1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
|
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
| | |__ | | | | | | version 2.0.7
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
Copyright (c) 2013-2016 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef NLOHMANN_JSON_HPP
#define NLOHMANN_JSON_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <cctype>
#include <ciso646>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <map>
#include <memory>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// exclude unsupported compilers
#if defined(__clang__)
#define CLANG_VERSION (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__)
#if CLANG_VERSION < 30400
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#elif defined(__GNUC__)
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if GCC_VERSION < 40900
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#endif
// disable float-equal warnings on GCC/clang
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
// allow for portable deprecation warnings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#define JSON_DEPRECATED __attribute__((deprecated))
#elif defined(_MSC_VER)
#define JSON_DEPRECATED __declspec(deprecated)
#else
#define JSON_DEPRECATED
#endif
/*!
@brief namespace for Niels Lohmann
@see https://github.com/nlohmann
@since version 1.0.0
*/
namespace nlohmann
{
/*!
@brief unnamed namespace with internal helper functions
@since version 1.0.0
*/
namespace
{
/*!
@brief Helper to determine whether there's a key_type for T.
Thus helper is used to tell associative containers apart from other containers
such as sequence containers. For instance, `std::map` passes the test as it
contains a `mapped_type`, whereas `std::vector` fails the test.
@sa http://stackoverflow.com/a/7728728/266378
@since version 1.0.0, overworked in version 2.0.6
*/
template<typename T>
struct has_mapped_type
{
private:
template <typename U, typename = typename U::mapped_type>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value =
std::is_integral<decltype(detect(std::declval<T>()))>::value;
};
/*!
@brief helper class to create locales with decimal point
This struct is used a default locale during the JSON serialization. JSON
requires the decimal point to be `.`, so this function overloads the
`do_decimal_point()` function to return `.`. This function is called by
float-to-string conversions to retrieve the decimal separator between integer
and fractional parts.
@sa https://github.com/nlohmann/json/issues/51#issuecomment-86869315
@since version 2.0.0
*/
struct DecimalSeparator : std::numpunct<char>
{
char do_decimal_point() const
{
return '.';
}
};
}
/*!
@brief a class to store JSON values
@tparam ObjectType type for JSON objects (`std::map` by default; will be used
in @ref object_t)
@tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
in @ref array_t)
@tparam StringType type for JSON strings and object keys (`std::string` by
default; will be used in @ref string_t)
@tparam BooleanType type for JSON booleans (`bool` by default; will be used
in @ref boolean_t)
@tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
default; will be used in @ref number_integer_t)
@tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
`uint64_t` by default; will be used in @ref number_unsigned_t)
@tparam NumberFloatType type for JSON floating-point numbers (`double` by
default; will be used in @ref number_float_t)
@tparam AllocatorType type of the allocator to use (`std::allocator` by
default)
@requirement The class satisfies the following concept requirements:
- Basic
- [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible):
JSON values can be default constructed. The result will be a JSON null value.
- [MoveConstructible](http://en.cppreference.com/w/cpp/concept/MoveConstructible):
A JSON value can be constructed from an rvalue argument.
- [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible):
A JSON value can be copy-constructed from an lvalue expression.
- [MoveAssignable](http://en.cppreference.com/w/cpp/concept/MoveAssignable):
A JSON value van be assigned from an rvalue argument.
- [CopyAssignable](http://en.cppreference.com/w/cpp/concept/CopyAssignable):
A JSON value can be copy-assigned from an lvalue expression.
- [Destructible](http://en.cppreference.com/w/cpp/concept/Destructible):
JSON values can be destructed.
- Layout
- [StandardLayoutType](http://en.cppreference.com/w/cpp/concept/StandardLayoutType):
JSON values have
[standard layout](http://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
All non-static data members are private and standard layout types, the class
has no virtual functions or (virtual) base classes.
- Library-wide
- [EqualityComparable](http://en.cppreference.com/w/cpp/concept/EqualityComparable):
JSON values can be compared with `==`, see @ref
operator==(const_reference,const_reference).
- [LessThanComparable](http://en.cppreference.com/w/cpp/concept/LessThanComparable):
JSON values can be compared with `<`, see @ref
operator<(const_reference,const_reference).
- [Swappable](http://en.cppreference.com/w/cpp/concept/Swappable):
Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
other compatible types, using unqualified function call @ref swap().
- [NullablePointer](http://en.cppreference.com/w/cpp/concept/NullablePointer):
JSON values can be compared against `std::nullptr_t` objects which are used
to model the `null` value.
- Container
- [Container](http://en.cppreference.com/w/cpp/concept/Container):
JSON values can be used like STL containers and provide iterator access.
- [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer);
JSON values can be used like STL containers and provide reverse iterator
access.
@invariant The member variables @a m_value and @a m_type have the following
relationship:
- If `m_type == value_t::object`, then `m_value.object != nullptr`.
- If `m_type == value_t::array`, then `m_value.array != nullptr`.
- If `m_type == value_t::string`, then `m_value.string != nullptr`.
The invariants are checked by member function assert_invariant().
@internal
@note ObjectType trick from http://stackoverflow.com/a/9860911
@endinternal
@see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
Format](http://rfc7159.net/rfc7159)
@since version 1.0.0
@nosubgrouping
*/
template <
template<typename U, typename V, typename... Args> class ObjectType = std::map,
template<typename U, typename... Args> class ArrayType = std::vector,
class StringType = std::string,
class BooleanType = bool,
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator
>
class basic_json
{
private:
/// workaround type for MSVC
using basic_json_t = basic_json<ObjectType, ArrayType, StringType,
BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType,
AllocatorType>;
public:
// forward declarations
template<typename Base> class json_reverse_iterator;
class json_pointer;
/////////////////////
// container types //
/////////////////////
/// @name container types
/// The canonic container types to use @ref basic_json like any other STL
/// container.
/// @{
/// the type of elements in a basic_json container
using value_type = basic_json;
/// the type of an element reference
using reference = value_type&;
/// the type of an element const reference
using const_reference = const value_type&;
/// a type to represent differences between iterators
using difference_type = std::ptrdiff_t;
/// a type to represent container sizes
using size_type = std::size_t;
/// the allocator type
using allocator_type = AllocatorType<basic_json>;
/// the type of an element pointer
using pointer = typename std::allocator_traits<allocator_type>::pointer;
/// the type of an element const pointer
using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
/// an iterator for a basic_json container
class iterator;
/// a const iterator for a basic_json container
class const_iterator;
/// a reverse iterator for a basic_json container
using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
/// a const reverse iterator for a basic_json container
using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
/// @}
/*!
@brief returns the allocator associated with the container
*/
static allocator_type get_allocator()
{
return allocator_type();
}
///////////////////////////
// JSON value data types //
///////////////////////////
/// @name JSON value data types
/// The data types to store a JSON value. These types are derived from
/// the template arguments passed to class @ref basic_json.
/// @{
/*!
@brief a type for an object
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
> An object is an unordered collection of zero or more name/value pairs,
> where a name is a string and a value is a string, number, boolean, null,
> object, or array.
To store objects in C++, a type is defined by the template parameters
described below.
@tparam ObjectType the container to store objects (e.g., `std::map` or
`std::unordered_map`)
@tparam StringType the type of the keys or names (e.g., `std::string`).
The comparison function `std::less<StringType>` is used to order elements
inside the container.
@tparam AllocatorType the allocator to use for objects (e.g.,
`std::allocator`)
#### Default type
With the default values for @a ObjectType (`std::map`), @a StringType
(`std::string`), and @a AllocatorType (`std::allocator`), the default
value for @a object_t is:
@code {.cpp}
std::map<
std::string, // key_type
basic_json, // value_type
std::less<std::string>, // key_compare
std::allocator<std::pair<const std::string, basic_json>> // allocator_type
>
@endcode
#### Behavior
The choice of @a object_t influences the behavior of the JSON class. With
the default type, objects have the following behavior:
- When all names are unique, objects will be interoperable in the sense
that all software implementations receiving that object will agree on
the name-value mappings.
- When the names within an object are not unique, later stored name/value
pairs overwrite previously stored name/value pairs, leaving the used
names unique. For instance, `{"key": 1}` and `{"key": 2, "key": 1}` will
be treated as equal and both stored as `{"key": 1}`.
- Internally, name/value pairs are stored in lexicographical order of the
names. Objects will also be serialized (see @ref dump) in this order.
For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
and serialized as `{"a": 2, "b": 1}`.
- When comparing objects, the order of the name/value pairs is irrelevant.
This makes objects interoperable in the sense that they will not be
affected by these differences. For instance, `{"b": 1, "a": 2}` and
`{"a": 2, "b": 1}` will be treated as equal.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the object's limit of nesting is not constraint explicitly.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON object.
#### Storage
Objects are stored as pointers in a @ref basic_json type. That is, for any
access to object values, a pointer of type `object_t*` must be
dereferenced.
@sa @ref array_t -- type for an array value
@since version 1.0.0
@note The order name/value pairs are added to the object is *not*
preserved by the library. Therefore, iterating an object may return
name/value pairs in a different order than they were originally stored. In
fact, keys will be traversed in alphabetical order as `std::map` with
`std::less` is used by default. Please note this behavior conforms to [RFC
7159](http://rfc7159.net/rfc7159), because any order implements the
specified "unordered" nature of JSON objects.
*/
using object_t = ObjectType<StringType,
basic_json,
std::less<StringType>,
AllocatorType<std::pair<const StringType,
basic_json>>>;
/*!
@brief a type for an array
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
> An array is an ordered sequence of zero or more values.
To store objects in C++, a type is defined by the template parameters
explained below.
@tparam ArrayType container type to store arrays (e.g., `std::vector` or
`std::list`)
@tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
#### Default type
With the default values for @a ArrayType (`std::vector`) and @a
AllocatorType (`std::allocator`), the default value for @a array_t is:
@code {.cpp}
std::vector<
basic_json, // value_type
std::allocator<basic_json> // allocator_type
>
@endcode
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the array's limit of nesting is not constraint explicitly.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON array.
#### Storage
Arrays are stored as pointers in a @ref basic_json type. That is, for any
access to array values, a pointer of type `array_t*` must be dereferenced.
@sa @ref object_t -- type for an object value
@since version 1.0.0
*/
using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
/*!
@brief a type for a string
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
> A string is a sequence of zero or more Unicode characters.
To store objects in C++, a type is defined by the template parameter
described below. Unicode values are split by the JSON class into
byte-sized characters during deserialization.
@tparam StringType the container to store strings (e.g., `std::string`).
Note this container is used for keys/names in objects, see @ref object_t.
#### Default type
With the default values for @a StringType (`std::string`), the default
value for @a string_t is:
@code {.cpp}
std::string
@endcode
#### String comparison
[RFC 7159](http://rfc7159.net/rfc7159) states:
> Software implementations are typically required to test names of object
> members for equality. Implementations that transform the textual
> representation into sequences of Unicode code units and then perform the
> comparison numerically, code unit by code unit, are interoperable in the
> sense that implementations will agree in all cases on equality or
> inequality of two strings. For example, implementations that compare
> strings with escaped characters unconverted may incorrectly find that
> `"a\\b"` and `"a\u005Cb"` are not equal.
This implementation is interoperable as it does compare strings code unit
by code unit.
#### Storage
String values are stored as pointers in a @ref basic_json type. That is,
for any access to string values, a pointer of type `string_t*` must be
dereferenced.
@since version 1.0.0
*/
using string_t = StringType;
/*!
@brief a type for a boolean
[RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
type which differentiates the two literals `true` and `false`.
To store objects in C++, a type is defined by the template parameter @a
BooleanType which chooses the type to use.
#### Default type
With the default values for @a BooleanType (`bool`), the default value for
@a boolean_t is:
@code {.cpp}
bool
@endcode
#### Storage
Boolean values are stored directly inside a @ref basic_json type.
@since version 1.0.0
*/
using boolean_t = BooleanType;
/*!
@brief a type for a number (integer)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store integer numbers in C++, a type is defined by the template
parameter @a NumberIntegerType which chooses the type to use.
#### Default type
With the default values for @a NumberIntegerType (`int64_t`), the default
value for @a number_integer_t is:
@code {.cpp}
int64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
that are out of range will yield over/underflow when used in a
constructor. During deserialization, too large or small integer numbers
will be automatically be stored as @ref number_unsigned_t or @ref
number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange of the exactly supported range [INT64_MIN,
INT64_MAX], this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_integer_t = NumberIntegerType;
/*!
@brief a type for a number (unsigned)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store unsigned integer numbers in C++, a type is defined by the
template parameter @a NumberUnsignedType which chooses the type to use.
#### Default type
With the default values for @a NumberUnsignedType (`uint64_t`), the
default value for @a number_unsigned_t is:
@code {.cpp}
uint64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
number that can be stored is `0`. Integer numbers that are out of range
will yield over/underflow when used in a constructor. During
deserialization, too large or small integer numbers will be automatically
be stored as @ref number_integer_t or @ref number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange (when considered in conjunction with the
number_integer_t type) of the exactly supported range [0, UINT64_MAX],
this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_integer_t -- type for number values (integer)
@since version 2.0.0
*/
using number_unsigned_t = NumberUnsignedType;
/*!
@brief a type for a number (floating-point)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store floating-point numbers in C++, a type is defined by the template
parameter @a NumberFloatType which chooses the type to use.
#### Default type
With the default values for @a NumberFloatType (`double`), the default
value for @a number_float_t is:
@code {.cpp}
double
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in floating-point literals will be ignored. Internally,
the value will be stored as decimal number. For instance, the C++
floating-point literal `01.2` will be serialized to `1.2`. During
deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) states:
> This specification allows implementations to set limits on the range and
> precision of numbers accepted. Since software that implements IEEE
> 754-2008 binary64 (double precision) numbers is generally available and
> widely used, good interoperability can be achieved by implementations
> that expect no more precision or range than these provide, in the sense
> that implementations will approximate JSON numbers within the expected
> precision.
This implementation does exactly follow this approach, as it uses double
precision floating-point numbers. Note values smaller than
`-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
will be stored as NaN internally and be serialized to `null`.
#### Storage
Floating-point number values are stored directly inside a @ref basic_json
type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_float_t = NumberFloatType;
/// @}
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used
to distinguish the stored values, and the functions @ref is_null(), @ref
is_object(), @ref is_array(), @ref is_string(), @ref is_boolean(), @ref
is_number() (with @ref is_number_integer(), @ref is_number_unsigned(), and
@ref is_number_float()), @ref is_discarded(), @ref is_primitive(), and
@ref is_structured() rely on it.
@note There are three enumeration entries (number_integer,
number_unsigned, and number_float), because the library distinguishes
these three types for numbers: @ref number_unsigned_t is used for unsigned
integers, @ref number_integer_t is used for signed integers, and @ref
number_float_t is used for floating-point numbers or to approximate
integers which do not fit in the limits of their respective type.
@sa @ref basic_json(const value_t value_type) -- create a JSON value with
the default value for a given type
@since version 1.0.0
*/
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
private:
/// helper for exception-safe object creation
template<typename T, typename... Args>
static T* create(Args&& ... args)
{
AllocatorType<T> alloc;
auto deleter = [&](T * object)
{
alloc.deallocate(object, 1);
};
std::unique_ptr<T, decltype(deleter)> object(alloc.allocate(1), deleter);
alloc.construct(object.get(), std::forward<Args>(args)...);
assert(object.get() != nullptr);
return object.release();
}
////////////////////////
// JSON value storage //
////////////////////////
/*!
@brief a JSON value
The actual storage for a JSON value of the @ref basic_json class. This
union combines the different storage types for the JSON value types
defined in @ref value_t.
JSON type | value_t type | used type
--------- | --------------- | ------------------------
object | object | pointer to @ref object_t
array | array | pointer to @ref array_t
string | string | pointer to @ref string_t
boolean | boolean | @ref boolean_t
number | number_integer | @ref number_integer_t
number | number_unsigned | @ref number_unsigned_t
number | number_float | @ref number_float_t
null | null | *no value is stored*
@note Variable-length types (objects, arrays, and strings) are stored as
pointers. The size of the union should not exceed 64 bits if the default
value types are used.
@since version 1.0.0
*/
union json_value
{
/// object (stored with pointer to save storage)
object_t* object;
/// array (stored with pointer to save storage)
array_t* array;
/// string (stored with pointer to save storage)
string_t* string;
/// boolean
boolean_t boolean;
/// number (integer)
number_integer_t number_integer;
/// number (unsigned integer)
number_unsigned_t number_unsigned;
/// number (floating-point)
number_float_t number_float;
/// default constructor (for null values)
json_value() = default;
/// constructor for booleans
json_value(boolean_t v) noexcept : boolean(v) {}
/// constructor for numbers (integer)
json_value(number_integer_t v) noexcept : number_integer(v) {}
/// constructor for numbers (unsigned)
json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
/// constructor for numbers (floating-point)
json_value(number_float_t v) noexcept : number_float(v) {}
/// constructor for empty values of a given type
json_value(value_t t)
{
switch (t)
{
case value_t::object:
{
object = create<object_t>();
break;
}
case value_t::array:
{
array = create<array_t>();
break;
}
case value_t::string:
{
string = create<string_t>("");
break;
}
case value_t::boolean:
{
boolean = boolean_t(false);
break;
}
case value_t::number_integer:
{
number_integer = number_integer_t(0);
break;
}
case value_t::number_unsigned:
{
number_unsigned = number_unsigned_t(0);
break;
}
case value_t::number_float:
{
number_float = number_float_t(0.0);
break;
}
default:
{
break;
}
}
}
/// constructor for strings
json_value(const string_t& value)
{
string = create<string_t>(value);
}
/// constructor for objects
json_value(const object_t& value)
{
object = create<object_t>(value);
}
/// constructor for arrays
json_value(const array_t& value)
{
array = create<array_t>(value);
}
};
/*!
@brief checks the class invariants
This function asserts the class invariants. It needs to be called at the
end of every constructor to make sure that created objects respect the
invariant. Furthermore, it has to be called each time the type of a JSON
value is changed, because the invariant expresses a relationship between
@a m_type and @a m_value.
*/
void assert_invariant() const
{
assert(m_type != value_t::object or m_value.object != nullptr);
assert(m_type != value_t::array or m_value.array != nullptr);
assert(m_type != value_t::string or m_value.string != nullptr);
}
public:
//////////////////////////
// JSON parser callback //
//////////////////////////
/*!
@brief JSON callback events
This enumeration lists the parser events that can trigger calling a
callback function of type @ref parser_callback_t during parsing.
@image html callback_events.png "Example when certain parse events are triggered"
@since version 1.0.0
*/
enum class parse_event_t : uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start,
/// the parser read `}` and finished processing a JSON object
object_end,
/// the parser read `[` and started to process a JSON array
array_start,
/// the parser read `]` and finished processing a JSON array
array_end,
/// the parser read a key of a value in an object
key,
/// the parser finished reading a JSON value
value
};
/*!
@brief per-element parser callback type
With a parser callback function, the result of parsing a JSON text can be
influenced. When passed to @ref parse(std::istream&, const
parser_callback_t) or @ref parse(const char*, const parser_callback_t),
it is called on certain events (passed as @ref parse_event_t via parameter
@a event) with a set recursion depth @a depth and context JSON value
@a parsed. The return value of the callback function is a boolean
indicating whether the element that emitted the callback shall be kept or
not.
We distinguish six scenarios (determined by the event type) in which the
callback function can be called. The following table describes the values
of the parameters @a depth, @a event, and @a parsed.
parameter @a event | description | parameter @a depth | parameter @a parsed
------------------ | ----------- | ------------------ | -------------------
parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
@image html callback_events.png "Example when certain parse events are triggered"
Discarding a value (i.e., returning `false`) has different effects
depending on the context in which function was called:
- Discarded values in structured types are skipped. That is, the parser
will behave as if the discarded value was never read.
- In case a value outside a structured type is skipped, it is replaced
with `null`. This case happens if the top-level element is skipped.
@param[in] depth the depth of the recursion during parsing
@param[in] event an event of type parse_event_t indicating the context in
the callback function has been called
@param[in,out] parsed the current intermediate parse result; note that
writing to this value has no effect for parse_event_t::key events
@return Whether the JSON value which called the function during parsing
should be kept (`true`) or not (`false`). In the latter case, it is either
skipped completely or replaced by an empty discarded object.
@sa @ref parse(std::istream&, parser_callback_t) or
@ref parse(const char*, parser_callback_t) for examples
@since version 1.0.0
*/
using parser_callback_t = std::function<bool(int depth,
parse_event_t event,
basic_json& parsed)>;
//////////////////
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an empty value with a given type
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] value_type the type of the value to create
@complexity Constant.
@throw std::bad_alloc if allocation for object, array, or string value
fails
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@sa @ref basic_json(std::nullptr_t) -- create a `null` value
@sa @ref basic_json(boolean_t value) -- create a boolean value
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const object_t&) -- create a object value
@sa @ref basic_json(const array_t&) -- create a array value
@sa @ref basic_json(const number_float_t) -- create a number
(floating-point) value
@sa @ref basic_json(const number_integer_t) -- create a number (integer)
value
@sa @ref basic_json(const number_unsigned_t) -- create a number (unsigned)
value
@since version 1.0.0
*/
basic_json(const value_t value_type)
: m_type(value_type), m_value(value_type)
{
assert_invariant();
}
/*!
@brief create a null object
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
assert_invariant();
}
/*!
@brief create an object (explicit)
Create an object JSON value with a given content.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with an @ref
object_t parameter.,basic_json__object_t}
@sa @ref basic_json(const CompatibleObjectType&) -- create an object value
from a compatible STL container
@since version 1.0.0
*/
basic_json(const object_t& val)
: m_type(value_t::object), m_value(val)
{
assert_invariant();
}
/*!
@brief create an object (implicit)
Create an object JSON value with a given content. This constructor allows
any type @a CompatibleObjectType that can be used to construct values of
type @ref object_t.
@tparam CompatibleObjectType An object type whose `key_type` and
`value_type` is compatible to @ref object_t. Examples include `std::map`,
`std::unordered_map`, `std::multimap`, and `std::unordered_multimap` with
a `key_type` of `std::string`, and a `value_type` from which a @ref
basic_json value can be constructed.
@param[in] val a value for the object
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for object value fails
@liveexample{The following code shows the constructor with several
compatible object type parameters.,basic_json__CompatibleObjectType}
@sa @ref basic_json(const object_t&) -- create an object value
@since version 1.0.0
*/
template<class CompatibleObjectType, typename std::enable_if<
std::is_constructible<typename object_t::key_type, typename CompatibleObjectType::key_type>::value and
std::is_constructible<basic_json, typename CompatibleObjectType::mapped_type>::value, int>::type = 0>
basic_json(const CompatibleObjectType& val)
: m_type(value_t::object)
{
using std::begin;
using std::end;
m_value.object = create<object_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create an array (explicit)
Create an array JSON value with a given content.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with an @ref array_t
parameter.,basic_json__array_t}
@sa @ref basic_json(const CompatibleArrayType&) -- create an array value
from a compatible STL containers
@since version 1.0.0
*/
basic_json(const array_t& val)
: m_type(value_t::array), m_value(val)
{
assert_invariant();
}
/*!
@brief create an array (implicit)
Create an array JSON value with a given content. This constructor allows
any type @a CompatibleArrayType that can be used to construct values of
type @ref array_t.
@tparam CompatibleArrayType An object type whose `value_type` is
compatible to @ref array_t. Examples include `std::vector`, `std::deque`,
`std::list`, `std::forward_list`, `std::array`, `std::set`,
`std::unordered_set`, `std::multiset`, and `unordered_multiset` with a
`value_type` from which a @ref basic_json value can be constructed.
@param[in] val a value for the array
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for array value fails
@liveexample{The following code shows the constructor with several
compatible array type parameters.,basic_json__CompatibleArrayType}
@sa @ref basic_json(const array_t&) -- create an array value
@since version 1.0.0
*/
template<class CompatibleArrayType, typename std::enable_if<
not std::is_same<CompatibleArrayType, typename basic_json_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename basic_json_t::const_reverse_iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::iterator>::value and
not std::is_same<CompatibleArrayType, typename array_t::const_iterator>::value and
std::is_constructible<basic_json, typename CompatibleArrayType::value_type>::value, int>::type = 0>
basic_json(const CompatibleArrayType& val)
: m_type(value_t::array)
{
using std::begin;
using std::end;
m_value.array = create<array_t>(begin(val), end(val));
assert_invariant();
}
/*!
@brief create a string (explicit)
Create an string JSON value with a given content.
@param[in] val a value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with an @ref
string_t parameter.,basic_json__string_t}
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const string_t& val)
: m_type(value_t::string), m_value(val)
{
assert_invariant();
}
/*!
@brief create a string (explicit)
Create a string JSON value with a given content.
@param[in] val a literal value for the string
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the constructor with string literal
parameter.,basic_json__string_t_value_type}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const CompatibleStringType&) -- create a string value
from a compatible string container
@since version 1.0.0
*/
basic_json(const typename string_t::value_type* val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a string (implicit)
Create a string JSON value with a given content.
@param[in] val a value for the string
@tparam CompatibleStringType an string type which is compatible to @ref
string_t, for instance `std::string`.
@complexity Linear in the size of the passed @a val.
@throw std::bad_alloc if allocation for string value fails
@liveexample{The following code shows the construction of a string value
from a compatible type.,basic_json__CompatibleStringType}
@sa @ref basic_json(const string_t&) -- create a string value
@sa @ref basic_json(const typename string_t::value_type*) -- create a
string value from a character pointer
@since version 1.0.0
*/
template<class CompatibleStringType, typename std::enable_if<
std::is_constructible<string_t, CompatibleStringType>::value, int>::type = 0>
basic_json(const CompatibleStringType& val)
: basic_json(string_t(val))
{
assert_invariant();
}
/*!
@brief create a boolean (explicit)
Creates a JSON boolean type from a given value.
@param[in] val a boolean value to store
@complexity Constant.
@liveexample{The example below demonstrates boolean
values.,basic_json__boolean_t}
@since version 1.0.0
*/
basic_json(boolean_t val) noexcept
: m_type(value_t::boolean), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number (explicit)
Create an integer number JSON value with a given content.
@tparam T A helper type to remove this function via SFINAE in case @ref
number_integer_t is the same as `int`. In this case, this constructor
would have the same signature as @ref basic_json(const int value). Note
the helper type @a T is not visible in this constructor's interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value.,basic_json__number_integer_t}
@sa @ref basic_json(const int) -- create a number value (integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_integer_t>::value, int>::type = 0>
basic_json(const number_integer_t val) noexcept
: m_type(value_t::number_integer), m_value(val)
{
assert_invariant();
}
/*!
@brief create an integer number from an enum type (explicit)
Create an integer number JSON value with a given content.
@param[in] val an integer to create a JSON number from
@note This constructor allows to pass enums directly to a constructor. As
C++ has no way of specifying the type of an anonymous enum explicitly, we
can only rely on the fact that such values implicitly convert to int. As
int may already be the same type of number_integer_t, we may need to
switch off the constructor @ref basic_json(const number_integer_t).
@complexity Constant.
@liveexample{The example below shows the construction of an integer
number value from an anonymous enum.,basic_json__const_int}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const CompatibleNumberIntegerType) -- create a number
value (integer) from a compatible number type
@since version 1.0.0
*/
basic_json(const int val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an integer number (implicit)
Create an integer number JSON value with a given content. This constructor
allows any type @a CompatibleNumberIntegerType that can be used to
construct values of type @ref number_integer_t.
@tparam CompatibleNumberIntegerType An integer type which is compatible to
@ref number_integer_t. Examples include the types `int`, `int32_t`,
`long`, and `short`.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@liveexample{The example below shows the construction of several integer
number values from compatible
types.,basic_json__CompatibleIntegerNumberType}
@sa @ref basic_json(const number_integer_t) -- create a number value
(integer)
@sa @ref basic_json(const int) -- create a number value (integer)
@since version 1.0.0
*/
template<typename CompatibleNumberIntegerType, typename std::enable_if<
std::is_constructible<number_integer_t, CompatibleNumberIntegerType>::value and
std::numeric_limits<CompatibleNumberIntegerType>::is_integer and
std::numeric_limits<CompatibleNumberIntegerType>::is_signed,
CompatibleNumberIntegerType>::type = 0>
basic_json(const CompatibleNumberIntegerType val) noexcept
: m_type(value_t::number_integer),
m_value(static_cast<number_integer_t>(val))
{
assert_invariant();
}
/*!
@brief create an unsigned integer number (explicit)
Create an unsigned integer number JSON value with a given content.
@tparam T helper type to compare number_unsigned_t and unsigned int (not
visible in) the interface.
@param[in] val an integer to create a JSON number from
@complexity Constant.
@sa @ref basic_json(const CompatibleNumberUnsignedType) -- create a number
value (unsigned integer) from a compatible number type
@since version 2.0.0
*/
template<typename T, typename std::enable_if<
not (std::is_same<T, int>::value) and
std::is_same<T, number_unsigned_t>::value, int>::type = 0>
basic_json(const number_unsigned_t val) noexcept
: m_type(value_t::number_unsigned), m_value(val)
{
assert_invariant();
}
/*!
@brief create an unsigned number (implicit)
Create an unsigned number JSON value with a given content. This
constructor allows any type @a CompatibleNumberUnsignedType that can be
used to construct values of type @ref number_unsigned_t.
@tparam CompatibleNumberUnsignedType An integer type which is compatible
to @ref number_unsigned_t. Examples may include the types `unsigned int`,
`uint32_t`, or `unsigned short`.
@param[in] val an unsigned integer to create a JSON number from
@complexity Constant.
@sa @ref basic_json(const number_unsigned_t) -- create a number value
(unsigned)
@since version 2.0.0
*/
template<typename CompatibleNumberUnsignedType, typename std::enable_if <
std::is_constructible<number_unsigned_t, CompatibleNumberUnsignedType>::value and
std::numeric_limits<CompatibleNumberUnsignedType>::is_integer and
not std::numeric_limits<CompatibleNumberUnsignedType>::is_signed,
CompatibleNumberUnsignedType>::type = 0>
basic_json(const CompatibleNumberUnsignedType val) noexcept
: m_type(value_t::number_unsigned),
m_value(static_cast<number_unsigned_t>(val))
{
assert_invariant();
}
/*!
@brief create a floating-point number (explicit)
Create a floating-point number JSON value with a given content.
@param[in] val a floating-point value to create a JSON number from
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is created
instead.
@complexity Constant.
@liveexample{The following example creates several floating-point
values.,basic_json__number_float_t}
@sa @ref basic_json(const CompatibleNumberFloatType) -- create a number
value (floating-point) from a compatible number type
@since version 1.0.0
*/
basic_json(const number_float_t val) noexcept
: m_type(value_t::number_float), m_value(val)
{
// replace infinity and NAN by null
if (not std::isfinite(val))
{
m_type = value_t::null;
m_value = json_value();
}
assert_invariant();
}
/*!
@brief create an floating-point number (implicit)
Create an floating-point number JSON value with a given content. This
constructor allows any type @a CompatibleNumberFloatType that can be used
to construct values of type @ref number_float_t.
@tparam CompatibleNumberFloatType A floating-point type which is
compatible to @ref number_float_t. Examples may include the types `float`
or `double`.
@param[in] val a floating-point to create a JSON number from
@note [RFC 7159](http://www.rfc-editor.org/rfc/rfc7159.txt), section 6
disallows NaN values:
> Numeric values that cannot be represented in the grammar below (such as
> Infinity and NaN) are not permitted.
In case the parameter @a val is not a number, a JSON null value is
created instead.
@complexity Constant.
@liveexample{The example below shows the construction of several
floating-point number values from compatible
types.,basic_json__CompatibleNumberFloatType}
@sa @ref basic_json(const number_float_t) -- create a number value
(floating-point)
@since version 1.0.0
*/
template<typename CompatibleNumberFloatType, typename = typename std::enable_if<
std::is_constructible<number_float_t, CompatibleNumberFloatType>::value and
std::is_floating_point<CompatibleNumberFloatType>::value>::type>
basic_json(const CompatibleNumberFloatType val) noexcept
: basic_json(number_float_t(val))
{
assert_invariant();
}
/*!
@brief create a container (array or object) from an initializer list
Creates a JSON value of type array or object from the passed initializer
list @a init. In case @a type_deduction is `true` (default), the type of
the JSON value to be created is deducted from the initializer list @a init
according to the following rules:
1. If the list is empty, an empty JSON object value `{}` is created.
2. If the list consists of pairs whose first element is a string, a JSON
object value is created where the first elements of the pairs are
treated as keys and the second elements are as values.
3. In all other cases, an array is created.
The rules aim to create the best fit between a C++ initializer list and
JSON values. The rationale is as follows:
1. The empty initializer list is written as `{}` which is exactly an empty
JSON object.
2. C++ has now way of describing mapped types other than to list a list of
pairs. As JSON requires that keys must be of type string, rule 2 is the
weakest constraint one can pose on initializer lists to interpret them
as an object.
3. In all other cases, the initializer list could not be interpreted as
JSON object type, so interpreting it as JSON array type is safe.
With the rules described above, the following JSON values cannot be
expressed by an initializer list:
- the empty array (`[]`): use @ref array(std::initializer_list<basic_json>)
with an empty initializer list in this case
- arrays whose elements satisfy rule 2: use @ref
array(std::initializer_list<basic_json>) with the same initializer list
in this case
@note When used without parentheses around an empty initializer list, @ref
basic_json() is called instead of this function, yielding the JSON null
value.
@param[in] init initializer list with JSON values
@param[in] type_deduction internal parameter; when set to `true`, the type
of the JSON value is deducted from the initializer list @a init; when set
to `false`, the type provided via @a manual_type is forced. This mode is
used by the functions @ref array(std::initializer_list<basic_json>) and
@ref object(std::initializer_list<basic_json>).
@param[in] manual_type internal parameter; when @a type_deduction is set
to `false`, the created JSON value will use the provided type (only @ref
value_t::array and @ref value_t::object are valid); when @a type_deduction
is set to `true`, this parameter has no effect
@throw std::domain_error if @a type_deduction is `false`, @a manual_type
is `value_t::object`, but @a init contains an element which is not a pair
whose first element is a string; example: `"cannot create object from
initializer list"`
@complexity Linear in the size of the initializer list @a init.
@liveexample{The example below shows how JSON values are created from
initializer lists.,basic_json__list_init_t}
@sa @ref array(std::initializer_list<basic_json>) -- create a JSON array
value from an initializer list
@sa @ref object(std::initializer_list<basic_json>) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
basic_json(std::initializer_list<basic_json> init,
bool type_deduction = true,
value_t manual_type = value_t::array)
{
// check if each element is an array with two elements whose first
// element is a string
bool is_an_object = std::all_of(init.begin(), init.end(),
[](const basic_json & element)
{
return element.is_array() and element.size() == 2 and element[0].is_string();
});
// adjust type if type deduction is not wanted
if (not type_deduction)
{
// if array is wanted, do not create an object though possible
if (manual_type == value_t::array)
{
is_an_object = false;
}
// if object is wanted but impossible, throw an exception
if (manual_type == value_t::object and not is_an_object)
{
throw std::domain_error("cannot create object from initializer list");
}
}
if (is_an_object)
{
// the initializer list is a list of pairs -> create object
m_type = value_t::object;
m_value = value_t::object;
std::for_each(init.begin(), init.end(), [this](const basic_json & element)
{
m_value.object->emplace(*(element[0].m_value.string), element[1]);
});
}
else
{
// the initializer list describes an array -> create array
m_type = value_t::array;
m_value.array = create<array_t>(init);
}
assert_invariant();
}
/*!
@brief explicitly create an array from an initializer list
Creates a JSON array value from a given initializer list. That is, given a
list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
initializer list is empty, the empty array `[]` is created.
@note This function is only needed to express two edge cases that cannot
be realized with the initializer list constructor (@ref
basic_json(std::initializer_list<basic_json>, bool, value_t)). These cases
are:
1. creating an array whose elements are all pairs whose first element is a
string -- in this case, the initializer list constructor would create an
object, taking the first elements as keys
2. creating an empty array -- passing the empty initializer list to the
initializer list constructor yields an empty object
@param[in] init initializer list with JSON values to create an array from
(optional)
@return JSON array value
@complexity Linear in the size of @a init.
@liveexample{The following code shows an example for the `array`
function.,array}
@sa @ref basic_json(std::initializer_list<basic_json>, bool, value_t) --
create a JSON value from an initializer list
@sa @ref object(std::initializer_list<basic_json>) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
static basic_json array(std::initializer_list<basic_json> init =
std::initializer_list<basic_json>())
{
return basic_json(init, false, value_t::array);
}
/*!
@brief explicitly create an object from an initializer list
Creates a JSON object value from a given initializer list. The initializer
lists elements must be pairs, and their first elements must be strings. If
the initializer list is empty, the empty object `{}` is created.
@note This function is only added for symmetry reasons. In contrast to the
related function @ref array(std::initializer_list<basic_json>), there are
no cases which can only be expressed by this function. That is, any
initializer list @a init can also be passed to the initializer list
constructor @ref basic_json(std::initializer_list<basic_json>, bool,
value_t).
@param[in] init initializer list to create an object from (optional)
@return JSON object value
@throw std::domain_error if @a init is not a pair whose first elements are
strings; thrown by
@ref basic_json(std::initializer_list<basic_json>, bool, value_t)
@complexity Linear in the size of @a init.
@liveexample{The following code shows an example for the `object`
function.,object}
@sa @ref basic_json(std::initializer_list<basic_json>, bool, value_t) --
create a JSON value from an initializer list
@sa @ref array(std::initializer_list<basic_json>) -- create a JSON array
value from an initializer list
@since version 1.0.0
*/
static basic_json object(std::initializer_list<basic_json> init =
std::initializer_list<basic_json>())
{
return basic_json(init, false, value_t::object);
}
/*!
@brief construct an array with count copies of given value
Constructs a JSON array value by creating @a cnt copies of a passed value.
In case @a cnt is `0`, an empty array is created. As postcondition,
`std::distance(begin(),end()) == cnt` holds.
@param[in] cnt the number of JSON copies of @a val to create
@param[in] val the JSON value to copy
@complexity Linear in @a cnt.
@liveexample{The following code shows examples for the @ref
basic_json(size_type\, const basic_json&)
constructor.,basic_json__size_type_basic_json}
@since version 1.0.0
*/
basic_json(size_type cnt, const basic_json& val)
: m_type(value_t::array)
{
m_value.array = create<array_t>(cnt, val);
assert_invariant();
}
/*!
@brief construct a JSON container given an iterator range
Constructs the JSON value with the contents of the range `[first, last)`.
The semantics depends on the different types a JSON value can have:
- In case of primitive types (number, boolean, or string), @a first must
be `begin()` and @a last must be `end()`. In this case, the value is
copied. Otherwise, std::out_of_range is thrown.
- In case of structured types (array, object), the constructor behaves as
similar versions for `std::vector`.
- In case of a null type, std::domain_error is thrown.
@tparam InputIT an input iterator type (@ref iterator or @ref
const_iterator)
@param[in] first begin of the range to copy from (included)
@param[in] last end of the range to copy from (excluded)
@pre Iterators @a first and @a last must be initialized. **This
precondition is enforced with an assertion.**
@throw std::domain_error if iterators are not compatible; that is, do not
belong to the same JSON value; example: `"iterators are not compatible"`
@throw std::out_of_range if iterators are for a primitive type (number,
boolean, or string) where an out of range error can be detected easily;
example: `"iterators out of range"`
@throw std::bad_alloc if allocation for object, array, or string fails
@throw std::domain_error if called with a null value; example: `"cannot
use construct with iterators from null"`
@complexity Linear in distance between @a first and @a last.
@liveexample{The example below shows several ways to create JSON values by
specifying a subrange with iterators.,basic_json__InputIt_InputIt}
@since version 1.0.0
*/
template<class InputIT, typename std::enable_if<
std::is_same<InputIT, typename basic_json_t::iterator>::value or
std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
basic_json(InputIT first, InputIT last)
{
assert(first.m_object != nullptr);
assert(last.m_object != nullptr);
// make sure iterator fits the current value
if (first.m_object != last.m_object)
{
throw std::domain_error("iterators are not compatible");
}
// copy type from first iterator
m_type = first.m_object->m_type;
// check if iterator range is complete for primitive values
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())
{
throw std::out_of_range("iterators out of range");
}
break;
}
default:
{
break;
}
}
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = first.m_object->m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = first.m_object->m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value.number_float = first.m_object->m_value.number_float;
break;
}
case value_t::boolean:
{
m_value.boolean = first.m_object->m_value.boolean;
break;
}
case value_t::string:
{
m_value = *first.m_object->m_value.string;
break;
}
case value_t::object:
{
m_value.object = create<object_t>(first.m_it.object_iterator, last.m_it.object_iterator);
break;
}
case value_t::array:
{
m_value.array = create<array_t>(first.m_it.array_iterator, last.m_it.array_iterator);
break;
}
default:
{
throw std::domain_error("cannot use construct with iterators from " + first.m_object->type_name());
}
}
assert_invariant();
}
/*!
@brief construct a JSON value given an input stream
@param[in,out] i stream to read a serialized JSON value from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@deprecated This constructor is deprecated and will be removed in version
3.0.0 to unify the interface of the library. Deserialization will be
done by stream operators or by calling one of the `parse` functions,
e.g. @ref parse(std::istream&, const parser_callback_t). That is, calls
like `json j(i);` for an input stream @a i need to be replaced by
`json j = json::parse(i);`. See the example below.
@liveexample{The example below demonstrates constructing a JSON value from
a `std::stringstream` with and without callback
function.,basic_json__istream}
@since version 2.0.0, deprecated in version 2.0.3, to be removed in
version 3.0.0
*/
JSON_DEPRECATED
explicit basic_json(std::istream& i, const parser_callback_t cb = nullptr)
{
*this = parser(i, cb).parse();
assert_invariant();
}
///////////////////////////////////////
// other constructors and destructor //
///////////////////////////////////////
/*!
@brief copy constructor
Creates a copy of a given JSON value.
@param[in] other the JSON value to copy
@complexity Linear in the size of @a other.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
- As postcondition, it holds: `other == basic_json(other)`.
@throw std::bad_alloc if allocation for object, array, or string fails.
@liveexample{The following code shows an example for the copy
constructor.,basic_json__basic_json}
@since version 1.0.0
*/
basic_json(const basic_json& other)
: m_type(other.m_type)
{
// check of passed value is valid
other.assert_invariant();
switch (m_type)
{
case value_t::object:
{
m_value = *other.m_value.object;
break;
}
case value_t::array:
{
m_value = *other.m_value.array;
break;
}
case value_t::string:
{
m_value = *other.m_value.string;
break;
}
case value_t::boolean:
{
m_value = other.m_value.boolean;
break;
}
case value_t::number_integer:
{
m_value = other.m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value = other.m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value = other.m_value.number_float;
break;
}
default:
{
break;
}
}
assert_invariant();
}
/*!
@brief move constructor
Move constructor. Constructs a JSON value with the contents of the given
value @a other using move semantics. It "steals" the resources from @a
other and leaves it as JSON null value.
@param[in,out] other value to move to this object
@post @a other is a JSON null value
@complexity Constant.
@liveexample{The code below shows the move constructor explicitly called
via std::move.,basic_json__moveconstructor}
@since version 1.0.0
*/
basic_json(basic_json&& other) noexcept
: m_type(std::move(other.m_type)),
m_value(std::move(other.m_value))
{
// check that passed value is valid
other.assert_invariant();
// invalidate payload
other.m_type = value_t::null;
other.m_value = {};
assert_invariant();
}
/*!
@brief copy assignment
Copy assignment operator. Copies a JSON value via the "copy and swap"
strategy: It is expressed in terms of the copy constructor, destructor,
and the swap() member function.
@param[in] other value to copy from
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
@liveexample{The code below shows and example for the copy assignment. It
creates a copy of value `a` which is then swapped with `b`. Finally\, the
copy of `a` (which is the null value after the swap) is
destroyed.,basic_json__copyassignment}
@since version 1.0.0
*/
reference& operator=(basic_json other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
// check that passed value is valid
other.assert_invariant();
using std::swap;
swap(m_type, other.m_type);
swap(m_value, other.m_value);
assert_invariant();
return *this;
}
/*!
@brief destructor
Destroys the JSON value and frees all allocated memory.
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
- All stored elements are destroyed and all memory is freed.
@since version 1.0.0
*/
~basic_json()
{
assert_invariant();
switch (m_type)
{
case value_t::object:
{
AllocatorType<object_t> alloc;
alloc.destroy(m_value.object);
alloc.deallocate(m_value.object, 1);
break;
}
case value_t::array:
{
AllocatorType<array_t> alloc;
alloc.destroy(m_value.array);
alloc.deallocate(m_value.array, 1);
break;
}
case value_t::string:
{
AllocatorType<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
break;
}
default:
{
// all other types need no specific destructor
break;
}
}
}
/// @}
public:
///////////////////////
// object inspection //
///////////////////////
/// @name object inspection
/// Functions to inspect the type of a JSON value.
/// @{
/*!
@brief serialization
Serialization function for JSON values. The function tries to mimic
Python's `json.dumps()` function, and currently supports its @a indent
parameter.
@param[in] indent If indent is nonnegative, then array elements and object
members will be pretty-printed with that indent level. An indent level of
`0` will only insert newlines. `-1` (the default) selects the most compact
representation.
@return string containing the serialization of the JSON value
@complexity Linear.
@liveexample{The following example shows the effect of different @a indent
parameters to the result of the serialization.,dump}
@see https://docs.python.org/2/library/json.html#json.dump
@since version 1.0.0
*/
string_t dump(const int indent = -1) const
{
std::stringstream ss;
// fix locale problems
const static std::locale loc(std::locale(), new DecimalSeparator);
ss.imbue(loc);
// 6, 15 or 16 digits of precision allows round-trip IEEE 754
// string->float->string, string->double->string or string->long
// double->string; to be safe, we read this value from
// std::numeric_limits<number_float_t>::digits10
ss.precision(std::numeric_limits<double>::digits10);
if (indent >= 0)
{
dump(ss, true, static_cast<unsigned int>(indent));
}
else
{
dump(ss, false, 0);
}
return ss.str();
}
/*!
@brief return the type of the JSON value (explicit)
Return the type of the JSON value as a value from the @ref value_t
enumeration.
@return the type of the JSON value
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `type()` for all JSON
types.,type}
@since version 1.0.0
*/
constexpr value_t type() const noexcept
{
return m_type;
}
/*!
@brief return whether type is primitive
This function returns true iff the JSON type is primitive (string, number,
boolean, or null).
@return `true` if type is primitive (string, number, boolean, or null),
`false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_primitive()` for all JSON
types.,is_primitive}
@sa @ref is_structured() -- returns whether JSON value is structured
@sa @ref is_null() -- returns whether JSON value is `null`
@sa @ref is_string() -- returns whether JSON value is a string
@sa @ref is_boolean() -- returns whether JSON value is a boolean
@sa @ref is_number() -- returns whether JSON value is a number
@since version 1.0.0
*/
constexpr bool is_primitive() const noexcept
{
return is_null() or is_string() or is_boolean() or is_number();
}
/*!
@brief return whether type is structured
This function returns true iff the JSON type is structured (array or
object).
@return `true` if type is structured (array or object), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_structured()` for all JSON
types.,is_structured}
@sa @ref is_primitive() -- returns whether value is primitive
@sa @ref is_array() -- returns whether value is an array
@sa @ref is_object() -- returns whether value is an object
@since version 1.0.0
*/
constexpr bool is_structured() const noexcept
{
return is_array() or is_object();
}
/*!
@brief return whether value is null
This function returns true iff the JSON value is null.
@return `true` if type is null, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_null()` for all JSON
types.,is_null}
@since version 1.0.0
*/
constexpr bool is_null() const noexcept
{
return m_type == value_t::null;
}
/*!
@brief return whether value is a boolean
This function returns true iff the JSON value is a boolean.
@return `true` if type is boolean, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_boolean()` for all JSON
types.,is_boolean}
@since version 1.0.0
*/
constexpr bool is_boolean() const noexcept
{
return m_type == value_t::boolean;
}
/*!
@brief return whether value is a number
This function returns true iff the JSON value is a number. This includes
both integer and floating-point values.
@return `true` if type is number (regardless whether integer, unsigned
integer or floating-type), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number()` for all JSON
types.,is_number}
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number() const noexcept
{
return is_number_integer() or is_number_float();
}
/*!
@brief return whether value is an integer number
This function returns true iff the JSON value is an integer or unsigned
integer number. This excludes floating-point values.
@return `true` if type is an integer or unsigned integer number, `false`
otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_integer()` for all
JSON types.,is_number_integer}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number_integer() const noexcept
{
return m_type == value_t::number_integer or m_type == value_t::number_unsigned;
}
/*!
@brief return whether value is an unsigned integer number
This function returns true iff the JSON value is an unsigned integer
number. This excludes floating-point and (signed) integer values.
@return `true` if type is an unsigned integer number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_unsigned()` for all
JSON types.,is_number_unsigned}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 2.0.0
*/
constexpr bool is_number_unsigned() const noexcept
{
return m_type == value_t::number_unsigned;
}
/*!
@brief return whether value is a floating-point number
This function returns true iff the JSON value is a floating-point number.
This excludes integer and unsigned integer values.
@return `true` if type is a floating-point number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_float()` for all
JSON types.,is_number_float}
@sa @ref is_number() -- check if value is number
@sa @ref is_number_integer() -- check if value is an integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@since version 1.0.0
*/
constexpr bool is_number_float() const noexcept
{
return m_type == value_t::number_float;
}
/*!
@brief return whether value is an object
This function returns true iff the JSON value is an object.
@return `true` if type is object, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_object()` for all JSON
types.,is_object}
@since version 1.0.0
*/
constexpr bool is_object() const noexcept
{
return m_type == value_t::object;
}
/*!
@brief return whether value is an array
This function returns true iff the JSON value is an array.
@return `true` if type is array, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_array()` for all JSON
types.,is_array}
@since version 1.0.0
*/
constexpr bool is_array() const noexcept
{
return m_type == value_t::array;
}
/*!
@brief return whether value is a string
This function returns true iff the JSON value is a string.
@return `true` if type is string, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_string()` for all JSON
types.,is_string}
@since version 1.0.0
*/
constexpr bool is_string() const noexcept
{
return m_type == value_t::string;
}
/*!
@brief return whether value is discarded
This function returns true iff the JSON value was discarded during parsing
with a callback function (see @ref parser_callback_t).
@note This function will always be `false` for JSON values after parsing.
That is, discarded values can only occur during parsing, but will be
removed when inside a structured value or replaced by null in other cases.
@return `true` if type is discarded, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_discarded()` for all JSON
types.,is_discarded}
@since version 1.0.0
*/
constexpr bool is_discarded() const noexcept
{
return m_type == value_t::discarded;
}
/*!
@brief return the type of the JSON value (implicit)
Implicitly return the type of the JSON value as a value from the @ref
value_t enumeration.
@return the type of the JSON value
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies the @ref value_t operator for
all JSON types.,operator__value_t}
@since version 1.0.0
*/
constexpr operator value_t() const noexcept
{
return m_type;
}
/// @}
private:
//////////////////
// value access //
//////////////////
/// get an object (explicit)
template<class T, typename std::enable_if<
std::is_convertible<typename object_t::key_type, typename T::key_type>::value and
std::is_convertible<basic_json_t, typename T::mapped_type>::value, int>::type = 0>
T get_impl(T*) const
{
if (is_object())
{
return T(m_value.object->begin(), m_value.object->end());
}
else
{
throw std::domain_error("type must be object, but is " + type_name());
}
}
/// get an object (explicit)
object_t get_impl(object_t*) const
{
if (is_object())
{
return *(m_value.object);
}
else
{
throw std::domain_error("type must be object, but is " + type_name());
}
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, typename T::value_type>::value and
not std::is_same<basic_json_t, typename T::value_type>::value and
not std::is_arithmetic<T>::value and
not std::is_convertible<std::string, T>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T*) const
{
if (is_array())
{
T to_vector;
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<typename T::value_type>();
});
return to_vector;
}
else
{
throw std::domain_error("type must be array, but is " + type_name());
}
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_convertible<basic_json_t, T>::value and
not std::is_same<basic_json_t, T>::value, int>::type = 0>
std::vector<T> get_impl(std::vector<T>*) const
{
if (is_array())
{
std::vector<T> to_vector;
to_vector.reserve(m_value.array->size());
std::transform(m_value.array->begin(), m_value.array->end(),
std::inserter(to_vector, to_vector.end()), [](basic_json i)
{
return i.get<T>();
});
return to_vector;
}
else
{
throw std::domain_error("type must be array, but is " + type_name());
}
}
/// get an array (explicit)
template<class T, typename std::enable_if<
std::is_same<basic_json, typename T::value_type>::value and
not has_mapped_type<T>::value, int>::type = 0>
T get_impl(T*) const
{
if (is_array())
{
return T(m_value.array->begin(), m_value.array->end());
}
else
{
throw std::domain_error("type must be array, but is " + type_name());
}
}
/// get an array (explicit)
array_t get_impl(array_t*) const
{
if (is_array())
{
return *(m_value.array);
}
else
{
throw std::domain_error("type must be array, but is " + type_name());
}
}
/// get a string (explicit)
template<typename T, typename std::enable_if<
std::is_convertible<string_t, T>::value, int>::type = 0>
T get_impl(T*) const
{
if (is_string())
{
return *m_value.string;
}
else
{
throw std::domain_error("type must be string, but is " + type_name());
}
}
/// get a number (explicit)
template<typename T, typename std::enable_if<
std::is_arithmetic<T>::value, int>::type = 0>
T get_impl(T*) const
{
switch (m_type)
{
case value_t::number_integer:
{
return static_cast<T>(m_value.number_integer);
}
case value_t::number_unsigned:
{
return static_cast<T>(m_value.number_unsigned);
}
case value_t::number_float:
{
return static_cast<T>(m_value.number_float);
}
default:
{
throw std::domain_error("type must be number, but is " + type_name());
}
}
}
/// get a boolean (explicit)
constexpr boolean_t get_impl(boolean_t*) const
{
return is_boolean()
? m_value.boolean
: throw std::domain_error("type must be boolean, but is " + type_name());
}
/// get a pointer to the value (object)
object_t* get_impl_ptr(object_t*) noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (object)
constexpr const object_t* get_impl_ptr(const object_t*) const noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (array)
array_t* get_impl_ptr(array_t*) noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (array)
constexpr const array_t* get_impl_ptr(const array_t*) const noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (string)
string_t* get_impl_ptr(string_t*) noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (string)
constexpr const string_t* get_impl_ptr(const string_t*) const noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (boolean)
boolean_t* get_impl_ptr(boolean_t*) noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (boolean)
constexpr const boolean_t* get_impl_ptr(const boolean_t*) const noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (integer number)
number_integer_t* get_impl_ptr(number_integer_t*) noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (integer number)
constexpr const number_integer_t* get_impl_ptr(const number_integer_t*) const noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (unsigned number)
number_unsigned_t* get_impl_ptr(number_unsigned_t*) noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (unsigned number)
constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t*) const noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (floating-point number)
number_float_t* get_impl_ptr(number_float_t*) noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/// get a pointer to the value (floating-point number)
constexpr const number_float_t* get_impl_ptr(const number_float_t*) const noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/*!
@brief helper function to implement get_ref()
This funcion helps to implement get_ref() without code duplication for
const and non-const overloads
@tparam ThisType will be deduced as `basic_json` or `const basic_json`
@throw std::domain_error if ReferenceType does not match underlying value
type of the current JSON
*/
template<typename ReferenceType, typename ThisType>
static ReferenceType get_ref_impl(ThisType& obj)
{
// helper type
using PointerType = typename std::add_pointer<ReferenceType>::type;
// delegate the call to get_ptr<>()
auto ptr = obj.template get_ptr<PointerType>();
if (ptr != nullptr)
{
return *ptr;
}
else
{
throw std::domain_error("incompatible ReferenceType for get_ref, actual type is " +
obj.type_name());
}
}
public:
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays
@return copy of the JSON value, converted to type @a ValueType
@throw std::domain_error in case passed type @a ValueType is incompatible
to JSON; example: `"type must be object, but is null"`
@complexity Linear in the size of the JSON value.
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,get__ValueType_const}
@internal
The idea of using a casted null pointer to choose the correct
implementation is from <http://stackoverflow.com/a/8315197/266378>.
@endinternal
@sa @ref operator ValueType() const for implicit conversion
@sa @ref get() for pointer-member access
@since version 1.0.0
*/
template<typename ValueType, typename std::enable_if<
not std::is_pointer<ValueType>::value, int>::type = 0>
ValueType get() const
{
return get_impl(static_cast<ValueType*>(nullptr));
}
/*!
@brief get a pointer value (explicit)
Explicit pointer access to the internally stored JSON value. No copies are
made.
@warning The pointer becomes invalid if the underlying JSON object
changes.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get__PointerType}
@sa @ref get_ptr() for explicit pointer-member access
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
PointerType get() noexcept
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a pointer value (explicit)
@copydoc get()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
constexpr const PointerType get() const noexcept
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a pointer value (implicit)
Implicit pointer access to the internally stored JSON value. No copies are
made.
@warning Writing data to the pointee of the result yields an undefined
state.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t. Enforced by a static
assertion.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get_ptr}
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
PointerType get_ptr() noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std::remove_const<typename
std::remove_pointer<typename
std::remove_const<PointerType>::type>::type>::type;
// make sure the type matches the allowed types
static_assert(
std::is_same<object_t, pointee_t>::value
or std::is_same<array_t, pointee_t>::value
or std::is_same<string_t, pointee_t>::value
or std::is_same<boolean_t, pointee_t>::value
or std::is_same<number_integer_t, pointee_t>::value
or std::is_same<number_unsigned_t, pointee_t>::value
or std::is_same<number_float_t, pointee_t>::value
, "incompatible pointer type");
// delegate the call to get_impl_ptr<>()
return get_impl_ptr(static_cast<PointerType>(nullptr));
}
/*!
@brief get a pointer value (implicit)
@copydoc get_ptr()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value and
std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
constexpr const PointerType get_ptr() const noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std::remove_const<typename
std::remove_pointer<typename
std::remove_const<PointerType>::type>::type>::type;
// make sure the type matches the allowed types
static_assert(
std::is_same<object_t, pointee_t>::value
or std::is_same<array_t, pointee_t>::value
or std::is_same<string_t, pointee_t>::value
or std::is_same<boolean_t, pointee_t>::value
or std::is_same<number_integer_t, pointee_t>::value
or std::is_same<number_unsigned_t, pointee_t>::value
or std::is_same<number_float_t, pointee_t>::value
, "incompatible pointer type");
// delegate the call to get_impl_ptr<>() const
return get_impl_ptr(static_cast<const PointerType>(nullptr));
}
/*!
@brief get a reference value (implicit)
Implict reference access to the internally stored JSON value. No copies
are made.
@warning Writing data to the referee of the result yields an undefined
state.
@tparam ReferenceType reference type; must be a reference to @ref array_t,
@ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
@ref number_float_t. Enforced by static assertion.
@return reference to the internally stored JSON value if the requested
reference type @a ReferenceType fits to the JSON value; throws
std::domain_error otherwise
@throw std::domain_error in case passed type @a ReferenceType is
incompatible with the stored JSON value
@complexity Constant.
@liveexample{The example shows several calls to `get_ref()`.,get_ref}
@since version 1.1.0
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value, int>::type = 0>
ReferenceType get_ref()
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a reference value (implicit)
@copydoc get_ref()
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value and
std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
ReferenceType get_ref() const
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a value (implicit)
Implicit type conversion between the JSON value and a compatible value.
The call is realized by calling @ref get() const.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays. The character type of @ref string_t
as well as an initializer list of this type is excluded to avoid
ambiguities as these types implicitly convert to `std::string`.
@return copy of the JSON value, converted to type @a ValueType
@throw std::domain_error in case passed type @a ValueType is incompatible
to JSON, thrown by @ref get() const
@complexity Linear in the size of the JSON value.
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,operator__ValueType}
@since version 1.0.0
*/
template < typename ValueType, typename std::enable_if <
not std::is_pointer<ValueType>::value and
not std::is_same<ValueType, typename string_t::value_type>::value
#ifndef _MSC_VER // Fix for issue #167 operator<< abiguity under VS2015
and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
#endif
, int >::type = 0 >
operator ValueType() const
{
// delegate the call to get<>() const
return get<ValueType>();
}
/// @}
////////////////////
// element access //
////////////////////
/// @name element access
/// Access to the JSON value.
/// @{
/*!
@brief access specified array element with bounds checking
Returns a reference to the element at specified location @a idx, with
bounds checking.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw std::domain_error if the JSON value is not an array; example:
`"cannot use at() with string"`
@throw std::out_of_range if the index @a idx is out of range of the array;
that is, `idx >= size()`; example: `"array index 7 is out of range"`
@complexity Constant.
@liveexample{The example below shows how array elements can be read and
written using `at()`.,at__size_type}
@since version 1.0.0
*/
reference at(size_type idx)
{
// at only works for arrays
if (is_array())
{
try
{
return m_value.array->at(idx);
}
catch (std::out_of_range&)
{
// create better exception explanation
throw std::out_of_range("array index " + std::to_string(idx) + " is out of range");
}
}
else
{
throw std::domain_error("cannot use at() with " + type_name());
}
}
/*!
@brief access specified array element with bounds checking
Returns a const reference to the element at specified location @a idx,
with bounds checking.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw std::domain_error if the JSON value is not an array; example:
`"cannot use at() with string"`
@throw std::out_of_range if the index @a idx is out of range of the array;
that is, `idx >= size()`; example: `"array index 7 is out of range"`
@complexity Constant.
@liveexample{The example below shows how array elements can be read using
`at()`.,at__size_type_const}
@since version 1.0.0
*/
const_reference at(size_type idx) const
{
// at only works for arrays
if (is_array())
{
try
{
return m_value.array->at(idx);
}
catch (std::out_of_range&)
{
// create better exception explanation
throw std::out_of_range("array index " + std::to_string(idx) + " is out of range");
}
}
else
{
throw std::domain_error("cannot use at() with " + type_name());
}
}
/*!
@brief access specified object element with bounds checking
Returns a reference to the element at with specified key @a key, with
bounds checking.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw std::domain_error if the JSON value is not an object; example:
`"cannot use at() with boolean"`
@throw std::out_of_range if the key @a key is is not stored in the object;
that is, `find(key) == end()`; example: `"key "the fast" not found"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using `at()`.,at__object_t_key_type}
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
reference at(const typename object_t::key_type& key)
{
// at only works for objects
if (is_object())
{
try
{
return m_value.object->at(key);
}
catch (std::out_of_range&)
{
// create better exception explanation
throw std::out_of_range("key '" + key + "' not found");
}
}
else
{
throw std::domain_error("cannot use at() with " + type_name());
}
}
/*!
@brief access specified object element with bounds checking
Returns a const reference to the element at with specified key @a key,
with bounds checking.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@throw std::domain_error if the JSON value is not an object; example:
`"cannot use at() with boolean"`
@throw std::out_of_range if the key @a key is is not stored in the object;
that is, `find(key) == end()`; example: `"key "the fast" not found"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
`at()`.,at__object_t_key_type_const}
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
const_reference at(const typename object_t::key_type& key) const
{
// at only works for objects
if (is_object())
{
try
{
return m_value.object->at(key);
}
catch (std::out_of_range&)
{
// create better exception explanation
throw std::out_of_range("key '" + key + "' not found");
}
}
else
{
throw std::domain_error("cannot use at() with " + type_name());
}
}
/*!
@brief access specified array element
Returns a reference to the element at specified location @a idx.
@note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
then the array is silently filled up with `null` values to make `idx` a
valid reference to the last stored element.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw std::domain_error if JSON is not an array or null; example:
`"cannot use operator[] with string"`
@complexity Constant if @a idx is in the range of the array. Otherwise
linear in `idx - size()`.
@liveexample{The example below shows how array elements can be read and
written using `[]` operator. Note the addition of `null`
values.,operatorarray__size_type}
@since version 1.0.0
*/
reference operator[](size_type idx)
{
// implicitly convert null value to an empty array
if (is_null())
{
m_type = value_t::array;
m_value.array = create<array_t>();
assert_invariant();
}
// operator[] only works for arrays
if (is_array())
{
// fill up array with null values if given idx is outside range
if (idx >= m_value.array->size())
{
m_value.array->insert(m_value.array->end(),
idx - m_value.array->size() + 1,
basic_json());
}
return m_value.array->operator[](idx);
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief access specified array element
Returns a const reference to the element at specified location @a idx.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw std::domain_error if JSON is not an array; example: `"cannot use
operator[] with null"`
@complexity Constant.
@liveexample{The example below shows how array elements can be read using
the `[]` operator.,operatorarray__size_type_const}
@since version 1.0.0
*/
const_reference operator[](size_type idx) const
{
// const operator[] only works for arrays
if (is_array())
{
return m_value.array->operator[](idx);
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw std::domain_error if JSON is not an object or null; example:
`"cannot use operator[] with string"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
reference operator[](const typename object_t::key_type& key)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
// operator[] only works for objects
if (is_object())
{
return m_value.object->operator[](key);
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw std::domain_error if JSON is not an object; example: `"cannot use
operator[] with null"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
const_reference operator[](const typename object_t::key_type& key) const
{
// const operator[] only works for objects
if (is_object())
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw std::domain_error if JSON is not an object or null; example:
`"cannot use operator[] with string"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
template<typename T, std::size_t n>
reference operator[](T * (&key)[n])
{
return operator[](static_cast<const T>(key));
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@note This function is required for compatibility reasons with Clang.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@throw std::domain_error if JSON is not an object; example: `"cannot use
operator[] with null"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
template<typename T, std::size_t n>
const_reference operator[](T * (&key)[n]) const
{
return operator[](static_cast<const T>(key));
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw std::domain_error if JSON is not an object or null; example:
`"cannot use operator[] with string"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
reference operator[](T* key)
{
// implicitly convert null to object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// at only works for objects
if (is_object())
{
return m_value.object->operator[](key);
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw std::domain_error if JSON is not an object; example: `"cannot use
operator[] with null"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
const_reference operator[](T* key) const
{
// at only works for objects
if (is_object())
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
else
{
throw std::domain_error("cannot use operator[] with " + type_name());
}
}
/*!
@brief access specified object element with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(key);
} catch(std::out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const typename object_t::key_type&), this function
does not throw if the given key @a key was not found.
@note Unlike @ref operator[](const typename object_t::key_type& key), this
function does not implicitly add an element to the position defined by @a
key. This function is furthermore also applicable to const objects.
@param[in] key key of the element to access
@param[in] default_value the value to return if @a key is not found
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw std::domain_error if JSON is not an object; example: `"cannot use
value() with null"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@since version 1.0.0
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const typename object_t::key_type& key, ValueType default_value) const
{
// at only works for objects
if (is_object())
{
// if key is found, return value and given default value otherwise
const auto it = find(key);
if (it != end())
{
return *it;
}
else
{
return default_value;
}
}
else
{
throw std::domain_error("cannot use value() with " + type_name());
}
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const typename object_t::key_type&, ValueType) const
*/
string_t value(const typename object_t::key_type& key, const char* default_value) const
{
return value(key, string_t(default_value));
}
/*!
@brief access specified object element via JSON Pointer with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(ptr);
} catch(std::out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const json_pointer&), this function does not throw
if the given key @a key was not found.
@param[in] ptr a JSON pointer to the element to access
@param[in] default_value the value to return if @a ptr found no value
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw std::domain_error if JSON is not an object; example: `"cannot use
value() with null"`
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value_ptr}
@sa @ref operator[](const json_pointer&) for unchecked access by reference
@since version 2.0.2
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const json_pointer& ptr, ValueType default_value) const
{
// at only works for objects
if (is_object())
{
// if pointer resolves a value, return it or use default value
try
{
return ptr.get_checked(this);
}
catch (std::out_of_range&)
{
return default_value;
}
}
else
{
throw std::domain_error("cannot use value() with " + type_name());
}
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const json_pointer&, ValueType) const
*/
string_t value(const json_pointer& ptr, const char* default_value) const
{
return value(ptr, string_t(default_value));
}
/*!
@brief access the first element
Returns a reference to the first element in the container. For a JSON
container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
@return In case of a structured type (array or object), a reference to the
first element is returned. In cast of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw std::out_of_range when called on `null` value
@liveexample{The following code shows an example for `front()`.,front}
@sa @ref back() -- access the last element
@since version 1.0.0
*/
reference front()
{
return *begin();
}
/*!
@copydoc basic_json::front()
*/
const_reference front() const
{
return *cbegin();
}
/*!
@brief access the last element
Returns a reference to the last element in the container. For a JSON
container `c`, the expression `c.back()` is equivalent to
@code {.cpp}
auto tmp = c.end();
--tmp;
return *tmp;
@endcode
@return In case of a structured type (array or object), a reference to the
last element is returned. In cast of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw std::out_of_range when called on `null` value.
@liveexample{The following code shows an example for `back()`.,back}
@sa @ref front() -- access the first element
@since version 1.0.0
*/
reference back()
{
auto tmp = end();
--tmp;
return *tmp;
}
/*!
@copydoc basic_json::back()
*/
const_reference back() const
{
auto tmp = cend();
--tmp;
return *tmp;
}
/*!
@brief remove element given an iterator
Removes the element specified by iterator @a pos. The iterator @a pos must
be valid and dereferenceable. Thus the `end()` iterator (which is valid,
but is not dereferenceable) cannot be used as a value for @a pos.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] pos iterator to the element to remove
@return Iterator following the last removed element. If the iterator @a
pos refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw std::domain_error if called on a `null` value; example: `"cannot
use erase() with null"`
@throw std::domain_error if called on an iterator which does not belong to
the current JSON value; example: `"iterator does not fit current value"`
@throw std::out_of_range if called on a primitive type with invalid
iterator (i.e., any iterator which is not `begin()`); example: `"iterator
out of range"`
@complexity The complexity depends on the type:
- objects: amortized constant
- arrays: linear in distance between pos and the end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType}
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType pos)
{
// make sure iterator fits the current value
if (this != pos.m_object)
{
throw std::domain_error("iterator does not fit current value");
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (not pos.m_it.primitive_iterator.is_begin())
{
throw std::out_of_range("iterator out of range");
}
if (is_string())
{
AllocatorType<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
break;
}
default:
{
throw std::domain_error("cannot use erase() with " + type_name());
}
}
return result;
}
/*!
@brief remove elements given an iterator range
Removes the element specified by the range `[first; last)`. The iterator
@a first does not need to be dereferenceable if `first == last`: erasing
an empty range is a no-op.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] first iterator to the beginning of the range to remove
@param[in] last iterator past the end of the range to remove
@return Iterator following the last removed element. If the iterator @a
second refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw std::domain_error if called on a `null` value; example: `"cannot
use erase() with null"`
@throw std::domain_error if called on iterators which does not belong to
the current JSON value; example: `"iterators do not fit current value"`
@throw std::out_of_range if called on a primitive type with invalid
iterators (i.e., if `first != begin()` and `last != end()`); example:
`"iterators out of range"`
@complexity The complexity depends on the type:
- objects: `log(size()) + std::distance(first, last)`
- arrays: linear in the distance between @a first and @a last, plus linear
in the distance between @a last and end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType_IteratorType}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType first, IteratorType last)
{
// make sure iterator fits the current value
if (this != first.m_object or this != last.m_object)
{
throw std::domain_error("iterators do not fit current value");
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())
{
throw std::out_of_range("iterators out of range");
}
if (is_string())
{
AllocatorType<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
last.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
last.m_it.array_iterator);
break;
}
default:
{
throw std::domain_error("cannot use erase() with " + type_name());
}
}
return result;
}
/*!
@brief remove element from a JSON object given a key
Removes elements from a JSON object with the key value @a key.
@param[in] key value of the elements to remove
@return Number of elements removed. If @a ObjectType is the default
`std::map` type, the return value will always be `0` (@a key was not
found) or `1` (@a key was found).
@post References and iterators to the erased elements are invalidated.
Other references and iterators are not affected.
@throw std::domain_error when called on a type other than JSON object;
example: `"cannot use erase() with null"`
@complexity `log(size()) + count(key)`
@liveexample{The example shows the effect of `erase()`.,erase__key_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
size_type erase(const typename object_t::key_type& key)
{
// this erase only works for objects
if (is_object())
{
return m_value.object->erase(key);
}
else
{
throw std::domain_error("cannot use erase() with " + type_name());
}
}
/*!
@brief remove element from a JSON array given an index
Removes element from a JSON array at the index @a idx.
@param[in] idx index of the element to remove
@throw std::domain_error when called on a type other than JSON array;
example: `"cannot use erase() with null"`
@throw std::out_of_range when `idx >= size()`; example: `"array index 17
is out of range"`
@complexity Linear in distance between @a idx and the end of the container.
@liveexample{The example shows the effect of `erase()`.,erase__size_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@since version 1.0.0
*/
void erase(const size_type idx)
{
// this erase only works for arrays
if (is_array())
{
if (idx >= size())
{
throw std::out_of_range("array index " + std::to_string(idx) + " is out of range");
}
m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
}
else
{
throw std::domain_error("cannot use erase() with " + type_name());
}
}
/// @}
////////////
// lookup //
////////////
/// @name lookup
/// @{
/*!
@brief find an element in a JSON object
Finds an element in a JSON object with key equivalent to @a key. If the
element is not found or the JSON value is not an object, end() is
returned.
@param[in] key key value of the element to search for
@return Iterator to an element with key equivalent to @a key. If no such
element is found, past-the-end (see end()) iterator is returned.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `find()` is used.,find__key_type}
@since version 1.0.0
*/
iterator find(typename object_t::key_type key)
{
auto result = end();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(key);
}
return result;
}
/*!
@brief find an element in a JSON object
@copydoc find(typename object_t::key_type)
*/
const_iterator find(typename object_t::key_type key) const
{
auto result = cend();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(key);
}
return result;
}
/*!
@brief returns the number of occurrences of a key in a JSON object
Returns the number of elements with key @a key. If ObjectType is the
default `std::map` type, the return value will always be `0` (@a key was
not found) or `1` (@a key was found).
@param[in] key key value of the element to count
@return Number of elements with key @a key. If the JSON value is not an
object, the return value will be `0`.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `count()` is used.,count}
@since version 1.0.0
*/
size_type count(typename object_t::key_type key) const
{
// return 0 for all nonobject types
return is_object() ? m_value.object->count(key) : 0;
}
/// @}
///////////////
// iterators //
///////////////
/// @name iterators
/// @{
/*!
@brief returns an iterator to the first element
Returns an iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `begin()`.,begin}
@sa @ref cbegin() -- returns a const iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
iterator begin() noexcept
{
iterator result(this);
result.set_begin();
return result;
}
/*!
@copydoc basic_json::cbegin()
*/
const_iterator begin() const noexcept
{
return cbegin();
}
/*!
@brief returns a const iterator to the first element
Returns a const iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
@liveexample{The following code shows an example for `cbegin()`.,cbegin}
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
const_iterator cbegin() const noexcept
{
const_iterator result(this);
result.set_begin();
return result;
}
/*!
@brief returns an iterator to one past the last element
Returns an iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `end()`.,end}
@sa @ref cend() -- returns a const iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
iterator end() noexcept
{
iterator result(this);
result.set_end();
return result;
}
/*!
@copydoc basic_json::cend()
*/
const_iterator end() const noexcept
{
return cend();
}
/*!
@brief returns a const iterator to one past the last element
Returns a const iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).end()`.
@liveexample{The following code shows an example for `cend()`.,cend}
@sa @ref end() -- returns an iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
const_iterator cend() const noexcept
{
const_iterator result(this);
result.set_end();
return result;
}
/*!
@brief returns an iterator to the reverse-beginning
Returns an iterator to the reverse-beginning; that is, the last element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(end())`.
@liveexample{The following code shows an example for `rbegin()`.,rbegin}
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
reverse_iterator rbegin() noexcept
{
return reverse_iterator(end());
}
/*!
@copydoc basic_json::crbegin()
*/
const_reverse_iterator rbegin() const noexcept
{
return crbegin();
}
/*!
@brief returns an iterator to the reverse-end
Returns an iterator to the reverse-end; that is, one before the first
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(begin())`.
@liveexample{The following code shows an example for `rend()`.,rend}
@sa @ref crend() -- returns a const reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
reverse_iterator rend() noexcept
{
return reverse_iterator(begin());
}
/*!
@copydoc basic_json::crend()
*/
const_reverse_iterator rend() const noexcept
{
return crend();
}
/*!
@brief returns a const reverse iterator to the last element
Returns a const iterator to the reverse-beginning; that is, the last
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
@liveexample{The following code shows an example for `crbegin()`.,crbegin}
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
/*!
@brief returns a const reverse iterator to one before the first
Returns a const reverse iterator to the reverse-end; that is, one before
the first element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
@liveexample{The following code shows an example for `crend()`.,crend}
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
private:
// forward declaration
template<typename IteratorType> class iteration_proxy;
public:
/*!
@brief wrapper to access iterator member functions in range-based for
This function allows to access @ref iterator::key() and @ref
iterator::value() during range-based for loops. In these loops, a
reference to the JSON values is returned, so there is no access to the
underlying iterator.
@note The name of this function is not yet final and may change in the
future.
*/
static iteration_proxy<iterator> iterator_wrapper(reference cont)
{
return iteration_proxy<iterator>(cont);
}
/*!
@copydoc iterator_wrapper(reference)
*/
static iteration_proxy<const_iterator> iterator_wrapper(const_reference cont)
{
return iteration_proxy<const_iterator>(cont);
}
/// @}
//////////////
// capacity //
//////////////
/// @name capacity
/// @{
/*!
@brief checks whether the container is empty
Checks if a JSON value has no elements.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `true`
boolean | `false`
string | `false`
number | `false`
object | result of function `object_t::empty()`
array | result of function `array_t::empty()`
@note This function does not return whether a string stored as JSON value
is empty - it returns whether the JSON container itself is empty which is
false in the case of a string.
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `empty()` functions have constant
complexity.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `begin() == end()`.
@liveexample{The following code uses `empty()` to check if a JSON
object contains any elements.,empty}
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
bool empty() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return true;
}
case value_t::array:
{
// delegate call to array_t::empty()
return m_value.array->empty();
}
case value_t::object:
{
// delegate call to object_t::empty()
return m_value.object->empty();
}
default:
{
// all other types are nonempty
return false;
}
}
}
/*!
@brief returns the number of elements
Returns the number of elements in a JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0`
boolean | `1`
string | `1`
number | `1`
object | result of function object_t::size()
array | result of function array_t::size()
@note This function does not return the length of a string stored as JSON
value - it returns the number of elements in the JSON value which is 1 in
the case of a string.
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their size() functions have constant
complexity.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `std::distance(begin(), end())`.
@liveexample{The following code calls `size()` on the different value
types.,size}
@sa @ref empty() -- checks whether the container is empty
@sa @ref max_size() -- returns the maximal number of elements
@since version 1.0.0
*/
size_type size() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return 0;
}
case value_t::array:
{
// delegate call to array_t::size()
return m_value.array->size();
}
case value_t::object:
{
// delegate call to object_t::size()
return m_value.object->size();
}
default:
{
// all other types have size 1
return 1;
}
}
}
/*!
@brief returns the maximum possible number of elements
Returns the maximum number of elements a JSON value is able to hold due to
system or library implementation limitations, i.e. `std::distance(begin(),
end())` for the JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0` (same as `size()`)
boolean | `1` (same as `size()`)
string | `1` (same as `size()`)
number | `1` (same as `size()`)
object | result of function `object_t::max_size()`
array | result of function `array_t::max_size()`
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `max_size()` functions have constant
complexity.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of returning `b.size()` where `b` is the largest
possible JSON value.
@liveexample{The following code calls `max_size()` on the different value
types. Note the output is implementation specific.,max_size}
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
size_type max_size() const noexcept
{
switch (m_type)
{
case value_t::array:
{
// delegate call to array_t::max_size()
return m_value.array->max_size();
}
case value_t::object:
{
// delegate call to object_t::max_size()
return m_value.object->max_size();
}
default:
{
// all other types have max_size() == size()
return size();
}
}
}
/// @}
///////////////
// modifiers //
///////////////
/// @name modifiers
/// @{
/*!
@brief clears the contents
Clears the content of a JSON value and resets it to the default value as
if @ref basic_json(value_t) would have been called:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@note Floating-point numbers are set to `0.0` which will be serialized to
`0`. The vale type remains @ref number_float_t.
@complexity Linear in the size of the JSON value.
@liveexample{The example below shows the effect of `clear()` to different
JSON types.,clear}
@since version 1.0.0
*/
void clear() noexcept
{
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = 0;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = 0;
break;
}
case value_t::number_float:
{
m_value.number_float = 0.0;
break;
}
case value_t::boolean:
{
m_value.boolean = false;
break;
}
case value_t::string:
{
m_value.string->clear();
break;
}
case value_t::array:
{
m_value.array->clear();
break;
}
case value_t::object:
{
m_value.object->clear();
break;
}
default:
{
break;
}
}
}
/*!
@brief add an object to an array
Appends the given element @a val to the end of the JSON value. If the
function is called on a JSON null value, an empty array is created before
appending @a val.
@param[in] val the value to add to the JSON array
@throw std::domain_error when called on a type other than JSON array or
null; example: `"cannot use push_back() with number"`
@complexity Amortized constant.
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON array. Note how the `null` value was silently
converted to a JSON array.,push_back}
@since version 1.0.0
*/
void push_back(basic_json&& val)
{
// push_back only works for null objects or arrays
if (not(is_null() or is_array()))
{
throw std::domain_error("cannot use push_back() with " + type_name());
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array (move semantics)
m_value.array->push_back(std::move(val));
// invalidate object
val.m_type = value_t::null;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(basic_json&& val)
{
push_back(std::move(val));
return *this;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
void push_back(const basic_json& val)
{
// push_back only works for null objects or arrays
if (not(is_null() or is_array()))
{
throw std::domain_error("cannot use push_back() with " + type_name());
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array
m_value.array->push_back(val);
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(const basic_json& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
Inserts the given element @a val to the JSON object. If the function is
called on a JSON null value, an empty object is created before inserting
@a val.
@param[in] val the value to add to the JSON object
@throw std::domain_error when called on a type other than JSON object or
null; example: `"cannot use push_back() with number"`
@complexity Logarithmic in the size of the container, O(log(`size()`)).
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON object. Note how the `null` value was silently
converted to a JSON object.,push_back__object_t__value}
@since version 1.0.0
*/
void push_back(const typename object_t::value_type& val)
{
// push_back only works for null objects or objects
if (not(is_null() or is_object()))
{
throw std::domain_error("cannot use push_back() with " + type_name());
}
// transform null object into an object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// add element to array
m_value.object->insert(val);
}
/*!
@brief add an object to an object
@copydoc push_back(const typename object_t::value_type&)
*/
reference operator+=(const typename object_t::value_type& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
This function allows to use `push_back` with an initializer list. In case
1. the current value is an object,
2. the initializer list @a init contains only two elements, and
3. the first element of @a init is a string,
@a init is converted into an object element and added using
@ref push_back(const typename object_t::value_type&). Otherwise, @a init
is converted to a JSON value and added using @ref push_back(basic_json&&).
@param init an initializer list
@complexity Linear in the size of the initializer list @a init.
@note This function is required to resolve an ambiguous overload error,
because pairs like `{"key", "value"}` can be both interpreted as
`object_t::value_type` or `std::initializer_list<basic_json>`, see
https://github.com/nlohmann/json/issues/235 for more information.
@liveexample{The example shows how initializer lists are treated as
objects when possible.,push_back__initializer_list}
*/
void push_back(std::initializer_list<basic_json> init)
{
if (is_object() and init.size() == 2 and init.begin()->is_string())
{
const string_t key = *init.begin();
push_back(typename object_t::value_type(key, *(init.begin() + 1)));
}
else
{
push_back(basic_json(init));
}
}
/*!
@brief add an object to an object
@copydoc push_back(std::initializer_list<basic_json>)
*/
reference operator+=(std::initializer_list<basic_json> init)
{
push_back(init);
return *this;
}
/*!
@brief inserts element
Inserts element @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] val element to insert
@return iterator pointing to the inserted @a val.
@throw std::domain_error if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw std::domain_error if @a pos is not an iterator of *this; example:
`"iterator does not fit current value"`
@complexity Constant plus linear in the distance between pos and end of the
container.
@liveexample{The example shows how `insert()` is used.,insert}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const basic_json& val)
{
// insert only works for arrays
if (is_array())
{
// check if iterator pos fits to this JSON value
if (pos.m_object != this)
{
throw std::domain_error("iterator does not fit current value");
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, val);
return result;
}
else
{
throw std::domain_error("cannot use insert() with " + type_name());
}
}
/*!
@brief inserts element
@copydoc insert(const_iterator, const basic_json&)
*/
iterator insert(const_iterator pos, basic_json&& val)
{
return insert(pos, val);
}
/*!
@brief inserts elements
Inserts @a cnt copies of @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] cnt number of copies of @a val to insert
@param[in] val element to insert
@return iterator pointing to the first element inserted, or @a pos if
`cnt==0`
@throw std::domain_error if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw std::domain_error if @a pos is not an iterator of *this; example:
`"iterator does not fit current value"`
@complexity Linear in @a cnt plus linear in the distance between @a pos
and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__count}
@since version 1.0.0
*/
iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
{
// insert only works for arrays
if (is_array())
{
// check if iterator pos fits to this JSON value
if (pos.m_object != this)
{
throw std::domain_error("iterator does not fit current value");
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
return result;
}
else
{
throw std::domain_error("cannot use insert() with " + type_name());
}
}
/*!
@brief inserts elements
Inserts elements from range `[first, last)` before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw std::domain_error if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw std::domain_error if @a pos is not an iterator of *this; example:
`"iterator does not fit current value"`
@throw std::domain_error if @a first and @a last do not belong to the same
JSON value; example: `"iterators do not fit"`
@throw std::domain_error if @a first or @a last are iterators into
container for which insert is called; example: `"passed iterators may not
belong to container"`
@return iterator pointing to the first element inserted, or @a pos if
`first==last`
@complexity Linear in `std::distance(first, last)` plus linear in the
distance between @a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__range}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const_iterator first, const_iterator last)
{
// insert only works for arrays
if (not is_array())
{
throw std::domain_error("cannot use insert() with " + type_name());
}
// check if iterator pos fits to this JSON value
if (pos.m_object != this)
{
throw std::domain_error("iterator does not fit current value");
}
// check if range iterators belong to the same JSON object
if (first.m_object != last.m_object)
{
throw std::domain_error("iterators do not fit");
}
if (first.m_object == this or last.m_object == this)
{
throw std::domain_error("passed iterators may not belong to container");
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(
pos.m_it.array_iterator,
first.m_it.array_iterator,
last.m_it.array_iterator);
return result;
}
/*!
@brief inserts elements
Inserts elements from initializer list @a ilist before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] ilist initializer list to insert the values from
@throw std::domain_error if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw std::domain_error if @a pos is not an iterator of *this; example:
`"iterator does not fit current value"`
@return iterator pointing to the first element inserted, or @a pos if
`ilist` is empty
@complexity Linear in `ilist.size()` plus linear in the distance between
@a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__ilist}
@since version 1.0.0
*/
iterator insert(const_iterator pos, std::initializer_list<basic_json> ilist)
{
// insert only works for arrays
if (not is_array())
{
throw std::domain_error("cannot use insert() with " + type_name());
}
// check if iterator pos fits to this JSON value
if (pos.m_object != this)
{
throw std::domain_error("iterator does not fit current value");
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, ilist);
return result;
}
/*!
@brief exchanges the values
Exchanges the contents of the JSON value with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other JSON value to exchange the contents with
@complexity Constant.
@liveexample{The example below shows how JSON values can be swapped with
`swap()`.,swap__reference}
@since version 1.0.0
*/
void swap(reference other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
std::swap(m_type, other.m_type);
std::swap(m_value, other.m_value);
assert_invariant();
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON array with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other array to exchange the contents with
@throw std::domain_error when JSON value is not an array; example: `"cannot
use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how arrays can be swapped with
`swap()`.,swap__array_t}
@since version 1.0.0
*/
void swap(array_t& other)
{
// swap only works for arrays
if (is_array())
{
std::swap(*(m_value.array), other);
}
else
{
throw std::domain_error("cannot use swap() with " + type_name());
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON object with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other object to exchange the contents with
@throw std::domain_error when JSON value is not an object; example:
`"cannot use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how objects can be swapped with
`swap()`.,swap__object_t}
@since version 1.0.0
*/
void swap(object_t& other)
{
// swap only works for objects
if (is_object())
{
std::swap(*(m_value.object), other);
}
else
{
throw std::domain_error("cannot use swap() with " + type_name());
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON string with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other string to exchange the contents with
@throw std::domain_error when JSON value is not a string; example: `"cannot
use swap() with boolean"`
@complexity Constant.
@liveexample{The example below shows how strings can be swapped with
`swap()`.,swap__string_t}
@since version 1.0.0
*/
void swap(string_t& other)
{
// swap only works for strings
if (is_string())
{
std::swap(*(m_value.string), other);
}
else
{
throw std::domain_error("cannot use swap() with " + type_name());
}
}
/// @}
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
/// @name lexicographical comparison operators
/// @{
private:
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
@since version 1.0.0
*/
friend bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
// discarded values are not comparable
if (lhs == value_t::discarded or rhs == value_t::discarded)
{
return false;
}
return order[static_cast<std::size_t>(lhs)] < order[static_cast<std::size_t>(rhs)];
}
public:
/*!
@brief comparison: equal
Compares two JSON values for equality according to the following rules:
- Two JSON values are equal if (1) they are from the same type and (2)
their stored values are the same.
- Integer and floating-point numbers are automatically converted before
comparison. Floating-point numbers are compared indirectly: two
floating-point numbers `f1` and `f2` are considered equal if neither
`f1 > f2` nor `f2 > f1` holds.
- Two JSON null values are equal.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are equal
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__equal}
@since version 1.0.0
*/
friend bool operator==(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
{
return *lhs.m_value.array == *rhs.m_value.array;
}
case value_t::object:
{
return *lhs.m_value.object == *rhs.m_value.object;
}
case value_t::null:
{
return true;
}
case value_t::string:
{
return *lhs.m_value.string == *rhs.m_value.string;
}
case value_t::boolean:
{
return lhs.m_value.boolean == rhs.m_value.boolean;
}
case value_t::number_integer:
{
return lhs.m_value.number_integer == rhs.m_value.number_integer;
}
case value_t::number_unsigned:
{
return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned;
}
case value_t::number_float:
{
return lhs.m_value.number_float == rhs.m_value.number_float;
}
default:
{
return false;
}
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer;
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned);
}
return false;
}
/*!
@brief comparison: equal
The functions compares the given JSON value against a null pointer. As the
null pointer can be used to initialize a JSON value to null, a comparison
of JSON value @a v with a null pointer should be equivalent to call
`v.is_null()`.
@param[in] v JSON value to consider
@return whether @a v is null
@complexity Constant.
@liveexample{The example compares several JSON types to the null pointer.
,operator__equal__nullptr_t}
@since version 1.0.0
*/
friend bool operator==(const_reference v, std::nullptr_t) noexcept
{
return v.is_null();
}
/*!
@brief comparison: equal
@copydoc operator==(const_reference, std::nullptr_t)
*/
friend bool operator==(std::nullptr_t, const_reference v) noexcept
{
return v.is_null();
}
/*!
@brief comparison: not equal
Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are not equal
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__notequal}
@since version 1.0.0
*/
friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs == rhs);
}
/*!
@brief comparison: not equal
The functions compares the given JSON value against a null pointer. As the
null pointer can be used to initialize a JSON value to null, a comparison
of JSON value @a v with a null pointer should be equivalent to call
`not v.is_null()`.
@param[in] v JSON value to consider
@return whether @a v is not null
@complexity Constant.
@liveexample{The example compares several JSON types to the null pointer.
,operator__notequal__nullptr_t}
@since version 1.0.0
*/
friend bool operator!=(const_reference v, std::nullptr_t) noexcept
{
return not v.is_null();
}
/*!
@brief comparison: not equal
@copydoc operator!=(const_reference, std::nullptr_t)
*/
friend bool operator!=(std::nullptr_t, const_reference v) noexcept
{
return not v.is_null();
}
/*!
@brief comparison: less than
Compares whether one JSON value @a lhs is less than another JSON value @a
rhs according to the following rules:
- If @a lhs and @a rhs have the same type, the values are compared using
the default `<` operator.
- Integer and floating-point numbers are automatically converted before
comparison
- In case @a lhs and @a rhs have different types, the values are ignored
and the order of the types is considered, see
@ref operator<(const value_t, const value_t).
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than @a rhs
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__less}
@since version 1.0.0
*/
friend bool operator<(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
{
return *lhs.m_value.array < *rhs.m_value.array;
}
case value_t::object:
{
return *lhs.m_value.object < *rhs.m_value.object;
}
case value_t::null:
{
return false;
}
case value_t::string:
{
return *lhs.m_value.string < *rhs.m_value.string;
}
case value_t::boolean:
{
return lhs.m_value.boolean < rhs.m_value.boolean;
}
case value_t::number_integer:
{
return lhs.m_value.number_integer < rhs.m_value.number_integer;
}
case value_t::number_unsigned:
{
return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned;
}
case value_t::number_float:
{
return lhs.m_value.number_float < rhs.m_value.number_float;
}
default:
{
return false;
}
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
}
// We only reach this line if we cannot compare values. In that case,
// we compare types. Note we have to call the operator explicitly,
// because MSVC has problems otherwise.
return operator<(lhs_type, rhs_type);
}
/*!
@brief comparison: less than or equal
Compares whether one JSON value @a lhs is less than or equal to another
JSON value by calculating `not (rhs < lhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than or equal to @a rhs
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greater}
@since version 1.0.0
*/
friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
{
return not (rhs < lhs);
}
/*!
@brief comparison: greater than
Compares whether one JSON value @a lhs is greater than another
JSON value by calculating `not (lhs <= rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than to @a rhs
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__lessequal}
@since version 1.0.0
*/
friend bool operator>(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs <= rhs);
}
/*!
@brief comparison: greater than or equal
Compares whether one JSON value @a lhs is greater than or equal to another
JSON value by calculating `not (lhs < rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than or equal to @a rhs
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greaterequal}
@since version 1.0.0
*/
friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs < rhs);
}
/// @}
///////////////////
// serialization //
///////////////////
/// @name serialization
/// @{
/*!
@brief serialize to stream
Serialize the given JSON value @a j to the output stream @a o. The JSON
value will be serialized using the @ref dump member function. The
indentation of the output can be controlled with the member variable
`width` of the output stream @a o. For instance, using the manipulator
`std::setw(4)` on @a o sets the indentation level to `4` and the
serialization result is the same as calling `dump(4)`.
@note During serializaion, the locale and the precision of the output
stream @a o are changed. The original values are restored when the
function returns.
@param[in,out] o stream to serialize to
@param[in] j JSON value to serialize
@return the stream @a o
@complexity Linear.
@liveexample{The example below shows the serialization with different
parameters to `width` to adjust the indentation level.,operator_serialize}
@since version 1.0.0
*/
friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
{
// read width member and use it as indentation parameter if nonzero
const bool pretty_print = (o.width() > 0);
const auto indentation = (pretty_print ? o.width() : 0);
// reset width to 0 for subsequent calls to this stream
o.width(0);
// fix locale problems
const auto old_locale = o.imbue(std::locale(std::locale(), new DecimalSeparator));
// set precision
// 6, 15 or 16 digits of precision allows round-trip IEEE 754
// string->float->string, string->double->string or string->long
// double->string; to be safe, we read this value from
// std::numeric_limits<number_float_t>::digits10
const auto old_precision = o.precision(std::numeric_limits<double>::digits10);
// do the actual serialization
j.dump(o, pretty_print, static_cast<unsigned int>(indentation));
// reset locale and precision
o.imbue(old_locale);
o.precision(old_precision);
return o;
}
/*!
@brief serialize to stream
@copydoc operator<<(std::ostream&, const basic_json&)
*/
friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
{
return o << j;
}
/// @}
/////////////////////
// deserialization //
/////////////////////
/// @name deserialization
/// @{
/*!
@brief deserialize from an array
This function reads from an array of 1-byte values.
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@param[in] array array to read from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an array.,parse__array__parser_callback_t}
@since version 2.0.3
*/
template<class T, std::size_t N>
static basic_json parse(T (&array)[N],
const parser_callback_t cb = nullptr)
{
// delegate the call to the iterator-range parse overload
return parse(std::begin(array), std::end(array), cb);
}
/*!
@brief deserialize from string literal
@tparam CharT character/literal type with size of 1 byte
@param[in] s string literal to read a serialized JSON value from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@note String containers like `std::string` or @ref string_t can be parsed
with @ref parse(const ContiguousContainer&, const parser_callback_t)
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__string__parser_callback_t}
@sa @ref parse(std::istream&, const parser_callback_t) for a version that
reads from an input stream
@since version 1.0.0 (originally for @ref string_t)
*/
template<typename CharPT, typename std::enable_if<
std::is_pointer<CharPT>::value and
std::is_integral<typename std::remove_pointer<CharPT>::type>::value and
sizeof(typename std::remove_pointer<CharPT>::type) == 1, int>::type = 0>
static basic_json parse(const CharPT s,
const parser_callback_t cb = nullptr)
{
return parser(reinterpret_cast<const char*>(s), cb).parse();
}
/*!
@brief deserialize from stream
@param[in,out] i stream to read a serialized JSON value from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__istream__parser_callback_t}
@sa @ref parse(const char*, const parser_callback_t) for a version
that reads from a string
@since version 1.0.0
*/
static basic_json parse(std::istream& i,
const parser_callback_t cb = nullptr)
{
return parser(i, cb).parse();
}
/*!
@copydoc parse(std::istream&, const parser_callback_t)
*/
static basic_json parse(std::istream&& i,
const parser_callback_t cb = nullptr)
{
return parser(i, cb).parse();
}
/*!
@brief deserialize from an iterator range with contiguous storage
This function reads from an iterator range of a container with contiguous
storage of 1-byte values. Compatible container types include
`std::vector`, `std::string`, `std::array`, `std::valarray`, and
`std::initializer_list`. Furthermore, C-style arrays can be used with
`std::begin()`/`std::end()`. User-defined containers can be used as long
as they implement random-access iterators and a contiguous storage.
@pre The iterator range is contiguous. Violating this precondition yields
undefined behavior. **This precondition is enforced with an assertion.**
@pre Each element in the range has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with noncompliant iterators and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@tparam IteratorType iterator of container with contiguous storage
@param[in] first begin of the range to parse (included)
@param[in] last end of the range to parse (excluded)
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an iterator range.,parse__iteratortype__parser_callback_t}
@since version 2.0.3
*/
template<class IteratorType, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
static basic_json parse(IteratorType first, IteratorType last,
const parser_callback_t cb = nullptr)
{
// assertion to check that the iterator range is indeed contiguous,
// see http://stackoverflow.com/a/35008842/266378 for more discussion
assert(std::accumulate(first, last, std::make_pair<bool, int>(true, 0),
[&first](std::pair<bool, int> res, decltype(*first) val)
{
res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
return res;
}).first);
// assertion to check that each element is 1 byte long
static_assert(sizeof(typename std::iterator_traits<IteratorType>::value_type) == 1,
"each element in the iterator range must have the size of 1 byte");
// if iterator range is empty, create a parser with an empty string
// to generate "unexpected EOF" error message
if (std::distance(first, last) <= 0)
{
return parser("").parse();
}
return parser(first, last, cb).parse();
}
/*!
@brief deserialize from a container with contiguous storage
This function reads from a container with contiguous storage of 1-byte
values. Compatible container types include `std::vector`, `std::string`,
`std::array`, and `std::initializer_list`. User-defined containers can be
used as long as they implement random-access iterators and a contiguous
storage.
@pre The container storage is contiguous. Violating this precondition
yields undefined behavior. **This precondition is enforced with an
assertion.**
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with a noncompliant container and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@tparam ContiguousContainer container type with contiguous storage
@param[in] c container to read from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
@since version 2.0.3
*/
template<class ContiguousContainer, typename std::enable_if<
not std::is_pointer<ContiguousContainer>::value and
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value
, int>::type = 0>
static basic_json parse(const ContiguousContainer& c,
const parser_callback_t cb = nullptr)
{
// delegate the call to the iterator-range parse overload
return parse(std::begin(c), std::end(c), cb);
}
/*!
@brief deserialize from stream
Deserializes an input stream to a JSON value.
@param[in,out] i input stream to read a serialized JSON value from
@param[in,out] j JSON value to write the deserialized input to
@throw std::invalid_argument in case of parse errors
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below shows how a JSON value is constructed by
reading a serialization from a stream.,operator_deserialize}
@sa parse(std::istream&, const parser_callback_t) for a variant with a
parser callback function to filter values while parsing
@since version 1.0.0
*/
friend std::istream& operator<<(basic_json& j, std::istream& i)
{
j = parser(i).parse();
return i;
}
/*!
@brief deserialize from stream
@copydoc operator<<(basic_json&, std::istream&)
*/
friend std::istream& operator>>(std::istream& i, basic_json& j)
{
j = parser(i).parse();
return i;
}
/// @}
private:
///////////////////////////
// convenience functions //
///////////////////////////
/*!
@brief return the type as string
Returns the type name as string to be used in error messages - usually to
indicate that a function was called on a wrong JSON type.
@return basically a string representation of a the @a m_type member
@complexity Constant.
@since version 1.0.0
*/
std::string type_name() const
{
switch (m_type)
{
case value_t::null:
return "null";
case value_t::object:
return "object";
case value_t::array:
return "array";
case value_t::string:
return "string";
case value_t::boolean:
return "boolean";
case value_t::discarded:
return "discarded";
default:
return "number";
}
}
/*!
@brief calculates the extra space to escape a JSON string
@param[in] s the string to escape
@return the number of characters required to escape string @a s
@complexity Linear in the length of string @a s.
*/
static std::size_t extra_space(const string_t& s) noexcept
{
return std::accumulate(s.begin(), s.end(), size_t{},
[](size_t res, typename string_t::value_type c)
{
switch (c)
{
case '"':
case '\\':
case '\b':
case '\f':
case '\n':
case '\r':
case '\t':
{
// from c (1 byte) to \x (2 bytes)
return res + 1;
}
default:
{
if (c >= 0x00 and c <= 0x1f)
{
// from c (1 byte) to \uxxxx (6 bytes)
return res + 5;
}
else
{
return res;
}
}
}
});
}
/*!
@brief escape a string
Escape a string by replacing certain special characters by a sequence of
an escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation.
@param[in] s the string to escape
@return the escaped string
@complexity Linear in the length of string @a s.
*/
static string_t escape_string(const string_t& s)
{
const auto space = extra_space(s);
if (space == 0)
{
return s;
}
// create a result string of necessary size
string_t result(s.size() + space, '\\');
std::size_t pos = 0;
for (const auto& c : s)
{
switch (c)
{
// quotation mark (0x22)
case '"':
{
result[pos + 1] = '"';
pos += 2;
break;
}
// reverse solidus (0x5c)
case '\\':
{
// nothing to change
pos += 2;
break;
}
// backspace (0x08)
case '\b':
{
result[pos + 1] = 'b';
pos += 2;
break;
}
// formfeed (0x0c)
case '\f':
{
result[pos + 1] = 'f';
pos += 2;
break;
}
// newline (0x0a)
case '\n':
{
result[pos + 1] = 'n';
pos += 2;
break;
}
// carriage return (0x0d)
case '\r':
{
result[pos + 1] = 'r';
pos += 2;
break;
}
// horizontal tab (0x09)
case '\t':
{
result[pos + 1] = 't';
pos += 2;
break;
}
default:
{
if (c >= 0x00 and c <= 0x1f)
{
// convert a number 0..15 to its hex representation
// (0..f)
static const char hexify[16] =
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
// print character c as \uxxxx
for (const char m :
{ 'u', '0', '0', hexify[c >> 4], hexify[c & 0x0f]
})
{
result[++pos] = m;
}
++pos;
}
else
{
// all other characters are added as-is
result[pos++] = c;
}
break;
}
}
}
return result;
}
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serialization internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is
called recursively. Note that
- strings and object keys are escaped using `escape_string()`
- integer numbers are converted implicitly via `operator<<`
- floating-point numbers are converted to a string using `"%g"` format
@param[out] o stream to write to
@param[in] pretty_print whether the output shall be pretty-printed
@param[in] indent_step the indent level
@param[in] current_indent the current indent level (only used internally)
*/
void dump(std::ostream& o,
const bool pretty_print,
const unsigned int indent_step,
const unsigned int current_indent = 0) const
{
// variable to hold indentation for recursive calls
unsigned int new_indent = current_indent;
switch (m_type)
{
case value_t::object:
{
if (m_value.object->empty())
{
o << "{}";
return;
}
o << "{";
// increase indentation
if (pretty_print)
{
new_indent += indent_step;
o << "\n";
}
for (auto i = m_value.object->cbegin(); i != m_value.object->cend(); ++i)
{
if (i != m_value.object->cbegin())
{
o << (pretty_print ? ",\n" : ",");
}
o << string_t(new_indent, ' ') << "\""
<< escape_string(i->first) << "\":"
<< (pretty_print ? " " : "");
i->second.dump(o, pretty_print, indent_step, new_indent);
}
// decrease indentation
if (pretty_print)
{
new_indent -= indent_step;
o << "\n";
}
o << string_t(new_indent, ' ') + "}";
return;
}
case value_t::array:
{
if (m_value.array->empty())
{
o << "[]";
return;
}
o << "[";
// increase indentation
if (pretty_print)
{
new_indent += indent_step;
o << "\n";
}
for (auto i = m_value.array->cbegin(); i != m_value.array->cend(); ++i)
{
if (i != m_value.array->cbegin())
{
o << (pretty_print ? ",\n" : ",");
}
o << string_t(new_indent, ' ');
i->dump(o, pretty_print, indent_step, new_indent);
}
// decrease indentation
if (pretty_print)
{
new_indent -= indent_step;
o << "\n";
}
o << string_t(new_indent, ' ') << "]";
return;
}
case value_t::string:
{
o << string_t("\"") << escape_string(*m_value.string) << "\"";
return;
}
case value_t::boolean:
{
o << (m_value.boolean ? "true" : "false");
return;
}
case value_t::number_integer:
{
o << m_value.number_integer;
return;
}
case value_t::number_unsigned:
{
o << m_value.number_unsigned;
return;
}
case value_t::number_float:
{
if (m_value.number_float == 0)
{
// special case for zero to get "0.0"/"-0.0"
o << (std::signbit(m_value.number_float) ? "-0.0" : "0.0");
}
else
{
o << m_value.number_float;
}
return;
}
case value_t::discarded:
{
o << "<discarded>";
return;
}
case value_t::null:
{
o << "null";
return;
}
}
}
private:
//////////////////////
// member variables //
//////////////////////
/// the type of the current element
value_t m_type = value_t::null;
/// the value of the current element
json_value m_value = {};
private:
///////////////
// iterators //
///////////////
/*!
@brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types (boolean, number,
string). It's only purpose is to allow the iterator/const_iterator classes
to "iterate" over primitive values. Internally, the iterator is modeled by
a `difference_type` variable. Value begin_value (`0`) models the begin,
end_value (`1`) models past the end.
*/
class primitive_iterator_t
{
public:
/// set iterator to a defined beginning
void set_begin() noexcept
{
m_it = begin_value;
}
/// set iterator to a defined past the end
void set_end() noexcept
{
m_it = end_value;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin() const noexcept
{
return (m_it == begin_value);
}
/// return whether the iterator is at end
constexpr bool is_end() const noexcept
{
return (m_it == end_value);
}
/// return reference to the value to change and compare
operator difference_type& () noexcept
{
return m_it;
}
/// return value to compare
constexpr operator difference_type () const noexcept
{
return m_it;
}
private:
static constexpr difference_type begin_value = 0;
static constexpr difference_type end_value = begin_value + 1;
/// iterator as signed integer type
difference_type m_it = std::numeric_limits<std::ptrdiff_t>::denorm_min();
};
/*!
@brief an iterator value
@note This structure could easily be a union, but MSVC currently does not
allow unions members with complex constructors, see
https://github.com/nlohmann/json/pull/105.
*/
struct internal_iterator
{
/// iterator for JSON objects
typename object_t::iterator object_iterator;
/// iterator for JSON arrays
typename array_t::iterator array_iterator;
/// generic iterator for all other types
primitive_iterator_t primitive_iterator;
/// create an uninitialized internal_iterator
internal_iterator() noexcept
: object_iterator(), array_iterator(), primitive_iterator()
{}
};
/// proxy class for the iterator_wrapper functions
template<typename IteratorType>
class iteration_proxy
{
private:
/// helper class for iteration
class iteration_proxy_internal
{
private:
/// the iterator
IteratorType anchor;
/// an index for arrays (used to create key names)
size_t array_index = 0;
public:
explicit iteration_proxy_internal(IteratorType it) noexcept
: anchor(it)
{}
/// dereference operator (needed for range-based for)
iteration_proxy_internal& operator*()
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_internal& operator++()
{
++anchor;
++array_index;
return *this;
}
/// inequality operator (needed for range-based for)
bool operator!= (const iteration_proxy_internal& o) const
{
return anchor != o.anchor;
}
/// return key of the iterator
typename basic_json::string_t key() const
{
assert(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
{
return std::to_string(array_index);
}
// use key from the object
case value_t::object:
{
return anchor.key();
}
// use an empty key for all primitive types
default:
{
return "";
}
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// the container to iterate
typename IteratorType::reference container;
public:
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont)
: container(cont)
{}
/// return iterator begin (needed for range-based for)
iteration_proxy_internal begin() noexcept
{
return iteration_proxy_internal(container.begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_internal end() noexcept
{
return iteration_proxy_internal(container.end());
}
};
public:
/*!
@brief a const random access iterator for the @ref basic_json class
This class implements a const iterator for the @ref basic_json class. From
this class, the @ref iterator class is derived.
@note An iterator is called *initialized* when a pointer to a JSON value
has been set (e.g., by a constructor or a copy assignment). If the
iterator is default-constructed, it is *uninitialized* and most
methods are undefined. **The library uses assertions to detect calls
on uninitialized iterators.**
@requirement The class satisfies the following concept requirements:
- [RandomAccessIterator](http://en.cppreference.com/w/cpp/concept/RandomAccessIterator):
The iterator that can be moved to point (forward and backward) to any
element in constant time.
@since version 1.0.0
*/
class const_iterator : public std::iterator<std::random_access_iterator_tag, const basic_json>
{
/// allow basic_json to access private members
friend class basic_json;
public:
/// the type of the values when the iterator is dereferenced
using value_type = typename basic_json::value_type;
/// a type to represent differences between iterators
using difference_type = typename basic_json::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename basic_json::const_pointer;
/// defines a reference to the type iterated over (value_type)
using reference = typename basic_json::const_reference;
/// the category of the iterator
using iterator_category = std::bidirectional_iterator_tag;
/// default constructor
const_iterator() = default;
/*!
@brief constructor for a given JSON instance
@param[in] object pointer to a JSON object for this iterator
@pre object != nullptr
@post The iterator is initialized; i.e. `m_object != nullptr`.
*/
explicit const_iterator(pointer object) noexcept
: m_object(object)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case basic_json::value_t::array:
{
m_it.array_iterator = typename array_t::iterator();
break;
}
default:
{
m_it.primitive_iterator = primitive_iterator_t();
break;
}
}
}
/*!
@brief copy constructor given a non-const iterator
@param[in] other iterator to copy from
@note It is not checked whether @a other is initialized.
*/
explicit const_iterator(const iterator& other) noexcept
: m_object(other.m_object)
{
if (m_object != nullptr)
{
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
m_it.object_iterator = other.m_it.object_iterator;
break;
}
case basic_json::value_t::array:
{
m_it.array_iterator = other.m_it.array_iterator;
break;
}
default:
{
m_it.primitive_iterator = other.m_it.primitive_iterator;
break;
}
}
}
}
/*!
@brief copy constructor
@param[in] other iterator to copy from
@note It is not checked whether @a other is initialized.
*/
const_iterator(const const_iterator& other) noexcept
: m_object(other.m_object), m_it(other.m_it)
{}
/*!
@brief copy assignment
@param[in,out] other iterator to copy from
@note It is not checked whether @a other is initialized.
*/
const_iterator& operator=(const_iterator other) noexcept(
std::is_nothrow_move_constructible<pointer>::value and
std::is_nothrow_move_assignable<pointer>::value and
std::is_nothrow_move_constructible<internal_iterator>::value and
std::is_nothrow_move_assignable<internal_iterator>::value
)
{
std::swap(m_object, other.m_object);
std::swap(m_it, other.m_it);
return *this;
}
private:
/*!
@brief set the iterator to the first value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_begin() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
m_it.object_iterator = m_object->m_value.object->begin();
break;
}
case basic_json::value_t::array:
{
m_it.array_iterator = m_object->m_value.array->begin();
break;
}
case basic_json::value_t::null:
{
// set to end so begin()==end() is true: null is empty
m_it.primitive_iterator.set_end();
break;
}
default:
{
m_it.primitive_iterator.set_begin();
break;
}
}
}
/*!
@brief set the iterator past the last value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_end() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
m_it.object_iterator = m_object->m_value.object->end();
break;
}
case basic_json::value_t::array:
{
m_it.array_iterator = m_object->m_value.array->end();
break;
}
default:
{
m_it.primitive_iterator.set_end();
break;
}
}
}
public:
/*!
@brief return a reference to the value pointed to by the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator*() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return m_it.object_iterator->second;
}
case basic_json::value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return *m_it.array_iterator;
}
case basic_json::value_t::null:
{
throw std::out_of_range("cannot get value");
}
default:
{
if (m_it.primitive_iterator.is_begin())
{
return *m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/*!
@brief dereference the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
pointer operator->() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return &(m_it.object_iterator->second);
}
case basic_json::value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return &*m_it.array_iterator;
}
default:
{
if (m_it.primitive_iterator.is_begin())
{
return m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/*!
@brief post-increment (it++)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator operator++(int)
{
auto result = *this;
++(*this);
return result;
}
/*!
@brief pre-increment (++it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator& operator++()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
std::advance(m_it.object_iterator, 1);
break;
}
case basic_json::value_t::array:
{
std::advance(m_it.array_iterator, 1);
break;
}
default:
{
++m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief post-decrement (it--)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator operator--(int)
{
auto result = *this;
--(*this);
return result;
}
/*!
@brief pre-decrement (--it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator& operator--()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
std::advance(m_it.object_iterator, -1);
break;
}
case basic_json::value_t::array:
{
std::advance(m_it.array_iterator, -1);
break;
}
default:
{
--m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief comparison: equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator==(const const_iterator& other) const
{
// if objects are not the same, the comparison is undefined
if (m_object != other.m_object)
{
throw std::domain_error("cannot compare iterators of different containers");
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
return (m_it.object_iterator == other.m_it.object_iterator);
}
case basic_json::value_t::array:
{
return (m_it.array_iterator == other.m_it.array_iterator);
}
default:
{
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
}
}
}
/*!
@brief comparison: not equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator!=(const const_iterator& other) const
{
return not operator==(other);
}
/*!
@brief comparison: smaller
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<(const const_iterator& other) const
{
// if objects are not the same, the comparison is undefined
if (m_object != other.m_object)
{
throw std::domain_error("cannot compare iterators of different containers");
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
throw std::domain_error("cannot compare order of object iterators");
}
case basic_json::value_t::array:
{
return (m_it.array_iterator < other.m_it.array_iterator);
}
default:
{
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
}
}
}
/*!
@brief comparison: less than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<=(const const_iterator& other) const
{
return not other.operator < (*this);
}
/*!
@brief comparison: greater than
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>(const const_iterator& other) const
{
return not operator<=(other);
}
/*!
@brief comparison: greater than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>=(const const_iterator& other) const
{
return not operator<(other);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator& operator+=(difference_type i)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
throw std::domain_error("cannot use offsets with object iterators");
}
case basic_json::value_t::array:
{
std::advance(m_it.array_iterator, i);
break;
}
default:
{
m_it.primitive_iterator += i;
break;
}
}
return *this;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator& operator-=(difference_type i)
{
return operator+=(-i);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator operator+(difference_type i)
{
auto result = *this;
result += i;
return result;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
const_iterator operator-(difference_type i)
{
auto result = *this;
result -= i;
return result;
}
/*!
@brief return difference
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
difference_type operator-(const const_iterator& other) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
throw std::domain_error("cannot use offsets with object iterators");
}
case basic_json::value_t::array:
{
return m_it.array_iterator - other.m_it.array_iterator;
}
default:
{
return m_it.primitive_iterator - other.m_it.primitive_iterator;
}
}
}
/*!
@brief access to successor
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator[](difference_type n) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case basic_json::value_t::object:
{
throw std::domain_error("cannot use operator[] for object iterators");
}
case basic_json::value_t::array:
{
return *std::next(m_it.array_iterator, n);
}
case basic_json::value_t::null:
{
throw std::out_of_range("cannot get value");
}
default:
{
if (m_it.primitive_iterator == -n)
{
return *m_object;
}
else
{
throw std::out_of_range("cannot get value");
}
}
}
}
/*!
@brief return the key of an object iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
typename object_t::key_type key() const
{
assert(m_object != nullptr);
if (m_object->is_object())
{
return m_it.object_iterator->first;
}
else
{
throw std::domain_error("cannot use key() for non-object iterators");
}
}
/*!
@brief return the value of an iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference value() const
{
return operator*();
}
private:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator m_it = internal_iterator();
};
/*!
@brief a mutable random access iterator for the @ref basic_json class
@requirement The class satisfies the following concept requirements:
- [RandomAccessIterator](http://en.cppreference.com/w/cpp/concept/RandomAccessIterator):
The iterator that can be moved to point (forward and backward) to any
element in constant time.
- [OutputIterator](http://en.cppreference.com/w/cpp/concept/OutputIterator):
It is possible to write to the pointed-to element.
@since version 1.0.0
*/
class iterator : public const_iterator
{
public:
using base_iterator = const_iterator;
using pointer = typename basic_json::pointer;
using reference = typename basic_json::reference;
/// default constructor
iterator() = default;
/// constructor for a given JSON instance
explicit iterator(pointer object) noexcept
: base_iterator(object)
{}
/// copy constructor
iterator(const iterator& other) noexcept
: base_iterator(other)
{}
/// copy assignment
iterator& operator=(iterator other) noexcept(
std::is_nothrow_move_constructible<pointer>::value and
std::is_nothrow_move_assignable<pointer>::value and
std::is_nothrow_move_constructible<internal_iterator>::value and
std::is_nothrow_move_assignable<internal_iterator>::value
)
{
base_iterator::operator=(other);
return *this;
}
/// return a reference to the value pointed to by the iterator
reference operator*() const
{
return const_cast<reference>(base_iterator::operator*());
}
/// dereference the iterator
pointer operator->() const
{
return const_cast<pointer>(base_iterator::operator->());
}
/// post-increment (it++)
iterator operator++(int)
{
iterator result = *this;
base_iterator::operator++();
return result;
}
/// pre-increment (++it)
iterator& operator++()
{
base_iterator::operator++();
return *this;
}
/// post-decrement (it--)
iterator operator--(int)
{
iterator result = *this;
base_iterator::operator--();
return result;
}
/// pre-decrement (--it)
iterator& operator--()
{
base_iterator::operator--();
return *this;
}
/// add to iterator
iterator& operator+=(difference_type i)
{
base_iterator::operator+=(i);
return *this;
}
/// subtract from iterator
iterator& operator-=(difference_type i)
{
base_iterator::operator-=(i);
return *this;
}
/// add to iterator
iterator operator+(difference_type i)
{
auto result = *this;
result += i;
return result;
}
/// subtract from iterator
iterator operator-(difference_type i)
{
auto result = *this;
result -= i;
return result;
}
/// return difference
difference_type operator-(const iterator& other) const
{
return base_iterator::operator-(other);
}
/// access to successor
reference operator[](difference_type n) const
{
return const_cast<reference>(base_iterator::operator[](n));
}
/// return the value of an iterator
reference value() const
{
return const_cast<reference>(base_iterator::value());
}
};
/*!
@brief a template for a reverse iterator class
@tparam Base the base iterator type to reverse. Valid types are @ref
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
create @ref const_reverse_iterator).
@requirement The class satisfies the following concept requirements:
- [RandomAccessIterator](http://en.cppreference.com/w/cpp/concept/RandomAccessIterator):
The iterator that can be moved to point (forward and backward) to any
element in constant time.
- [OutputIterator](http://en.cppreference.com/w/cpp/concept/OutputIterator):
It is possible to write to the pointed-to element (only if @a Base is
@ref iterator).
@since version 1.0.0
*/
template<typename Base>
class json_reverse_iterator : public std::reverse_iterator<Base>
{
public:
/// shortcut to the reverse iterator adaptor
using base_iterator = std::reverse_iterator<Base>;
/// the reference type for the pointed-to element
using reference = typename Base::reference;
/// create reverse iterator from iterator
json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
: base_iterator(it)
{}
/// create reverse iterator from base class
json_reverse_iterator(const base_iterator& it) noexcept
: base_iterator(it)
{}
/// post-increment (it++)
json_reverse_iterator operator++(int)
{
return base_iterator::operator++(1);
}
/// pre-increment (++it)
json_reverse_iterator& operator++()
{
base_iterator::operator++();
return *this;
}
/// post-decrement (it--)
json_reverse_iterator operator--(int)
{
return base_iterator::operator--(1);
}
/// pre-decrement (--it)
json_reverse_iterator& operator--()
{
base_iterator::operator--();
return *this;
}
/// add to iterator
json_reverse_iterator& operator+=(difference_type i)
{
base_iterator::operator+=(i);
return *this;
}
/// add to iterator
json_reverse_iterator operator+(difference_type i) const
{
auto result = *this;
result += i;
return result;
}
/// subtract from iterator
json_reverse_iterator operator-(difference_type i) const
{
auto result = *this;
result -= i;
return result;
}
/// return difference
difference_type operator-(const json_reverse_iterator& other) const
{
return this->base() - other.base();
}
/// access to successor
reference operator[](difference_type n) const
{
return *(this->operator+(n));
}
/// return the key of an object iterator
typename object_t::key_type key() const
{
auto it = --this->base();
return it.key();
}
/// return the value of an iterator
reference value() const
{
auto it = --this->base();
return it.operator * ();
}
};
private:
//////////////////////
// lexer and parser //
//////////////////////
/*!
@brief lexical analysis
This class organizes the lexical analysis during JSON deserialization. The
core of it is a scanner generated by [re2c](http://re2c.org) that
processes a buffer and recognizes tokens according to RFC 7159.
*/
class lexer
{
public:
/// token types for the parser
enum class token_type
{
uninitialized, ///< indicating the scanner is uninitialized
literal_true, ///< the `true` literal
literal_false, ///< the `false` literal
literal_null, ///< the `null` literal
value_string, ///< a string -- use get_string() for actual value
value_number, ///< a number -- use get_number() for actual value
begin_array, ///< the character for array begin `[`
begin_object, ///< the character for object begin `{`
end_array, ///< the character for array end `]`
end_object, ///< the character for object end `}`
name_separator, ///< the name separator `:`
value_separator, ///< the value separator `,`
parse_error, ///< indicating a parse error
end_of_input ///< indicating the end of the input buffer
};
/// the char type to use in the lexer
using lexer_char_t = unsigned char;
/// a lexer from a buffer with given length
lexer(const lexer_char_t* buff, const size_t len) noexcept
: m_content(buff)
{
assert(m_content != nullptr);
m_start = m_cursor = m_content;
m_limit = m_content + len;
}
/// a lexer from an input stream
explicit lexer(std::istream& s)
: m_stream(&s), m_line_buffer()
{
// fill buffer
fill_line_buffer();
// skip UTF-8 byte-order mark
if (m_line_buffer.size() >= 3 and m_line_buffer.substr(0, 3) == "\xEF\xBB\xBF")
{
m_line_buffer[0] = ' ';
m_line_buffer[1] = ' ';
m_line_buffer[2] = ' ';
}
}
// switch off unwanted functions (due to pointer members)
lexer() = delete;
lexer(const lexer&) = delete;
lexer operator=(const lexer&) = delete;
/*!
@brief create a string from one or two Unicode code points
There are two cases: (1) @a codepoint1 is in the Basic Multilingual
Plane (U+0000 through U+FFFF) and @a codepoint2 is 0, or (2)
@a codepoint1 and @a codepoint2 are a UTF-16 surrogate pair to
represent a code point above U+FFFF.
@param[in] codepoint1 the code point (can be high surrogate)
@param[in] codepoint2 the code point (can be low surrogate or 0)
@return string representation of the code point; the length of the
result string is between 1 and 4 characters.
@throw std::out_of_range if code point is > 0x10ffff; example: `"code
points above 0x10FFFF are invalid"`
@throw std::invalid_argument if the low surrogate is invalid; example:
`""missing or wrong low surrogate""`
@complexity Constant.
@see <http://en.wikipedia.org/wiki/UTF-8#Sample_code>
*/
static string_t to_unicode(const std::size_t codepoint1,
const std::size_t codepoint2 = 0)
{
// calculate the code point from the given code points
std::size_t codepoint = codepoint1;
// check if codepoint1 is a high surrogate
if (codepoint1 >= 0xD800 and codepoint1 <= 0xDBFF)
{
// check if codepoint2 is a low surrogate
if (codepoint2 >= 0xDC00 and codepoint2 <= 0xDFFF)
{
codepoint =
// high surrogate occupies the most significant 22 bits
(codepoint1 << 10)
// low surrogate occupies the least significant 15 bits
+ codepoint2
// there is still the 0xD800, 0xDC00 and 0x10000 noise
// in the result so we have to subtract with:
// (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
- 0x35FDC00;
}
else
{
throw std::invalid_argument("missing or wrong low surrogate");
}
}
string_t result;
if (codepoint < 0x80)
{
// 1-byte characters: 0xxxxxxx (ASCII)
result.append(1, static_cast<typename string_t::value_type>(codepoint));
}
else if (codepoint <= 0x7ff)
{
// 2-byte characters: 110xxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xC0 | ((codepoint >> 6) & 0x1F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else if (codepoint <= 0xffff)
{
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xE0 | ((codepoint >> 12) & 0x0F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else if (codepoint <= 0x10ffff)
{
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
result.append(1, static_cast<typename string_t::value_type>(0xF0 | ((codepoint >> 18) & 0x07)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 12) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | ((codepoint >> 6) & 0x3F)));
result.append(1, static_cast<typename string_t::value_type>(0x80 | (codepoint & 0x3F)));
}
else
{
throw std::out_of_range("code points above 0x10FFFF are invalid");
}
return result;
}
/// return name of values of type token_type (only used for errors)
static std::string token_type_name(const token_type t)
{
switch (t)
{
case token_type::uninitialized:
return "<uninitialized>";
case token_type::literal_true:
return "true literal";
case token_type::literal_false:
return "false literal";
case token_type::literal_null:
return "null literal";
case token_type::value_string:
return "string literal";
case token_type::value_number:
return "number literal";
case token_type::begin_array:
return "'['";
case token_type::begin_object:
return "'{'";
case token_type::end_array:
return "']'";
case token_type::end_object:
return "'}'";
case token_type::name_separator:
return "':'";
case token_type::value_separator:
return "','";
case token_type::parse_error:
return "<parse error>";
case token_type::end_of_input:
return "end of input";
default:
{
// catch non-enum values
return "unknown token"; // LCOV_EXCL_LINE
}
}
}
/*!
This function implements a scanner for JSON. It is specified using
regular expressions that try to follow RFC 7159 as close as possible.
These regular expressions are then translated into a minimized
deterministic finite automaton (DFA) by the tool
[re2c](http://re2c.org). As a result, the translated code for this
function consists of a large block of code with `goto` jumps.
@return the class of the next token read from the buffer
@complexity Linear in the length of the input.\n
Proposition: The loop below will always terminate for finite input.\n
Proof (by contradiction): Assume a finite input. To loop forever, the
loop must never hit code with a `break` statement. The only code
snippets without a `break` statement are the continue statements for
whitespace and byte-order-marks. To loop forever, the input must be an
infinite sequence of whitespace or byte-order-marks. This contradicts
the assumption of finite input, q.e.d.
*/
token_type scan()
{
while (true)
{
// pointer for backtracking information
m_marker = nullptr;
// remember the begin of the token
m_start = m_cursor;
assert(m_start != nullptr);
{
lexer_char_t yych;
unsigned int yyaccept = 0;
static const unsigned char yybm[] =
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 32, 32, 0, 0, 32, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
160, 128, 0, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 0, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
if ((m_limit - m_cursor) < 5)
{
fill_line_buffer(5); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yybm[0 + yych] & 32)
{
goto basic_json_parser_6;
}
if (yych <= '[')
{
if (yych <= '-')
{
if (yych <= '"')
{
if (yych <= 0x00)
{
goto basic_json_parser_2;
}
if (yych <= '!')
{
goto basic_json_parser_4;
}
goto basic_json_parser_9;
}
else
{
if (yych <= '+')
{
goto basic_json_parser_4;
}
if (yych <= ',')
{
goto basic_json_parser_10;
}
goto basic_json_parser_12;
}
}
else
{
if (yych <= '9')
{
if (yych <= '/')
{
goto basic_json_parser_4;
}
if (yych <= '0')
{
goto basic_json_parser_13;
}
goto basic_json_parser_15;
}
else
{
if (yych <= ':')
{
goto basic_json_parser_17;
}
if (yych <= 'Z')
{
goto basic_json_parser_4;
}
goto basic_json_parser_19;
}
}
}
else
{
if (yych <= 'n')
{
if (yych <= 'e')
{
if (yych == ']')
{
goto basic_json_parser_21;
}
goto basic_json_parser_4;
}
else
{
if (yych <= 'f')
{
goto basic_json_parser_23;
}
if (yych <= 'm')
{
goto basic_json_parser_4;
}
goto basic_json_parser_24;
}
}
else
{
if (yych <= 'z')
{
if (yych == 't')
{
goto basic_json_parser_25;
}
goto basic_json_parser_4;
}
else
{
if (yych <= '{')
{
goto basic_json_parser_26;
}
if (yych == '}')
{
goto basic_json_parser_28;
}
goto basic_json_parser_4;
}
}
}
basic_json_parser_2:
++m_cursor;
{
last_token_type = token_type::end_of_input;
break;
}
basic_json_parser_4:
++m_cursor;
basic_json_parser_5:
{
last_token_type = token_type::parse_error;
break;
}
basic_json_parser_6:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yybm[0 + yych] & 32)
{
goto basic_json_parser_6;
}
{
continue;
}
basic_json_parser_9:
yyaccept = 0;
yych = *(m_marker = ++m_cursor);
if (yych <= 0x1F)
{
goto basic_json_parser_5;
}
if (yych <= 0x7F)
{
goto basic_json_parser_31;
}
if (yych <= 0xC1)
{
goto basic_json_parser_5;
}
if (yych <= 0xF4)
{
goto basic_json_parser_31;
}
goto basic_json_parser_5;
basic_json_parser_10:
++m_cursor;
{
last_token_type = token_type::value_separator;
break;
}
basic_json_parser_12:
yych = *++m_cursor;
if (yych <= '/')
{
goto basic_json_parser_5;
}
if (yych <= '0')
{
goto basic_json_parser_13;
}
if (yych <= '9')
{
goto basic_json_parser_15;
}
goto basic_json_parser_5;
basic_json_parser_13:
yyaccept = 1;
yych = *(m_marker = ++m_cursor);
if (yych <= 'D')
{
if (yych == '.')
{
goto basic_json_parser_43;
}
}
else
{
if (yych <= 'E')
{
goto basic_json_parser_44;
}
if (yych == 'e')
{
goto basic_json_parser_44;
}
}
basic_json_parser_14:
{
last_token_type = token_type::value_number;
break;
}
basic_json_parser_15:
yyaccept = 1;
m_marker = ++m_cursor;
if ((m_limit - m_cursor) < 3)
{
fill_line_buffer(3); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yybm[0 + yych] & 64)
{
goto basic_json_parser_15;
}
if (yych <= 'D')
{
if (yych == '.')
{
goto basic_json_parser_43;
}
goto basic_json_parser_14;
}
else
{
if (yych <= 'E')
{
goto basic_json_parser_44;
}
if (yych == 'e')
{
goto basic_json_parser_44;
}
goto basic_json_parser_14;
}
basic_json_parser_17:
++m_cursor;
{
last_token_type = token_type::name_separator;
break;
}
basic_json_parser_19:
++m_cursor;
{
last_token_type = token_type::begin_array;
break;
}
basic_json_parser_21:
++m_cursor;
{
last_token_type = token_type::end_array;
break;
}
basic_json_parser_23:
yyaccept = 0;
yych = *(m_marker = ++m_cursor);
if (yych == 'a')
{
goto basic_json_parser_45;
}
goto basic_json_parser_5;
basic_json_parser_24:
yyaccept = 0;
yych = *(m_marker = ++m_cursor);
if (yych == 'u')
{
goto basic_json_parser_46;
}
goto basic_json_parser_5;
basic_json_parser_25:
yyaccept = 0;
yych = *(m_marker = ++m_cursor);
if (yych == 'r')
{
goto basic_json_parser_47;
}
goto basic_json_parser_5;
basic_json_parser_26:
++m_cursor;
{
last_token_type = token_type::begin_object;
break;
}
basic_json_parser_28:
++m_cursor;
{
last_token_type = token_type::end_object;
break;
}
basic_json_parser_30:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
basic_json_parser_31:
if (yybm[0 + yych] & 128)
{
goto basic_json_parser_30;
}
if (yych <= 0xE0)
{
if (yych <= '\\')
{
if (yych <= 0x1F)
{
goto basic_json_parser_32;
}
if (yych <= '"')
{
goto basic_json_parser_33;
}
goto basic_json_parser_35;
}
else
{
if (yych <= 0xC1)
{
goto basic_json_parser_32;
}
if (yych <= 0xDF)
{
goto basic_json_parser_36;
}
goto basic_json_parser_37;
}
}
else
{
if (yych <= 0xEF)
{
if (yych == 0xED)
{
goto basic_json_parser_39;
}
goto basic_json_parser_38;
}
else
{
if (yych <= 0xF0)
{
goto basic_json_parser_40;
}
if (yych <= 0xF3)
{
goto basic_json_parser_41;
}
if (yych <= 0xF4)
{
goto basic_json_parser_42;
}
}
}
basic_json_parser_32:
m_cursor = m_marker;
if (yyaccept == 0)
{
goto basic_json_parser_5;
}
else
{
goto basic_json_parser_14;
}
basic_json_parser_33:
++m_cursor;
{
last_token_type = token_type::value_string;
break;
}
basic_json_parser_35:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 'e')
{
if (yych <= '/')
{
if (yych == '"')
{
goto basic_json_parser_30;
}
if (yych <= '.')
{
goto basic_json_parser_32;
}
goto basic_json_parser_30;
}
else
{
if (yych <= '\\')
{
if (yych <= '[')
{
goto basic_json_parser_32;
}
goto basic_json_parser_30;
}
else
{
if (yych == 'b')
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
}
}
}
else
{
if (yych <= 'q')
{
if (yych <= 'f')
{
goto basic_json_parser_30;
}
if (yych == 'n')
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 's')
{
if (yych <= 'r')
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 't')
{
goto basic_json_parser_30;
}
if (yych <= 'u')
{
goto basic_json_parser_48;
}
goto basic_json_parser_32;
}
}
}
basic_json_parser_36:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x7F)
{
goto basic_json_parser_32;
}
if (yych <= 0xBF)
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
basic_json_parser_37:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x9F)
{
goto basic_json_parser_32;
}
if (yych <= 0xBF)
{
goto basic_json_parser_36;
}
goto basic_json_parser_32;
basic_json_parser_38:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x7F)
{
goto basic_json_parser_32;
}
if (yych <= 0xBF)
{
goto basic_json_parser_36;
}
goto basic_json_parser_32;
basic_json_parser_39:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x7F)
{
goto basic_json_parser_32;
}
if (yych <= 0x9F)
{
goto basic_json_parser_36;
}
goto basic_json_parser_32;
basic_json_parser_40:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x8F)
{
goto basic_json_parser_32;
}
if (yych <= 0xBF)
{
goto basic_json_parser_38;
}
goto basic_json_parser_32;
basic_json_parser_41:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x7F)
{
goto basic_json_parser_32;
}
if (yych <= 0xBF)
{
goto basic_json_parser_38;
}
goto basic_json_parser_32;
basic_json_parser_42:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 0x7F)
{
goto basic_json_parser_32;
}
if (yych <= 0x8F)
{
goto basic_json_parser_38;
}
goto basic_json_parser_32;
basic_json_parser_43:
yych = *++m_cursor;
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_49;
}
goto basic_json_parser_32;
basic_json_parser_44:
yych = *++m_cursor;
if (yych <= ',')
{
if (yych == '+')
{
goto basic_json_parser_51;
}
goto basic_json_parser_32;
}
else
{
if (yych <= '-')
{
goto basic_json_parser_51;
}
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_52;
}
goto basic_json_parser_32;
}
basic_json_parser_45:
yych = *++m_cursor;
if (yych == 'l')
{
goto basic_json_parser_54;
}
goto basic_json_parser_32;
basic_json_parser_46:
yych = *++m_cursor;
if (yych == 'l')
{
goto basic_json_parser_55;
}
goto basic_json_parser_32;
basic_json_parser_47:
yych = *++m_cursor;
if (yych == 'u')
{
goto basic_json_parser_56;
}
goto basic_json_parser_32;
basic_json_parser_48:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= '@')
{
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_57;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 'F')
{
goto basic_json_parser_57;
}
if (yych <= '`')
{
goto basic_json_parser_32;
}
if (yych <= 'f')
{
goto basic_json_parser_57;
}
goto basic_json_parser_32;
}
basic_json_parser_49:
yyaccept = 1;
m_marker = ++m_cursor;
if ((m_limit - m_cursor) < 3)
{
fill_line_buffer(3); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= 'D')
{
if (yych <= '/')
{
goto basic_json_parser_14;
}
if (yych <= '9')
{
goto basic_json_parser_49;
}
goto basic_json_parser_14;
}
else
{
if (yych <= 'E')
{
goto basic_json_parser_44;
}
if (yych == 'e')
{
goto basic_json_parser_44;
}
goto basic_json_parser_14;
}
basic_json_parser_51:
yych = *++m_cursor;
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych >= ':')
{
goto basic_json_parser_32;
}
basic_json_parser_52:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= '/')
{
goto basic_json_parser_14;
}
if (yych <= '9')
{
goto basic_json_parser_52;
}
goto basic_json_parser_14;
basic_json_parser_54:
yych = *++m_cursor;
if (yych == 's')
{
goto basic_json_parser_58;
}
goto basic_json_parser_32;
basic_json_parser_55:
yych = *++m_cursor;
if (yych == 'l')
{
goto basic_json_parser_59;
}
goto basic_json_parser_32;
basic_json_parser_56:
yych = *++m_cursor;
if (yych == 'e')
{
goto basic_json_parser_61;
}
goto basic_json_parser_32;
basic_json_parser_57:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= '@')
{
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_63;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 'F')
{
goto basic_json_parser_63;
}
if (yych <= '`')
{
goto basic_json_parser_32;
}
if (yych <= 'f')
{
goto basic_json_parser_63;
}
goto basic_json_parser_32;
}
basic_json_parser_58:
yych = *++m_cursor;
if (yych == 'e')
{
goto basic_json_parser_64;
}
goto basic_json_parser_32;
basic_json_parser_59:
++m_cursor;
{
last_token_type = token_type::literal_null;
break;
}
basic_json_parser_61:
++m_cursor;
{
last_token_type = token_type::literal_true;
break;
}
basic_json_parser_63:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= '@')
{
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_66;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 'F')
{
goto basic_json_parser_66;
}
if (yych <= '`')
{
goto basic_json_parser_32;
}
if (yych <= 'f')
{
goto basic_json_parser_66;
}
goto basic_json_parser_32;
}
basic_json_parser_64:
++m_cursor;
{
last_token_type = token_type::literal_false;
break;
}
basic_json_parser_66:
++m_cursor;
if (m_limit <= m_cursor)
{
fill_line_buffer(1); // LCOV_EXCL_LINE
}
yych = *m_cursor;
if (yych <= '@')
{
if (yych <= '/')
{
goto basic_json_parser_32;
}
if (yych <= '9')
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
}
else
{
if (yych <= 'F')
{
goto basic_json_parser_30;
}
if (yych <= '`')
{
goto basic_json_parser_32;
}
if (yych <= 'f')
{
goto basic_json_parser_30;
}
goto basic_json_parser_32;
}
}
}
return last_token_type;
}
/*!
@brief append data from the stream to the line buffer
This function is called by the scan() function when the end of the
buffer (`m_limit`) is reached and the `m_cursor` pointer cannot be
incremented without leaving the limits of the line buffer. Note re2c
decides when to call this function.
If the lexer reads from contiguous storage, there is no trailing null
byte. Therefore, this function must make sure to add these padding
null bytes.
If the lexer reads from an input stream, this function reads the next
line of the input.
@pre
p p p p p p u u u u u x . . . . . .
^ ^ ^ ^
m_content m_start | m_limit
m_cursor
@post
u u u u u x x x x x x x . . . . . .
^ ^ ^
| m_cursor m_limit
m_start
m_content
*/
void fill_line_buffer(size_t n = 0)
{
// number of processed characters (p)
const auto offset_start = m_start - m_content;
// offset for m_marker wrt. to m_start
const auto offset_marker = (m_marker == nullptr) ? 0 : m_marker - m_start;
// number of unprocessed characters (u)
const auto offset_cursor = m_cursor - m_start;
// no stream is used or end of file is reached
if (m_stream == nullptr or m_stream->eof())
{
// skip this part if we are already using the line buffer
if (m_start != reinterpret_cast<const lexer_char_t*>(m_line_buffer.data()))
{
// copy unprocessed characters to line buffer
m_line_buffer.clear();
for (m_cursor = m_start; m_cursor != m_limit; ++m_cursor)
{
m_line_buffer.append(1, static_cast<const char>(*m_cursor));
}
}
// append n characters to make sure that there is sufficient
// space between m_cursor and m_limit
m_line_buffer.append(1, '\x00');
m_line_buffer.append(n - 1, '\x01');
}
else
{
// delete processed characters from line buffer
m_line_buffer.erase(0, static_cast<size_t>(offset_start));
// read next line from input stream
std::string line;
std::getline(*m_stream, line, '\n');
// add line with newline symbol to the line buffer
m_line_buffer += line + "\n";
}
// set pointers
m_content = reinterpret_cast<const lexer_char_t*>(m_line_buffer.c_str());
assert(m_content != nullptr);
m_start = m_content;
m_marker = m_start + offset_marker;
m_cursor = m_start + offset_cursor;
m_limit = m_start + m_line_buffer.size();
}
/// return string representation of last read token
string_t get_token_string() const
{
assert(m_start != nullptr);
return string_t(reinterpret_cast<typename string_t::const_pointer>(m_start),
static_cast<size_t>(m_cursor - m_start));
}
/*!
@brief return string value for string tokens
The function iterates the characters between the opening and closing
quotes of the string value. The complete string is the range
[m_start,m_cursor). Consequently, we iterate from m_start+1 to
m_cursor-1.
We differentiate two cases:
1. Escaped characters. In this case, a new character is constructed
according to the nature of the escape. Some escapes create new
characters (e.g., `"\\n"` is replaced by `"\n"`), some are copied
as is (e.g., `"\\\\"`). Furthermore, Unicode escapes of the shape
`"\\uxxxx"` need special care. In this case, to_unicode takes care
of the construction of the values.
2. Unescaped characters are copied as is.
@pre `m_cursor - m_start >= 2`, meaning the length of the last token
is at least 2 bytes which is trivially true for any string (which
consists of at least two quotes).
" c1 c2 c3 ... "
^ ^
m_start m_cursor
@complexity Linear in the length of the string.\n
Lemma: The loop body will always terminate.\n
Proof (by contradiction): Assume the loop body does not terminate. As
the loop body does not contain another loop, one of the called
functions must never return. The called functions are `std::strtoul`
and to_unicode. Neither function can loop forever, so the loop body
will never loop forever which contradicts the assumption that the loop
body does not terminate, q.e.d.\n
Lemma: The loop condition for the for loop is eventually false.\n
Proof (by contradiction): Assume the loop does not terminate. Due to
the above lemma, this can only be due to a tautological loop
condition; that is, the loop condition i < m_cursor - 1 must always be
true. Let x be the change of i for any loop iteration. Then
m_start + 1 + x < m_cursor - 1 must hold to loop indefinitely. This
can be rephrased to m_cursor - m_start - 2 > x. With the
precondition, we x <= 0, meaning that the loop condition holds
indefinitly if i is always decreased. However, observe that the value
of i is strictly increasing with each iteration, as it is incremented
by 1 in the iteration expression and never decremented inside the loop
body. Hence, the loop condition will eventually be false which
contradicts the assumption that the loop condition is a tautology,
q.e.d.
@return string value of current token without opening and closing
quotes
@throw std::out_of_range if to_unicode fails
*/
string_t get_string() const
{
assert(m_cursor - m_start >= 2);
string_t result;
result.reserve(static_cast<size_t>(m_cursor - m_start - 2));
// iterate the result between the quotes
for (const lexer_char_t* i = m_start + 1; i < m_cursor - 1; ++i)
{
// process escaped characters
if (*i == '\\')
{
// read next character
++i;
switch (*i)
{
// the default escapes
case 't':
{
result += "\t";
break;
}
case 'b':
{
result += "\b";
break;
}
case 'f':
{
result += "\f";
break;
}
case 'n':
{
result += "\n";
break;
}
case 'r':
{
result += "\r";
break;
}
case '\\':
{
result += "\\";
break;
}
case '/':
{
result += "/";
break;
}
case '"':
{
result += "\"";
break;
}
// unicode
case 'u':
{
// get code xxxx from uxxxx
auto codepoint = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>(i + 1),
4).c_str(), nullptr, 16);
// check if codepoint is a high surrogate
if (codepoint >= 0xD800 and codepoint <= 0xDBFF)
{
// make sure there is a subsequent unicode
if ((i + 6 >= m_limit) or * (i + 5) != '\\' or * (i + 6) != 'u')
{
throw std::invalid_argument("missing low surrogate");
}
// get code yyyy from uxxxx\uyyyy
auto codepoint2 = std::strtoul(std::string(reinterpret_cast<typename string_t::const_pointer>
(i + 7), 4).c_str(), nullptr, 16);
result += to_unicode(codepoint, codepoint2);
// skip the next 10 characters (xxxx\uyyyy)
i += 10;
}
else if (codepoint >= 0xDC00 and codepoint <= 0xDFFF)
{
// we found a lone low surrogate
throw std::invalid_argument("missing high surrogate");
}
else
{
// add unicode character(s)
result += to_unicode(codepoint);
// skip the next four characters (xxxx)
i += 4;
}
break;
}
}
}
else
{
// all other characters are just copied to the end of the
// string
result.append(1, static_cast<typename string_t::value_type>(*i));
}
}
return result;
}
/*!
@brief parse floating point number
This function (and its overloads) serves to select the most approprate
standard floating point number parsing function based on the type
supplied via the first parameter. Set this to @a
static_cast<number_float_t*>(nullptr).
@param[in] type the @ref number_float_t in use
@param[in,out] endptr recieves a pointer to the first character after
the number
@return the floating point number
*/
long double str_to_float_t(long double* /* type */, char** endptr) const
{
return std::strtold(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr);
}
/*!
@brief parse floating point number
This function (and its overloads) serves to select the most approprate
standard floating point number parsing function based on the type
supplied via the first parameter. Set this to @a
static_cast<number_float_t*>(nullptr).
@param[in] type the @ref number_float_t in use
@param[in,out] endptr recieves a pointer to the first character after
the number
@return the floating point number
*/
double str_to_float_t(double* /* type */, char** endptr) const
{
return std::strtod(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr);
}
/*!
@brief parse floating point number
This function (and its overloads) serves to select the most approprate
standard floating point number parsing function based on the type
supplied via the first parameter. Set this to @a
static_cast<number_float_t*>(nullptr).
@param[in] type the @ref number_float_t in use
@param[in,out] endptr recieves a pointer to the first character after
the number
@return the floating point number
*/
float str_to_float_t(float* /* type */, char** endptr) const
{
return std::strtof(reinterpret_cast<typename string_t::const_pointer>(m_start), endptr);
}
/*!
@brief return number value for number tokens
This function translates the last token into the most appropriate
number type (either integer, unsigned integer or floating point),
which is passed back to the caller via the result parameter.
This function parses the integer component up to the radix point or
exponent while collecting information about the 'floating point
representation', which it stores in the result parameter. If there is
no radix point or exponent, and the number can fit into a @ref
number_integer_t or @ref number_unsigned_t then it sets the result
parameter accordingly.
If the number is a floating point number the number is then parsed
using @a std:strtod (or @a std:strtof or @a std::strtold).
@param[out] result @ref basic_json object to receive the number, or
NAN if the conversion read past the current token. The latter case
needs to be treated by the caller function.
*/
void get_number(basic_json& result) const
{
assert(m_start != nullptr);
const lexer::lexer_char_t* curptr = m_start;
// accumulate the integer conversion result (unsigned for now)
number_unsigned_t value = 0;
// maximum absolute value of the relevant integer type
number_unsigned_t max;
// temporarily store the type to avoid unecessary bitfield access
value_t type;
// look for sign
if (*curptr == '-')
{
type = value_t::number_integer;
max = static_cast<uint64_t>((std::numeric_limits<number_integer_t>::max)()) + 1;
curptr++;
}
else
{
type = value_t::number_unsigned;
max = static_cast<uint64_t>((std::numeric_limits<number_unsigned_t>::max)());
}
// count the significant figures
for (; curptr < m_cursor; curptr++)
{
// quickly skip tests if a digit
if (*curptr < '0' || *curptr > '9')
{
if (*curptr == '.')
{
// don't count '.' but change to float
type = value_t::number_float;
continue;
}
// assume exponent (if not then will fail parse): change to
// float, stop counting and record exponent details
type = value_t::number_float;
break;
}
// skip if definitely not an integer
if (type != value_t::number_float)
{
// multiply last value by ten and add the new digit
auto temp = value * 10 + *curptr - '0';
// test for overflow
if (temp < value || temp > max)
{
// overflow
type = value_t::number_float;
}
else
{
// no overflow - save it
value = temp;
}
}
}
// save the value (if not a float)
if (type == value_t::number_unsigned)
{
result.m_value.number_unsigned = value;
}
else if (type == value_t::number_integer)
{
result.m_value.number_integer = -static_cast<number_integer_t>(value);
}
else
{
// parse with strtod
result.m_value.number_float = str_to_float_t(static_cast<number_float_t*>(nullptr), NULL);
// replace infinity and NAN by null
if (not std::isfinite(result.m_value.number_float))
{
type = value_t::null;
result.m_value = basic_json::json_value();
}
}
// save the type
result.m_type = type;
}
private:
/// optional input stream
std::istream* m_stream = nullptr;
/// line buffer buffer for m_stream
string_t m_line_buffer {};
/// the buffer pointer
const lexer_char_t* m_content = nullptr;
/// pointer to the beginning of the current symbol
const lexer_char_t* m_start = nullptr;
/// pointer for backtracking information
const lexer_char_t* m_marker = nullptr;
/// pointer to the current symbol
const lexer_char_t* m_cursor = nullptr;
/// pointer to the end of the buffer
const lexer_char_t* m_limit = nullptr;
/// the last token type
token_type last_token_type = token_type::end_of_input;
};
/*!
@brief syntax analysis
This class implements a recursive decent parser.
*/
class parser
{
public:
/// a parser reading from a string literal
parser(const char* buff, const parser_callback_t cb = nullptr)
: callback(cb),
m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(buff), strlen(buff))
{}
/// a parser reading from an input stream
parser(std::istream& is, const parser_callback_t cb = nullptr)
: callback(cb), m_lexer(is)
{}
/// a parser reading from an iterator range with contiguous storage
template<class IteratorType, typename std::enable_if<
std::is_same<typename std::iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value
, int>::type
= 0>
parser(IteratorType first, IteratorType last, const parser_callback_t cb = nullptr)
: callback(cb),
m_lexer(reinterpret_cast<const typename lexer::lexer_char_t*>(&(*first)),
static_cast<size_t>(std::distance(first, last)))
{}
/// public parser interface
basic_json parse()
{
// read first token
get_token();
basic_json result = parse_internal(true);
result.assert_invariant();
expect(lexer::token_type::end_of_input);
// return parser result and replace it with null in case the
// top-level value was discarded by the callback function
return result.is_discarded() ? basic_json() : std::move(result);
}
private:
/// the actual parser
basic_json parse_internal(bool keep)
{
auto result = basic_json(value_t::discarded);
switch (last_token)
{
case lexer::token_type::begin_object:
{
if (keep and (not callback
or ((keep = callback(depth++, parse_event_t::object_start, result)) != 0)))
{
// explicitly set result to object to cope with {}
result.m_type = value_t::object;
result.m_value = value_t::object;
}
// read next token
get_token();
// closing } -> we are done
if (last_token == lexer::token_type::end_object)
{
get_token();
if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
{
result = basic_json(value_t::discarded);
}
return result;
}
// no comma is expected here
unexpect(lexer::token_type::value_separator);
// otherwise: parse key-value pairs
do
{
// ugly, but could be fixed with loop reorganization
if (last_token == lexer::token_type::value_separator)
{
get_token();
}
// store key
expect(lexer::token_type::value_string);
const auto key = m_lexer.get_string();
bool keep_tag = false;
if (keep)
{
if (callback)
{
basic_json k(key);
keep_tag = callback(depth, parse_event_t::key, k);
}
else
{
keep_tag = true;
}
}
// parse separator (:)
get_token();
expect(lexer::token_type::name_separator);
// parse and add value
get_token();
auto value = parse_internal(keep);
if (keep and keep_tag and not value.is_discarded())
{
result[key] = std::move(value);
}
}
while (last_token == lexer::token_type::value_separator);
// closing }
expect(lexer::token_type::end_object);
get_token();
if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
{
result = basic_json(value_t::discarded);
}
return result;
}
case lexer::token_type::begin_array:
{
if (keep and (not callback
or ((keep = callback(depth++, parse_event_t::array_start, result)) != 0)))
{
// explicitly set result to object to cope with []
result.m_type = value_t::array;
result.m_value = value_t::array;
}
// read next token
get_token();
// closing ] -> we are done
if (last_token == lexer::token_type::end_array)
{
get_token();
if (callback and not callback(--depth, parse_event_t::array_end, result))
{
result = basic_json(value_t::discarded);
}
return result;
}
// no comma is expected here
unexpect(lexer::token_type::value_separator);
// otherwise: parse values
do
{
// ugly, but could be fixed with loop reorganization
if (last_token == lexer::token_type::value_separator)
{
get_token();
}
// parse value
auto value = parse_internal(keep);
if (keep and not value.is_discarded())
{
result.push_back(std::move(value));
}
}
while (last_token == lexer::token_type::value_separator);
// closing ]
expect(lexer::token_type::end_array);
get_token();
if (keep and callback and not callback(--depth, parse_event_t::array_end, result))
{
result = basic_json(value_t::discarded);
}
return result;
}
case lexer::token_type::literal_null:
{
get_token();
result.m_type = value_t::null;
break;
}
case lexer::token_type::value_string:
{
const auto s = m_lexer.get_string();
get_token();
result = basic_json(s);
break;
}
case lexer::token_type::literal_true:
{
get_token();
result.m_type = value_t::boolean;
result.m_value = true;
break;
}
case lexer::token_type::literal_false:
{
get_token();
result.m_type = value_t::boolean;
result.m_value = false;
break;
}
case lexer::token_type::value_number:
{
m_lexer.get_number(result);
get_token();
break;
}
default:
{
// the last token was unexpected
unexpect(last_token);
}
}
if (keep and callback and not callback(depth, parse_event_t::value, result))
{
result = basic_json(value_t::discarded);
}
return result;
}
/// get next token from lexer
typename lexer::token_type get_token()
{
last_token = m_lexer.scan();
return last_token;
}
void expect(typename lexer::token_type t) const
{
if (t != last_token)
{
std::string error_msg = "parse error - unexpected ";
error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() +
"'") :
lexer::token_type_name(last_token));
error_msg += "; expected " + lexer::token_type_name(t);
throw std::invalid_argument(error_msg);
}
}
void unexpect(typename lexer::token_type t) const
{
if (t == last_token)
{
std::string error_msg = "parse error - unexpected ";
error_msg += (last_token == lexer::token_type::parse_error ? ("'" + m_lexer.get_token_string() +
"'") :
lexer::token_type_name(last_token));
throw std::invalid_argument(error_msg);
}
}
private:
/// current level of recursion
int depth = 0;
/// callback function
const parser_callback_t callback = nullptr;
/// the type of the last read token
typename lexer::token_type last_token = lexer::token_type::uninitialized;
/// the lexer
lexer m_lexer;
};
public:
/*!
@brief JSON Pointer
A JSON pointer defines a string syntax for identifying a specific value
within a JSON document. It can be used with functions `at` and
`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
class json_pointer
{
/// allow basic_json to access private members
friend class basic_json;
public:
/*!
@brief create JSON pointer
Create a JSON pointer according to the syntax described in
[Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
@param[in] s string representing the JSON pointer; if omitted, the
empty string is assumed which references the whole JSON
value
@throw std::domain_error if reference token is nonempty and does not
begin with a slash (`/`); example: `"JSON pointer must be empty or
begin with /"`
@throw std::domain_error if a tilde (`~`) is not followed by `0`
(representing `~`) or `1` (representing `/`); example: `"escape error:
~ must be followed with 0 or 1"`
@liveexample{The example shows the construction several valid JSON
pointers as well as the exceptional behavior.,json_pointer}
@since version 2.0.0
*/
explicit json_pointer(const std::string& s = "")
: reference_tokens(split(s))
{}
/*!
@brief return a string representation of the JSON pointer
@invariant For each JSON pointer `ptr`, it holds:
@code {.cpp}
ptr == json_pointer(ptr.to_string());
@endcode
@return a string representation of the JSON pointer
@liveexample{The example shows the result of `to_string`.,
json_pointer__to_string}
@since version 2.0.0
*/
std::string to_string() const noexcept
{
return std::accumulate(reference_tokens.begin(),
reference_tokens.end(), std::string{},
[](const std::string & a, const std::string & b)
{
return a + "/" + escape(b);
});
}
/// @copydoc to_string()
operator std::string() const
{
return to_string();
}
private:
/// remove and return last reference pointer
std::string pop_back()
{
if (is_root())
{
throw std::domain_error("JSON pointer has no parent");
}
auto last = reference_tokens.back();
reference_tokens.pop_back();
return last;
}
/// return whether pointer points to the root document
bool is_root() const
{
return reference_tokens.empty();
}
json_pointer top() const
{
if (is_root())
{
throw std::domain_error("JSON pointer has no parent");
}
json_pointer result = *this;
result.reference_tokens = {reference_tokens[0]};
return result;
}
/*!
@brief create and return a reference to the pointed to value
@complexity Linear in the number of reference tokens.
*/
reference get_and_create(reference j) const
{
pointer result = &j;
// in case no reference tokens exist, return a reference to the
// JSON value j which will be overwritten by a primitive value
for (const auto& reference_token : reference_tokens)
{
switch (result->m_type)
{
case value_t::null:
{
if (reference_token == "0")
{
// start a new array if reference token is 0
result = &result->operator[](0);
}
else
{
// start a new object otherwise
result = &result->operator[](reference_token);
}
break;
}
case value_t::object:
{
// create an entry in the object
result = &result->operator[](reference_token);
break;
}
case value_t::array:
{
// create an entry in the array
result = &result->operator[](static_cast<size_type>(std::stoi(reference_token)));
break;
}
/*
The following code is only reached if there exists a
reference token _and_ the current value is primitive. In
this case, we have an error situation, because primitive
values may only occur as single value; that is, with an
empty list of reference tokens.
*/
default:
{
throw std::domain_error("invalid value to unflatten");
}
}
}
return *result;
}
/*!
@brief return a reference to the pointed to value
@note This version does not throw if a value is not present, but tries
to create nested values instead. For instance, calling this function
with pointer `"/this/that"` on a null value is equivalent to calling
`operator[]("this").operator[]("that")` on that value, effectively
changing the null value to an object.
@param[in] ptr a JSON value
@return reference to the JSON value pointed to by the JSON pointer
@complexity Linear in the length of the JSON pointer.
@throw std::out_of_range if the JSON pointer can not be resolved
@throw std::domain_error if an array index begins with '0'
@throw std::invalid_argument if an array index was not a number
*/
reference get_unchecked(pointer ptr) const
{
for (const auto& reference_token : reference_tokens)
{
// convert null values to arrays or objects before continuing
if (ptr->m_type == value_t::null)
{
// check if reference token is a number
const bool nums = std::all_of(reference_token.begin(),
reference_token.end(),
[](const char x)
{
return std::isdigit(x);
});
// change value to array for numbers or "-" or to object
// otherwise
if (nums or reference_token == "-")
{
*ptr = value_t::array;
}
else
{
*ptr = value_t::object;
}
}
switch (ptr->m_type)
{
case value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case value_t::array:
{
// error condition (cf. RFC 6901, Sect. 4)
if (reference_token.size() > 1 and reference_token[0] == '0')
{
throw std::domain_error("array index must not begin with '0'");
}
if (reference_token == "-")
{
// explicityly treat "-" as index beyond the end
ptr = &ptr->operator[](ptr->m_value.array->size());
}
else
{
// convert array index to number; unchecked access
ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token)));
}
break;
}
default:
{
throw std::out_of_range("unresolved reference token '" + reference_token + "'");
}
}
}
return *ptr;
}
reference get_checked(pointer ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case value_t::array:
{
if (reference_token == "-")
{
// "-" always fails the range check
throw std::out_of_range("array index '-' (" +
std::to_string(ptr->m_value.array->size()) +
") is out of range");
}
// error condition (cf. RFC 6901, Sect. 4)
if (reference_token.size() > 1 and reference_token[0] == '0')
{
throw std::domain_error("array index must not begin with '0'");
}
// note: at performs range check
ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
break;
}
default:
{
throw std::out_of_range("unresolved reference token '" + reference_token + "'");
}
}
}
return *ptr;
}
/*!
@brief return a const reference to the pointed to value
@param[in] ptr a JSON value
@return const reference to the JSON value pointed to by the JSON
pointer
*/
const_reference get_unchecked(const_pointer ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case value_t::array:
{
if (reference_token == "-")
{
// "-" cannot be used for const access
throw std::out_of_range("array index '-' (" +
std::to_string(ptr->m_value.array->size()) +
") is out of range");
}
// error condition (cf. RFC 6901, Sect. 4)
if (reference_token.size() > 1 and reference_token[0] == '0')
{
throw std::domain_error("array index must not begin with '0'");
}
// use unchecked array access
ptr = &ptr->operator[](static_cast<size_type>(std::stoi(reference_token)));
break;
}
default:
{
throw std::out_of_range("unresolved reference token '" + reference_token + "'");
}
}
}
return *ptr;
}
const_reference get_checked(const_pointer ptr) const
{
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case value_t::array:
{
if (reference_token == "-")
{
// "-" always fails the range check
throw std::out_of_range("array index '-' (" +
std::to_string(ptr->m_value.array->size()) +
") is out of range");
}
// error condition (cf. RFC 6901, Sect. 4)
if (reference_token.size() > 1 and reference_token[0] == '0')
{
throw std::domain_error("array index must not begin with '0'");
}
// note: at performs range check
ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
break;
}
default:
{
throw std::out_of_range("unresolved reference token '" + reference_token + "'");
}
}
}
return *ptr;
}
/// split the string input to reference tokens
static std::vector<std::string> split(const std::string& reference_string)
{
std::vector<std::string> result;
// special case: empty reference string -> no reference tokens
if (reference_string.empty())
{
return result;
}
// check if nonempty reference string begins with slash
if (reference_string[0] != '/')
{
throw std::domain_error("JSON pointer must be empty or begin with '/'");
}
// extract the reference tokens:
// - slash: position of the last read slash (or end of string)
// - start: position after the previous slash
for (
// search for the first slash after the first character
size_t slash = reference_string.find_first_of("/", 1),
// set the beginning of the first reference token
start = 1;
// we can stop if start == string::npos+1 = 0
start != 0;
// set the beginning of the next reference token
// (will eventually be 0 if slash == std::string::npos)
start = slash + 1,
// find next slash
slash = reference_string.find_first_of("/", start))
{
// use the text between the beginning of the reference token
// (start) and the last slash (slash).
auto reference_token = reference_string.substr(start, slash - start);
// check reference tokens are properly escaped
for (size_t pos = reference_token.find_first_of("~");
pos != std::string::npos;
pos = reference_token.find_first_of("~", pos + 1))
{
assert(reference_token[pos] == '~');
// ~ must be followed by 0 or 1
if (pos == reference_token.size() - 1 or
(reference_token[pos + 1] != '0' and
reference_token[pos + 1] != '1'))
{
throw std::domain_error("escape error: '~' must be followed with '0' or '1'");
}
}
// finally, store the reference token
unescape(reference_token);
result.push_back(reference_token);
}
return result;
}
private:
/*!
@brief replace all occurrences of a substring by another string
@param[in,out] s the string to manipulate
@param[in] f the substring to replace with @a t
@param[in] t the string to replace @a f
@return The string @a s where all occurrences of @a f are replaced
with @a t.
@pre The search string @a f must not be empty.
@since version 2.0.0
*/
static void replace_substring(std::string& s,
const std::string& f,
const std::string& t)
{
assert(not f.empty());
for (
size_t pos = s.find(f); // find first occurrence of f
pos != std::string::npos; // make sure f was found
s.replace(pos, f.size(), t), // replace with t
pos = s.find(f, pos + t.size()) // find next occurrence of f
);
}
/// escape tilde and slash
static std::string escape(std::string s)
{
// escape "~"" to "~0" and "/" to "~1"
replace_substring(s, "~", "~0");
replace_substring(s, "/", "~1");
return s;
}
/// unescape tilde and slash
static void unescape(std::string& s)
{
// first transform any occurrence of the sequence '~1' to '/'
replace_substring(s, "~1", "/");
// then transform any occurrence of the sequence '~0' to '~'
replace_substring(s, "~0", "~");
}
/*!
@param[in] reference_string the reference string to the current value
@param[in] value the value to consider
@param[in,out] result the result object to insert values to
@note Empty objects or arrays are flattened to `null`.
*/
static void flatten(const std::string& reference_string,
const basic_json& value,
basic_json& result)
{
switch (value.m_type)
{
case value_t::array:
{
if (value.m_value.array->empty())
{
// flatten empty array as null
result[reference_string] = nullptr;
}
else
{
// iterate array and use index as reference string
for (size_t i = 0; i < value.m_value.array->size(); ++i)
{
flatten(reference_string + "/" + std::to_string(i),
value.m_value.array->operator[](i), result);
}
}
break;
}
case value_t::object:
{
if (value.m_value.object->empty())
{
// flatten empty object as null
result[reference_string] = nullptr;
}
else
{
// iterate object and use keys as reference string
for (const auto& element : *value.m_value.object)
{
flatten(reference_string + "/" + escape(element.first),
element.second, result);
}
}
break;
}
default:
{
// add primitive value with its reference string
result[reference_string] = value;
break;
}
}
}
/*!
@param[in] value flattened JSON
@return unflattened JSON
*/
static basic_json unflatten(const basic_json& value)
{
if (not value.is_object())
{
throw std::domain_error("only objects can be unflattened");
}
basic_json result;
// iterate the JSON object values
for (const auto& element : *value.m_value.object)
{
if (not element.second.is_primitive())
{
throw std::domain_error("values in object must be primitive");
}
// assign value to reference pointed to by JSON pointer; Note
// that if the JSON pointer is "" (i.e., points to the whole
// value), function get_and_create returns a reference to
// result itself. An assignment will then create a primitive
// value.
json_pointer(element.first).get_and_create(result) = element.second;
}
return result;
}
private:
/// the reference tokens
std::vector<std::string> reference_tokens {};
};
//////////////////////////
// JSON Pointer support //
//////////////////////////
/// @name JSON Pointer functions
/// @{
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. Similar to @ref operator[](const typename
object_t::key_type&), `null` values are created in arrays and objects if
necessary.
In particular:
- If the JSON pointer points to an object key that does not exist, it
is created an filled with a `null` value before a reference to it
is returned.
- If the JSON pointer points to an array index that does not exist, it
is created an filled with a `null` value before a reference to it
is returned. All indices between the current maximum and the given
index are also filled with `null`.
- The special value `-` is treated as a synonym for the index past the
end.
@param[in] ptr a JSON pointer
@return reference to the element pointed to by @a ptr
@complexity Constant.
@throw std::out_of_range if the JSON pointer can not be resolved
@throw std::domain_error if an array index begins with '0'
@throw std::invalid_argument if an array index was not a number
@liveexample{The behavior is shown in the example.,operatorjson_pointer}
@since version 2.0.0
*/
reference operator[](const json_pointer& ptr)
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. The function does not change the JSON
value; no `null` values are created. In particular, the the special value
`-` yields an exception.
@param[in] ptr JSON pointer to the desired element
@return const reference to the element pointed to by @a ptr
@complexity Constant.
@throw std::out_of_range if the JSON pointer can not be resolved
@throw std::domain_error if an array index begins with '0'
@throw std::invalid_argument if an array index was not a number
@liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
@since version 2.0.0
*/
const_reference operator[](const json_pointer& ptr) const
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a reference to the element at with specified JSON pointer @a ptr,
with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@complexity Constant.
@throw std::out_of_range if the JSON pointer can not be resolved
@throw std::domain_error if an array index begins with '0'
@throw std::invalid_argument if an array index was not a number
@liveexample{The behavior is shown in the example.,at_json_pointer}
@since version 2.0.0
*/
reference at(const json_pointer& ptr)
{
return ptr.get_checked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a const reference to the element at with specified JSON pointer @a
ptr, with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@complexity Constant.
@throw std::out_of_range if the JSON pointer can not be resolved
@throw std::domain_error if an array index begins with '0'
@throw std::invalid_argument if an array index was not a number
@liveexample{The behavior is shown in the example.,at_json_pointer_const}
@since version 2.0.0
*/
const_reference at(const json_pointer& ptr) const
{
return ptr.get_checked(this);
}
/*!
@brief return flattened JSON value
The function creates a JSON object whose keys are JSON pointers (see [RFC
6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
primitive. The original JSON value can be restored using the @ref
unflatten() function.
@return an object that maps JSON pointers to primitve values
@note Empty objects and arrays are flattened to `null` and will not be
reconstructed correctly by the @ref unflatten() function.
@complexity Linear in the size the JSON value.
@liveexample{The following code shows how a JSON object is flattened to an
object whose keys consist of JSON pointers.,flatten}
@sa @ref unflatten() for the reverse function
@since version 2.0.0
*/
basic_json flatten() const
{
basic_json result(value_t::object);
json_pointer::flatten("", *this, result);
return result;
}
/*!
@brief unflatten a previously flattened JSON value
The function restores the arbitrary nesting of a JSON value that has been
flattened before using the @ref flatten() function. The JSON value must
meet certain constraints:
1. The value must be an object.
2. The keys must be JSON pointers (see
[RFC 6901](https://tools.ietf.org/html/rfc6901))
3. The mapped values must be primitive JSON types.
@return the original JSON from a flattened version
@note Empty objects and arrays are flattened by @ref flatten() to `null`
values and can not unflattened to their original type. Apart from
this example, for a JSON value `j`, the following is always true:
`j == j.flatten().unflatten()`.
@complexity Linear in the size the JSON value.
@liveexample{The following code shows how a flattened JSON object is
unflattened into the original nested JSON object.,unflatten}
@sa @ref flatten() for the reverse function
@since version 2.0.0
*/
basic_json unflatten() const
{
return json_pointer::unflatten(*this);
}
/// @}
//////////////////////////
// JSON Patch functions //
//////////////////////////
/// @name JSON Patch functions
/// @{
/*!
@brief applies a JSON patch
[JSON Patch](http://jsonpatch.com) defines a JSON document structure for
expressing a sequence of operations to apply to a JSON) document. With
this funcion, a JSON Patch is applied to the current JSON value by
executing all operations from the patch.
@param[in] json_patch JSON patch document
@return patched document
@note The application of a patch is atomic: Either all operations succeed
and the patched document is returned or an exception is thrown. In
any case, the original value is not changed: the patch is applied
to a copy of the value.
@throw std::out_of_range if a JSON pointer inside the patch could not
be resolved successfully in the current JSON value; example: `"key baz
not found"`
@throw invalid_argument if the JSON patch is malformed (e.g., mandatory
attributes are missing); example: `"operation add must have member path"`
@complexity Linear in the size of the JSON value and the length of the
JSON patch. As usually only a fraction of the JSON value is affected by
the patch, the complexity can usually be neglected.
@liveexample{The following code shows how a JSON patch is applied to a
value.,patch}
@sa @ref diff -- create a JSON patch by comparing two JSON values
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
basic_json patch(const basic_json& json_patch) const
{
// make a working copy to apply the patch to
basic_json result = *this;
// the valid JSON Patch operations
enum class patch_operations {add, remove, replace, move, copy, test, invalid};
const auto get_op = [](const std::string op)
{
if (op == "add")
{
return patch_operations::add;
}
if (op == "remove")
{
return patch_operations::remove;
}
if (op == "replace")
{
return patch_operations::replace;
}
if (op == "move")
{
return patch_operations::move;
}
if (op == "copy")
{
return patch_operations::copy;
}
if (op == "test")
{
return patch_operations::test;
}
return patch_operations::invalid;
};
// wrapper for "add" operation; add value at ptr
const auto operation_add = [&result](json_pointer & ptr, basic_json val)
{
// adding to the root of the target document means replacing it
if (ptr.is_root())
{
result = val;
}
else
{
// make sure the top element of the pointer exists
json_pointer top_pointer = ptr.top();
if (top_pointer != ptr)
{
result.at(top_pointer);
}
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.pop_back();
basic_json& parent = result[ptr];
switch (parent.m_type)
{
case value_t::null:
case value_t::object:
{
// use operator[] to add value
parent[last_path] = val;
break;
}
case value_t::array:
{
if (last_path == "-")
{
// special case: append to back
parent.push_back(val);
}
else
{
const auto idx = std::stoi(last_path);
if (static_cast<size_type>(idx) > parent.size())
{
// avoid undefined behavior
throw std::out_of_range("array index " + std::to_string(idx) + " is out of range");
}
else
{
// default case: insert add offset
parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
}
}
break;
}
default:
{
// if there exists a parent it cannot be primitive
assert(false); // LCOV_EXCL_LINE
}
}
}
};
// wrapper for "remove" operation; remove value at ptr
const auto operation_remove = [&result](json_pointer & ptr)
{
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.pop_back();
basic_json& parent = result.at(ptr);
// remove child
if (parent.is_object())
{
// perform range check
auto it = parent.find(last_path);
if (it != parent.end())
{
parent.erase(it);
}
else
{
throw std::out_of_range("key '" + last_path + "' not found");
}
}
else if (parent.is_array())
{
// note erase performs range check
parent.erase(static_cast<size_type>(std::stoi(last_path)));
}
};
// type check
if (not json_patch.is_array())
{
// a JSON patch must be an array of objects
throw std::invalid_argument("JSON patch must be an array of objects");
}
// iterate and apply th eoperations
for (const auto& val : json_patch)
{
// wrapper to get a value for an operation
const auto get_value = [&val](const std::string & op,
const std::string & member,
bool string_type) -> basic_json&
{
// find value
auto it = val.m_value.object->find(member);
// context-sensitive error message
const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
// check if desired value is present
if (it == val.m_value.object->end())
{
throw std::invalid_argument(error_msg + " must have member '" + member + "'");
}
// check if result is of type string
if (string_type and not it->second.is_string())
{
throw std::invalid_argument(error_msg + " must have string member '" + member + "'");
}
// no error: return value
return it->second;
};
// type check
if (not val.is_object())
{
throw std::invalid_argument("JSON patch must be an array of objects");
}
// collect mandatory members
const std::string op = get_value("op", "op", true);
const std::string path = get_value(op, "path", true);
json_pointer ptr(path);
switch (get_op(op))
{
case patch_operations::add:
{
operation_add(ptr, get_value("add", "value", false));
break;
}
case patch_operations::remove:
{
operation_remove(ptr);
break;
}
case patch_operations::replace:
{
// the "path" location must exist - use at()
result.at(ptr) = get_value("replace", "value", false);
break;
}
case patch_operations::move:
{
const std::string from_path = get_value("move", "from", true);
json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
basic_json v = result.at(from_ptr);
// The move operation is functionally identical to a
// "remove" operation on the "from" location, followed
// immediately by an "add" operation at the target
// location with the value that was just removed.
operation_remove(from_ptr);
operation_add(ptr, v);
break;
}
case patch_operations::copy:
{
const std::string from_path = get_value("copy", "from", true);;
const json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
result[ptr] = result.at(from_ptr);
break;
}
case patch_operations::test:
{
bool success = false;
try
{
// check if "value" matches the one at "path"
// the "path" location must exist - use at()
success = (result.at(ptr) == get_value("test", "value", false));
}
catch (std::out_of_range&)
{
// ignore out of range errors: success remains false
}
// throw an exception if test fails
if (not success)
{
throw std::domain_error("unsuccessful: " + val.dump());
}
break;
}
case patch_operations::invalid:
{
// op must be "add", "remove", "replace", "move", "copy", or
// "test"
throw std::invalid_argument("operation value '" + op + "' is invalid");
}
}
}
return result;
}
/*!
@brief creates a diff as a JSON patch
Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
be changed into the value @a target by calling @ref patch function.
@invariant For two JSON values @a source and @a target, the following code
yields always `true`:
@code {.cpp}
source.patch(diff(source, target)) == target;
@endcode
@note Currently, only `remove`, `add`, and `replace` operations are
generated.
@param[in] source JSON value to copare from
@param[in] target JSON value to copare against
@param[in] path helper value to create JSON pointers
@return a JSON patch to convert the @a source to @a target
@complexity Linear in the lengths of @a source and @a target.
@liveexample{The following code shows how a JSON patch is created as a
diff for two JSON values.,diff}
@sa @ref patch -- apply a JSON patch
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@since version 2.0.0
*/
static basic_json diff(const basic_json& source,
const basic_json& target,
const std::string& path = "")
{
// the patch
basic_json result(value_t::array);
// if the values are the same, return empty patch
if (source == target)
{
return result;
}
if (source.type() != target.type())
{
// different types: replace value
result.push_back(
{
{"op", "replace"},
{"path", path},
{"value", target}
});
}
else
{
switch (source.type())
{
case value_t::array:
{
// first pass: traverse common elements
size_t i = 0;
while (i < source.size() and i < target.size())
{
// recursive call to compare array values at index i
auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
++i;
}
// i now reached the end of at least one array
// in a second pass, traverse the remaining elements
// remove my remaining elements
const auto end_index = static_cast<difference_type>(result.size());
while (i < source.size())
{
// add operations in reverse order to avoid invalid
// indices
result.insert(result.begin() + end_index, object(
{
{"op", "remove"},
{"path", path + "/" + std::to_string(i)}
}));
++i;
}
// add other remaining elements
while (i < target.size())
{
result.push_back(
{
{"op", "add"},
{"path", path + "/" + std::to_string(i)},
{"value", target[i]}
});
++i;
}
break;
}
case value_t::object:
{
// first pass: traverse this object's elements
for (auto it = source.begin(); it != source.end(); ++it)
{
// escape the key name to be used in a JSON patch
const auto key = json_pointer::escape(it.key());
if (target.find(it.key()) != target.end())
{
// recursive call to compare object values at key it
auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
}
else
{
// found a key that is not in o -> remove it
result.push_back(object(
{
{"op", "remove"},
{"path", path + "/" + key}
}));
}
}
// second pass: traverse other object's elements
for (auto it = target.begin(); it != target.end(); ++it)
{
if (source.find(it.key()) == source.end())
{
// found a key that is not in this -> add it
const auto key = json_pointer::escape(it.key());
result.push_back(
{
{"op", "add"},
{"path", path + "/" + key},
{"value", it.value()}
});
}
}
break;
}
default:
{
// both primitive type: replace value
result.push_back(
{
{"op", "replace"},
{"path", path},
{"value", target}
});
break;
}
}
}
return result;
}
/// @}
};
/////////////
// presets //
/////////////
/*!
@brief default JSON class
This type is the default specialization of the @ref basic_json class which
uses the standard template types.
@since version 1.0.0
*/
using json = basic_json<>;
}
///////////////////////
// nonmember support //
///////////////////////
// specialization of std::swap, and std::hash
namespace std
{
/*!
@brief exchanges the values of two JSON objects
@since version 1.0.0
*/
template<>
inline void swap(nlohmann::json& j1,
nlohmann::json& j2) noexcept(
is_nothrow_move_constructible<nlohmann::json>::value and
is_nothrow_move_assignable<nlohmann::json>::value
)
{
j1.swap(j2);
}
/// hash value for JSON objects
template<>
struct hash<nlohmann::json>
{
/*!
@brief return a hash value for a JSON object
@since version 1.0.0
*/
std::size_t operator()(const nlohmann::json& j) const
{
// a naive hashing via the string representation
const auto& h = hash<nlohmann::json::string_t>();
return h(j.dump());
}
};
}
/*!
@brief user-defined string literal for JSON values
This operator implements a user-defined string literal for JSON objects. It
can be used by adding `"_json"` to a string literal and returns a JSON object
if no parse error occurred.
@param[in] s a string representation of a JSON object
@param[in] n the length of string @a s
@return a JSON object
@since version 1.0.0
*/
inline nlohmann::json operator "" _json(const char* s, std::size_t n)
{
return nlohmann::json::parse(s, s + n);
}
/*!
@brief user-defined string literal for JSON pointer
This operator implements a user-defined string literal for JSON Pointers. It
can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
object if no parse error occurred.
@param[in] s a string representation of a JSON Pointer
@param[in] n the length of string @a s
@return a JSON pointer object
@since version 2.0.0
*/
inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
{
return nlohmann::json::json_pointer(std::string(s, n));
}
// restore GCC/clang diagnostic settings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic pop
#endif
#endif
|