu_is_running) vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, VNET_HW_INTERFACE_FLAG_LINK_UP | ETH_LINK_FULL_DUPLEX ); xd->admin_up = 1; } else { vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0); xd->admin_up = 0; } return 0; } if (is_up) { f64 now = vlib_time_now (dm->vlib_main); /* * DAW-FIXME: VMXNET3 device stop/start doesn't work, * therefore fake the stop in the dpdk driver by * silently dropping all of the incoming pkts instead of * stopping the driver / hardware. */ if (xd->admin_up == 0) rv = rte_eth_dev_start (xd->device_index); if (xd->promisc) rte_eth_promiscuous_enable(xd->device_index); else rte_eth_promiscuous_disable(xd->device_index); rte_eth_allmulticast_enable (xd->device_index); xd->admin_up = 1; dpdk_update_counters (xd, now); dpdk_update_link_state (xd, now); } else { /* * DAW-FIXME: VMXNET3 device stop/start doesn't work, * therefore fake the stop in the dpdk driver by * silently dropping all of the incoming pkts instead of * stopping the driver / hardware. */ if (xd->pmd != VNET_DPDK_PMD_VMXNET3) xd->admin_up = 0; else xd->admin_up = ~0; rte_eth_allmulticast_disable (xd->device_index); vnet_hw_interface_set_flags (vnm, xd->vlib_hw_if_index, 0); /* * DAW-FIXME: VMXNET3 device stop/start doesn't work, * therefore fake the stop in the dpdk driver by * silently dropping all of the incoming pkts instead of * stopping the driver / hardware. */ if (xd->pmd != VNET_DPDK_PMD_VMXNET3) rte_eth_dev_stop (xd->device_index); } if (rv < 0) clib_warning ("rte_eth_dev_%s error: %d", is_up ? "start" : "stop", rv); return /* no error */ 0; } /* * Dynamically redirect all pkts from a specific interface * to the specified node */ static void dpdk_set_interface_next_node (vnet_main_t *vnm, u32 hw_if_index, u32 node_index) { dpdk_main_t * xm = &dpdk_main; vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); dpdk_device_t * xd = vec_elt_at_index (xm->devices, hw->dev_instance); /* Shut off redirection */ if (node_index == ~0) { xd->per_interface_next_index = node_index; return; } xd->per_interface_next_index = vlib_node_add_next (xm->vlib_main, dpdk_input_node.index, node_index); } static clib_error_t * dpdk_subif_add_del_function (vnet_main_t * vnm, u32 hw_if_index, struct vnet_sw_interface_t * st, int is_add) { dpdk_main_t * xm = &dpdk_main; vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index); dpdk_device_t * xd = vec_elt_at_index (xm->devices, hw->dev_instance); vnet_sw_interface_t * t = (vnet_sw_interface_t *) st; int r, vlan_offload; if (xd->dev_type != VNET_DPDK_DEV_ETH) return 0; /* currently we program VLANS only for IXGBE VF and I40E VF */ if ((xd->pmd != VNET_DPDK_PMD_IXGBEVF) && (xd->pmd != VNET_DPDK_PMD_I40EVF)) return 0; if (t->sub.eth.flags.no_tags == 1) return 0; if ((t->sub.eth.flags.one_tag != 1) || (t->sub.eth.flags.exact_match != 1 )) return clib_error_return (0, "unsupported VLAN setup"); vlan_offload = rte_eth_dev_get_vlan_offload(xd->device_index); vlan_offload |= ETH_VLAN_FILTER_OFFLOAD; if ((r = rte_eth_dev_set_vlan_offload(xd->device_index, vlan_offload))) return clib_error_return (0, "rte_eth_dev_set_vlan_offload[%d]: err %d", xd->device_index, r); if ((r = rte_eth_dev_vlan_filter(xd->device_index, t->sub.eth.outer_vlan_id, is_add))) return clib_error_return (0, "rte_eth_dev_vlan_filter[%d]: err %d", xd->device_index, r); return 0; } VNET_DEVICE_CLASS (dpdk_device_class) = { .name = "dpdk", .tx_function = dpdk_interface_tx, .tx_function_n_errors = DPDK_TX_FUNC_N_ERROR, .tx_function_error_strings = dpdk_tx_func_error_strings, .format_device_name = format_dpdk_device_name, .format_device = format_dpdk_device, .format_tx_trace = format_dpdk_tx_dma_trace, .clear_counters = dpdk_clear_hw_interface_counters, .admin_up_down_function = dpdk_interface_admin_up_down, .subif_add_del_function = dpdk_subif_add_del_function, .rx_redirect_to_node = dpdk_set_interface_next_node, .no_flatten_output_chains = 1, .name_renumber = dpdk_device_renumber, }; void dpdk_set_flowcontrol_callback (vlib_main_t *vm, dpdk_flowcontrol_callback_t callback) { dpdk_main.flowcontrol_callback = callback; } #define UP_DOWN_FLAG_EVENT 1 u32 dpdk_get_admin_up_down_in_progress (void) { return dpdk_main.admin_up_down_in_progress; } static uword admin_up_down_process (vlib_main_t * vm, vlib_node_runtime_t * rt, vlib_frame_t * f) { clib_error_t * error = 0; uword event_type; uword *event_data = 0; u32 index; u32 sw_if_index; u32 flags; while (1) { vlib_process_wait_for_event (vm); event_type = vlib_process_get_events (vm, &event_data); dpdk_main.admin_up_down_in_progress = 1; for (index=0; index> 32; flags = (u32) event_data[index]; switch (event_type) { case UP_DOWN_FLAG_EVENT: error = vnet_sw_interface_set_flags (vnet_get_main(), sw_if_index, flags); clib_error_report(error); break; } } vec_reset_length (event_data); dpdk_main.admin_up_down_in_progress = 0; } return 0; /* or not */ } VLIB_REGISTER_NODE (admin_up_down_process_node,static) = { .function = admin_up_down_process, .type = VLIB_NODE_TYPE_PROCESS, .name = "admin-up-down-process", .process_log2_n_stack_bytes = 17, // 256KB }; /* * Asynchronously invoke vnet_sw_interface_set_flags via the admin_up_down * process. Useful for avoiding long blocking delays (>150ms) in the dpdk * drivers. * WARNING: when posting this event, no other interface-related calls should * be made (e.g. vnet_create_sw_interface()) while the event is being * processed (admin_up_down_in_progress). This is required in order to avoid * race conditions in manipulating interface data structures. */ void post_sw_interface_set_flags (vlib_main_t *vm, u32 sw_if_index, u32 flags) { vlib_process_signal_event (vm, admin_up_down_process_node.index, UP_DOWN_FLAG_EVENT, (((uword)sw_if_index << 32) | flags)); } /* * Called by the dpdk driver's rte_delay_us() function. * Return 0 to have the dpdk do a regular delay loop. * Return 1 if to skip the delay loop because we are suspending * the calling vlib process instead. */ int rte_delay_us_override (unsigned us) { vlib_main_t * vm; /* Don't bother intercepting for short delays */ if (us < 10) return 0; /* * Only intercept if we are in a vlib process. * If we are called from a vlib worker thread or the vlib main * thread then do not intercept. (Must not be called from an * independent pthread). */ if (os_get_cpu_number() == 0) { /* * We're in the vlib main thread or a vlib process. Make sure * the process is running and we're not still initializing. */ vm = vlib_get_main(); if (vlib_in_process_context(vm)) { /* Only suspend for the admin_down_process */ vlib_process_t * proc = vlib_get_current_process(vm); if (!(proc->flags & VLIB_PROCESS_IS_RUNNING) || (proc->node_runtime.function != admin_up_down_process)) return 0; f64 delay = 1e-6 * us; vlib_process_suspend(vm, delay); return 1; } } return 0; // no override } /* * Return a copy of the DPDK port stats in dest. */ clib_error_t* dpdk_get_hw_interface_stats (u32 hw_if_index, struct rte_eth_stats* dest) { dpdk_main_t * dm = &dpdk_main; vnet_main_t * vnm = vnet_get_main(); vnet_hw_interface_t * hi = vnet_get_hw_interface (vnm, hw_if_index); dpdk_device_t * xd = vec_elt_at_index (dm->devices, hi->dev_instance); if (!dest) { return clib_error_return (0, "Missing or NULL argument"); } if (!xd) { return clib_error_return (0, "Unable to get DPDK device from HW interface"); } dpdk_update_counters (xd, vlib_time_now (dm->vlib_main)); clib_memcpy(dest, &xd->stats, sizeof(xd->stats)); return (0); } /* * Return the number of dpdk mbufs */ u32 dpdk_num_mbufs (void) { dpdk_main_t * dm = &dpdk_main; return dm->num_mbufs; } /* * Return the io_thread_release */ int dpdk_io_thread_release (void) { dpdk_main_t * dm = &dpdk_main; return dm->io_thread_release; } /* * Return the pmd type for a given hardware interface */ dpdk_pmd_t dpdk_get_pmd_type (vnet_hw_interface_t *hi) { dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd; assert (hi); xd = vec_elt_at_index (dm->devices, hi->dev_instance); assert (xd); return xd->pmd; } /* * Return the cpu socket for a given hardware interface */ i8 dpdk_get_cpu_socket (vnet_hw_interface_t *hi) { dpdk_main_t * dm = &dpdk_main; dpdk_device_t * xd; assert (hi); xd = vec_elt_at_index(dm->devices, hi->dev_instance); assert (xd); return xd->cpu_socket; }