1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
/*
* Copyright (c) 2017 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
* Encode/decode base64. Encoding goes to one long line, no line breaks.
* Decoding will accept CRLF linebreaks in the data and skip them.
*
* Following the language of RFC 4648, encoding proceeds in a "quantum" of
* 3 bytes of plaintext to 4 bytes of encoded data. Decoding goes in
* a 4-byte quantum to 3-byte decoded data.
*
* If decoding fails (e.g. there's a non-base64 character), then the output
* buffer is rewound to the starting position and a failure is indicated.
*
* Decoding using a 256 byte table. Each byte of the 4-byte quantum is looked
* up and if its a valid character -- it resolves to a value 0..63, then that
* value is shifted to the right position in the output. Values CR and LF have
* the special token "_" in the table, which means "skip". That token has value
* ascii value 95, is we can detect it as outside base64. Similarly, all the
* invalid characters have the symbol "~", which is ascii 127.
*
*/
#include <config.h>
#include <stdio.h>
#include <string.h>
#include <LongBow/runtime.h>
#include <parc/algol/parc_Base64.h>
#include <parc/algol/parc_Memory.h>
const uint8_t base64code[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const uint8_t pad = '=';
const uint8_t invalid = '~'; // has ascii value 127, outside base64
const uint8_t skip = '_'; // has ascii value 95, outside the base64 values
// an 256-entry table to lookup decode values. If the value is "invalid", then it's not
// a base64 character.
const uint8_t decodeTable[256] = {
/* 0 */ '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '_', '~', '~', '_', '~', '~',
/* 16 */ '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
/* 32 */ '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', 62, '~', '~', '~', 63,
/* 48 */ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, '~', '~', '~', '~', '~', '~',
/* 64 */ '~', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 80 */ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, '~', '~', '~', '~', '~',
/* 96 */ '~', 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
/* 112 */ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, '~', '~', '~', '~', '~',
/* 128 */ '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~',
'~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~', '~'
};
#define min(a, b) ((a < b) ? a : b)
/**
* Encode the 3-byte quantum pointed to by <code>quantum</code> into 4 encoded characters.
* It includes `padLength` of pad necessary at the end.
*/
static void
_encodeWithPad(PARCBufferComposer *output, const uint8_t *quantum, size_t padLength)
{
assertTrue(padLength < 3, "Degenerate case -- should never pad all 3 bytes!");
unsigned index;
uint8_t paddedQuantum[] = { 0, 0, 0 };
memcpy(paddedQuantum, quantum, 3 - padLength);
for (index = 0; index < 4; index++) {
if (index + padLength < 4) {
/*
* The four base64 symbols fall in to these locations in the
* 3-byte input
*
* aaaaaabb | bbbbcccc | ccdddddd
*
* This switch statement, based on the "a" "b" "c" or "d" case
* extracts the corresponding 6 bits from its location in the
* byte aray.
*/
int sixbit = 0;
switch (index) {
case 0: // aaaaaa
sixbit = paddedQuantum[0] >> 2;
break;
case 1: // bbbbbb
sixbit = ((paddedQuantum[0] & 0x03) << 4) | (paddedQuantum[1] >> 4);
break;
case 2: // cccccc
sixbit = ((paddedQuantum[1] & 0x0F) << 2) | (paddedQuantum[2] >> 6);
break;
case 3: // dddddd
sixbit = paddedQuantum[2] & 0x3F;
break;
}
uint8_t encodedChar = base64code[ sixbit ];
parcBufferComposer_PutUint8(output, encodedChar);
} else {
parcBufferComposer_PutUint8(output, pad);
}
}
}
/**
* Decode the 4-byte quantum of base64 to binary.
*/
static bool
_decode(PARCBufferComposer *output, uint8_t *quantum)
{
uint8_t threebytes[3] = { 0, 0, 0 };
size_t length_to_append = 0;
for (int index = 0; index < 4; index++) {
uint8_t c = quantum[index];
if (c != pad) {
uint8_t value = decodeTable[c];
// if its a non-base64 character, bail out of here
if (value == invalid) {
return false;
}
/*
* The four base64 symbols fall in to these locations in the
* final 3-byte output
*
* aaaaaabb | bbbbcccc | ccdddddd
*/
switch (index) {
case 0: // aaaaaa
threebytes[0] |= value << 2;
break;
case 1: // bbbbbb
threebytes[0] |= (value & 0x30) >> 4;
threebytes[1] |= (value & 0x0F) << 4;
// we've finished threebytes[0]
length_to_append = 1;
break;
case 2: // cccccc
threebytes[1] |= value >> 2;
threebytes[2] |= (value & 0x03) << 6;
// we've finished threebytes[1]
length_to_append = 2;
break;
case 3: // dddddd
threebytes[2] |= value;
// we've finished threebytes[2]
length_to_append = 3;
break;
}
}
}
parcBufferComposer_PutArray(output, threebytes, length_to_append);
return true;
}
PARCBufferComposer *
parcBase64_Encode(PARCBufferComposer *result, PARCBuffer *plainText)
{
size_t remaining = parcBuffer_Remaining(plainText);
if (remaining > 0) {
const uint8_t *buffer = parcBuffer_Overlay(plainText, 0);
result = parcBase64_EncodeArray(result, remaining, buffer);
}
return result;
}
PARCBufferComposer *
parcBase64_EncodeArray(PARCBufferComposer *output, size_t length, const uint8_t array[length])
{
size_t offset = 0;
// Encode 3-byte tuples
while (offset < length) {
const uint8_t *quantum = array + offset;
size_t padLength = 3 - min(3, length - offset);
_encodeWithPad(output, quantum, padLength);
offset += 3;
}
return output;
}
PARCBufferComposer *
parcBase64_Decode(PARCBufferComposer *output, PARCBuffer *encodedText)
{
// We proceed in 4-byte blocks. All base-64 encoded data is a multiple of 4 bytes.
// If the length of encodedText is wrong, bail now
size_t remaining = parcBuffer_Remaining(encodedText);
const uint8_t *buffer = parcBuffer_Overlay(encodedText, remaining);
return parcBase64_DecodeArray(output, remaining, buffer);
}
PARCBufferComposer *
parcBase64_DecodeString(PARCBufferComposer *output, const char *encodedString)
{
const uint8_t *buffer = (const uint8_t *) encodedString;
size_t length = strlen(encodedString);
return parcBase64_DecodeArray(output, length, buffer);
}
PARCBufferComposer *
parcBase64_DecodeArray(PARCBufferComposer *output, size_t length, const uint8_t array[length])
{
size_t offset = 0;
bool success = true;
// if we need to rollback, this is where we go
PARCBuffer *outputBuffer = parcBufferComposer_GetBuffer(output);
size_t rewind_to = parcBuffer_Position(outputBuffer);
while (offset < length && success) {
// filter out line feeds and carrage returns
// parse the input in 4-byte quantums
size_t index = 0;
uint8_t quantum[4];
// reset success at the start of each loop. if we run out of input before
// we parse a full quantum, we'll fail the loop and rewind the output buffer.
success = false;
// 4 == quantum length for decode
while (index < 4 && offset < length) {
uint8_t c = array[offset];
uint8_t decoded = decodeTable[c];
if (decoded < 64 || c == pad) {
// this is an artifact from how the code was first written, so we
// pass the un-decoded character
quantum[index] = c;
index++;
offset++;
continue;
}
if (decoded == skip) {
offset++;
continue;
}
if (decoded == invalid) {
break;
}
}
if (index == 4) {
success = _decode(output, quantum);
}
}
if (!success) {
parcBuffer_SetPosition(outputBuffer, rewind_to);
return NULL;
}
return output;
}
|