import socket import unittest from scapy.layers.ipsec import ESP from scapy.layers.inet import UDP from parameterized import parameterized from framework import VppTestRunner from template_ipsec import IpsecTra46Tests, IpsecTun46Tests, TemplateIpsec, \ IpsecTcpTests, IpsecTun4Tests, IpsecTra4Tests, config_tra_params, \ config_tun_params, IPsecIPv4Params, IPsecIPv6Params, \ IpsecTra4, IpsecTun4, IpsecTra6, IpsecTun6, \ IpsecTun6HandoffTests, IpsecTun4HandoffTests, \ IpsecTra6ExtTests from vpp_ipsec import VppIpsecSpd, VppIpsecSpdEntry, VppIpsecSA,\ VppIpsecSpdItfBinding from vpp_ip_route import VppIpRoute, VppRoutePath from vpp_ip import DpoProto from vpp_papi import VppEnum NUM_PKTS = 67 engines_supporting_chain_bufs = ["openssl"] class ConfigIpsecESP(TemplateIpsec): encryption_type = ESP tra4_encrypt_node_name = "esp4-encrypt" tra4_decrypt_node_name = "esp4-decrypt" tra6_encrypt_node_name = "esp6-encrypt" tra6_decrypt_node_name = "esp6-decrypt" tun4_encrypt_node_name = "esp4-encrypt" tun4_decrypt_node_name = "esp4-decrypt" tun6_encrypt_node_name = "esp6-encrypt" tun6_decrypt_node_name = "esp6-decrypt" @classmethod def setUpClass(cls): super(ConfigIpsecESP, cls).setUpClass() @classmethod def tearDownClass(cls): super(ConfigIpsecESP, cls).tearDownClass() def setUp(self): super(ConfigIpsecESP, self).setUp() def tearDown(self): super(ConfigIpsecESP, self).tearDown() def config_network(self, params): self.net_objs = [] self.tun_if = self.pg0 self.tra_if = self.pg2 self.logger.info(self.vapi.ppcli("show int addr")) self.tra_spd = VppIpsecSpd(self, self.tra_spd_id) self.tra_spd.add_vpp_config() self.net_objs.append(self.tra_spd) self.tun_spd = VppIpsecSpd(self, self.tun_spd_id) self.tun_spd.add_vpp_config() self.net_objs.append(self.tun_spd) b = VppIpsecSpdItfBinding(self, self.tun_spd, self.tun_if) b.add_vpp_config() self.net_objs.append(b) b = VppIpsecSpdItfBinding(self, self.tra_spd, self.tra_if) b.add_vpp_config() self.net_objs.append(b) for p in params: self.config_esp_tra(p) config_tra_params(p, self.encryption_type) for p in params: self.config_esp_tun(p) config_tun_params(p, self.encryption_type, self.tun_if) for p in params: d = DpoProto.DPO_PROTO_IP6 if p.is_ipv6 else DpoProto.DPO_PROTO_IP4 r = VppIpRoute(self, p.remote_tun_if_host, p.addr_len, [VppRoutePath(self.tun_if.remote_addr[p.addr_type], 0xffffffff, proto=d)]) r.add_vpp_config() self.net_objs.append(r) self.logger.info(self.vapi.ppcli("show ipsec all")) def unconfig_network(self): for o in reversed(self.net_objs): o.remove_vpp_config() self.net_objs = [] def config_esp_tun(self, params): addr_type = params.addr_type scapy_tun_sa_id = params.scapy_tun_sa_id scapy_tun_spi = params.scapy_tun_spi vpp_tun_sa_id = params.vpp_tun_sa_id vpp_tun_spi = params.vpp_tun_spi auth_algo_vpp_id = params.auth_algo_vpp_id auth_key = params.auth_key crypt_algo_vpp_id = params.crypt_algo_vpp_id crypt_key = params.crypt_key remote_tun_if_host = params.remote_tun_if_host addr_any = params.addr_any addr_bcast = params.addr_bcast e = VppEnum.vl_api_ipsec_spd_action_t flags = params.flags salt = params.salt objs = [] params.tun_sa_in = VppIpsecSA(self, scapy_tun_sa_id, scapy_tun_spi, auth_algo_vpp_id, auth_key, crypt_algo_vpp_id, crypt_key, self.vpp_esp_protocol, self.tun_if.local_addr[addr_type], self.tun_if.remote_addr[addr_type], flags=flags, salt=salt) params.tun_sa_out = VppIpsecSA(self, vpp_tun_sa_id, vpp_tun_spi, auth_algo_vpp_id, auth_key, crypt_algo_vpp_id, crypt_key, self.vpp_esp_protocol, self.tun_if.remote_addr[addr_type], self.tun_if.local_addr[addr_type], flags=flags, salt=salt) objs.append(params.tun_sa_in) objs.append(params.tun_sa_out) params.spd_policy_in_any = VppIpsecSpdEntry(self, self.tun_spd, scapy_tun_sa_id, addr_any, addr_bcast, addr_any, addr_bcast, socket.IPPROTO_ESP) params.spd_policy_out_any = VppIpsecSpdEntry(self, self.tun_spd, scapy_tun
.. _hoststack:
==============
TCP Host Stack
==============
VPP’s host stack leverages VPP’s graph based forwarding model and vectorized packet
processing to ensure high throughput and scale transport protocol termination. It
exposes apis that apart from allowing for efficient user-space app consumption and
generation of data, also enables highly efficient local inter-app communication.
At a high level VPP’s host stack consists of 3 major components:
* A session layer that facilitates interaction between transport protocols and applications
* Pluggable transport protocols, including TCP, QUIC, TLS, UDP
* VCL (VPPComs library) a set of libraries meant to ease the consumability of the stack from application perspective
All of these components were custom built to fit within VPP’s architecture and to
leverage its speed. As a result, a significant amount of effort was invested into:
* building a transport pluggable session layer that abstracts the interaction between applications and transports using a custom-built shared memory infrastructure. Notably, this also allows for transport protocols that are typically implemented in applications, like QUIC and TLS, to be implemented within VPP.
* a clean slate TCP implementation that supports vectorized packet processing and follows VPP’s highly scalable threading model. The implementation is RFC compliant, supports a high number of high-speed TCP protocol features and it was validated using Defensic’s Codenomicon 1M+ tests suite.
* VCL, a library that emulates traditional asynchronous communication functions in user-space, all while allowing for new patterns to be developed, if needed.
* implementing a high performance “cut-through” communication mode that enables applications attached to vpp to transparently exchange data over shared memory without incurring the extra cost of a traditional transport protocol. Testing has shown this to be much more efficient than traditional inter-container networking.
For developer features press next.