summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/em_rxtx.c
diff options
context:
space:
mode:
authorC.J. Collier <cjcollier@linuxfoundation.org>2016-06-14 07:50:17 -0700
committerC.J. Collier <cjcollier@linuxfoundation.org>2016-06-14 12:17:54 -0700
commit97f17497d162afdb82c8704bf097f0fee3724b2e (patch)
tree1c6269614c0c15ffef8451c58ae8f8b30a1bc804 /drivers/net/e1000/em_rxtx.c
parente04be89c2409570e0055b2cda60bd11395bb93b0 (diff)
Imported Upstream version 16.04
Change-Id: I77eadcd8538a9122e4773cbe55b24033dc451757 Signed-off-by: C.J. Collier <cjcollier@linuxfoundation.org>
Diffstat (limited to 'drivers/net/e1000/em_rxtx.c')
-rw-r--r--drivers/net/e1000/em_rxtx.c1861
1 files changed, 1861 insertions, 0 deletions
diff --git a/drivers/net/e1000/em_rxtx.c b/drivers/net/e1000/em_rxtx.c
new file mode 100644
index 00000000..441ccad8
--- /dev/null
+++ b/drivers/net/e1000/em_rxtx.c
@@ -0,0 +1,1861 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <sys/queue.h>
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <inttypes.h>
+
+#include <rte_interrupts.h>
+#include <rte_byteorder.h>
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_debug.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_memcpy.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_branch_prediction.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_mbuf.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_prefetch.h>
+#include <rte_ip.h>
+#include <rte_udp.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_string_fns.h>
+
+#include "e1000_logs.h"
+#include "base/e1000_api.h"
+#include "e1000_ethdev.h"
+#include "base/e1000_osdep.h"
+
+#define E1000_TXD_VLAN_SHIFT 16
+
+#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, 0);
+ return m;
+}
+
+/**
+ * Structure associated with each descriptor of the RX ring of a RX queue.
+ */
+struct em_rx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
+};
+
+/**
+ * Structure associated with each descriptor of the TX ring of a TX queue.
+ */
+struct em_tx_entry {
+ struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
+ uint16_t next_id; /**< Index of next descriptor in ring. */
+ uint16_t last_id; /**< Index of last scattered descriptor. */
+};
+
+/**
+ * Structure associated with each RX queue.
+ */
+struct em_rx_queue {
+ struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
+ volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
+ uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
+ volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
+ volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
+ struct em_rx_entry *sw_ring; /**< address of RX software ring. */
+ struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
+ struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
+ uint16_t nb_rx_desc; /**< number of RX descriptors. */
+ uint16_t rx_tail; /**< current value of RDT register. */
+ uint16_t nb_rx_hold; /**< number of held free RX desc. */
+ uint16_t rx_free_thresh; /**< max free RX desc to hold. */
+ uint16_t queue_id; /**< RX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
+};
+
+/**
+ * Hardware context number
+ */
+enum {
+ EM_CTX_0 = 0, /**< CTX0 */
+ EM_CTX_NUM = 1, /**< CTX NUM */
+};
+
+/** Offload features */
+union em_vlan_macip {
+ uint32_t data;
+ struct {
+ uint16_t l3_len:9; /**< L3 (IP) Header Length. */
+ uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
+ uint16_t vlan_tci;
+ /**< VLAN Tag Control Identifier (CPU order). */
+ } f;
+};
+
+/*
+ * Compare mask for vlan_macip_len.data,
+ * should be in sync with em_vlan_macip.f layout.
+ * */
+#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
+#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
+#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
+/** MAC+IP length. */
+#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
+
+/**
+ * Structure to check if new context need be built
+ */
+struct em_ctx_info {
+ uint64_t flags; /**< ol_flags related to context build. */
+ uint32_t cmp_mask; /**< compare mask */
+ union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
+};
+
+/**
+ * Structure associated with each TX queue.
+ */
+struct em_tx_queue {
+ volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
+ uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
+ struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
+ volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
+ uint16_t nb_tx_desc; /**< number of TX descriptors. */
+ uint16_t tx_tail; /**< Current value of TDT register. */
+ /**< Start freeing TX buffers if there are less free descriptors than
+ this value. */
+ uint16_t tx_free_thresh;
+ /**< Number of TX descriptors to use before RS bit is set. */
+ uint16_t tx_rs_thresh;
+ /** Number of TX descriptors used since RS bit was set. */
+ uint16_t nb_tx_used;
+ /** Index to last TX descriptor to have been cleaned. */
+ uint16_t last_desc_cleaned;
+ /** Total number of TX descriptors ready to be allocated. */
+ uint16_t nb_tx_free;
+ uint16_t queue_id; /**< TX queue index. */
+ uint8_t port_id; /**< Device port identifier. */
+ uint8_t pthresh; /**< Prefetch threshold register. */
+ uint8_t hthresh; /**< Host threshold register. */
+ uint8_t wthresh; /**< Write-back threshold register. */
+ struct em_ctx_info ctx_cache;
+ /**< Hardware context history.*/
+};
+
+#if 1
+#define RTE_PMD_USE_PREFETCH
+#endif
+
+#ifdef RTE_PMD_USE_PREFETCH
+#define rte_em_prefetch(p) rte_prefetch0(p)
+#else
+#define rte_em_prefetch(p) do {} while(0)
+#endif
+
+#ifdef RTE_PMD_PACKET_PREFETCH
+#define rte_packet_prefetch(p) rte_prefetch1(p)
+#else
+#define rte_packet_prefetch(p) do {} while(0)
+#endif
+
+#ifndef DEFAULT_TX_FREE_THRESH
+#define DEFAULT_TX_FREE_THRESH 32
+#endif /* DEFAULT_TX_FREE_THRESH */
+
+#ifndef DEFAULT_TX_RS_THRESH
+#define DEFAULT_TX_RS_THRESH 32
+#endif /* DEFAULT_TX_RS_THRESH */
+
+
+/*********************************************************************
+ *
+ * TX function
+ *
+ **********************************************************************/
+
+/*
+ * Populates TX context descriptor.
+ */
+static inline void
+em_set_xmit_ctx(struct em_tx_queue* txq,
+ volatile struct e1000_context_desc *ctx_txd,
+ uint64_t flags,
+ union em_vlan_macip hdrlen)
+{
+ uint32_t cmp_mask, cmd_len;
+ uint16_t ipcse, l2len;
+ struct e1000_context_desc ctx;
+
+ cmp_mask = 0;
+ cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
+
+ l2len = hdrlen.f.l2_len;
+ ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
+
+ /* setup IPCS* fields */
+ ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
+ ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
+ offsetof(struct ipv4_hdr, hdr_checksum));
+
+ /*
+ * When doing checksum or TCP segmentation with IPv6 headers,
+ * IPCSE field should be set t0 0.
+ */
+ if (flags & PKT_TX_IP_CKSUM) {
+ ctx.lower_setup.ip_fields.ipcse =
+ (uint16_t)rte_cpu_to_le_16(ipcse - 1);
+ cmd_len |= E1000_TXD_CMD_IP;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ } else {
+ ctx.lower_setup.ip_fields.ipcse = 0;
+ }
+
+ /* setup TUCS* fields */
+ ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
+ ctx.upper_setup.tcp_fields.tucse = 0;
+
+ switch (flags & PKT_TX_L4_MASK) {
+ case PKT_TX_UDP_CKSUM:
+ ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+ offsetof(struct udp_hdr, dgram_cksum));
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ case PKT_TX_TCP_CKSUM:
+ ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
+ offsetof(struct tcp_hdr, cksum));
+ cmd_len |= E1000_TXD_CMD_TCP;
+ cmp_mask |= TX_MACIP_LEN_CMP_MASK;
+ break;
+ default:
+ ctx.upper_setup.tcp_fields.tucso = 0;
+ }
+
+ ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
+ ctx.tcp_seg_setup.data = 0;
+
+ *ctx_txd = ctx;
+
+ txq->ctx_cache.flags = flags;
+ txq->ctx_cache.cmp_mask = cmp_mask;
+ txq->ctx_cache.hdrlen = hdrlen;
+}
+
+/*
+ * Check which hardware context can be used. Use the existing match
+ * or create a new context descriptor.
+ */
+static inline uint32_t
+what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
+ union em_vlan_macip hdrlen)
+{
+ /* If match with the current context */
+ if (likely (txq->ctx_cache.flags == flags &&
+ ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
+ txq->ctx_cache.cmp_mask) == 0))
+ return EM_CTX_0;
+
+ /* Mismatch */
+ return EM_CTX_NUM;
+}
+
+/* Reset transmit descriptors after they have been used */
+static inline int
+em_xmit_cleanup(struct em_tx_queue *txq)
+{
+ struct em_tx_entry *sw_ring = txq->sw_ring;
+ volatile struct e1000_data_desc *txr = txq->tx_ring;
+ uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+ uint16_t nb_tx_desc = txq->nb_tx_desc;
+ uint16_t desc_to_clean_to;
+ uint16_t nb_tx_to_clean;
+
+ /* Determine the last descriptor needing to be cleaned */
+ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+ if (desc_to_clean_to >= nb_tx_desc)
+ desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+ /* Check to make sure the last descriptor to clean is done */
+ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+ if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
+ {
+ PMD_TX_FREE_LOG(DEBUG,
+ "TX descriptor %4u is not done"
+ "(port=%d queue=%d)", desc_to_clean_to,
+ txq->port_id, txq->queue_id);
+ /* Failed to clean any descriptors, better luck next time */
+ return -(1);
+ }
+
+ /* Figure out how many descriptors will be cleaned */
+ if (last_desc_cleaned > desc_to_clean_to)
+ nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+ desc_to_clean_to);
+ else
+ nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+ last_desc_cleaned);
+
+ PMD_TX_FREE_LOG(DEBUG,
+ "Cleaning %4u TX descriptors: %4u to %4u "
+ "(port=%d queue=%d)", nb_tx_to_clean,
+ last_desc_cleaned, desc_to_clean_to, txq->port_id,
+ txq->queue_id);
+
+ /*
+ * The last descriptor to clean is done, so that means all the
+ * descriptors from the last descriptor that was cleaned
+ * up to the last descriptor with the RS bit set
+ * are done. Only reset the threshold descriptor.
+ */
+ txr[desc_to_clean_to].upper.fields.status = 0;
+
+ /* Update the txq to reflect the last descriptor that was cleaned */
+ txq->last_desc_cleaned = desc_to_clean_to;
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+ /* No Error */
+ return 0;
+}
+
+static inline uint32_t
+tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
+{
+ static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
+ static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
+ uint32_t tmp;
+
+ tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
+ tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
+ return tmp;
+}
+
+uint16_t
+eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct em_tx_queue *txq;
+ struct em_tx_entry *sw_ring;
+ struct em_tx_entry *txe, *txn;
+ volatile struct e1000_data_desc *txr;
+ volatile struct e1000_data_desc *txd;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint64_t buf_dma_addr;
+ uint32_t popts_spec;
+ uint32_t cmd_type_len;
+ uint16_t slen;
+ uint64_t ol_flags;
+ uint16_t tx_id;
+ uint16_t tx_last;
+ uint16_t nb_tx;
+ uint16_t nb_used;
+ uint64_t tx_ol_req;
+ uint32_t ctx;
+ uint32_t new_ctx;
+ union em_vlan_macip hdrlen;
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ /* Determine if the descriptor ring needs to be cleaned. */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ em_xmit_cleanup(txq);
+
+ /* TX loop */
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ new_ctx = 0;
+ tx_pkt = *tx_pkts++;
+
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ /*
+ * Determine how many (if any) context descriptors
+ * are needed for offload functionality.
+ */
+ ol_flags = tx_pkt->ol_flags;
+
+ /* If hardware offload required */
+ tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
+ if (tx_ol_req) {
+ hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
+ hdrlen.f.l2_len = tx_pkt->l2_len;
+ hdrlen.f.l3_len = tx_pkt->l3_len;
+ /* If new context to be built or reuse the exist ctx. */
+ ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
+
+ /* Only allocate context descriptor if required*/
+ new_ctx = (ctx == EM_CTX_NUM);
+ }
+
+ /*
+ * Keep track of how many descriptors are used this loop
+ * This will always be the number of segments + the number of
+ * Context descriptors required to transmit the packet
+ */
+ nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
+
+ /*
+ * The number of descriptors that must be allocated for a
+ * packet is the number of segments of that packet, plus 1
+ * Context Descriptor for the hardware offload, if any.
+ * Determine the last TX descriptor to allocate in the TX ring
+ * for the packet, starting from the current position (tx_id)
+ * in the ring.
+ */
+ tx_last = (uint16_t) (tx_id + nb_used - 1);
+
+ /* Circular ring */
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
+ " tx_first=%u tx_last=%u",
+ (unsigned) txq->port_id,
+ (unsigned) txq->queue_id,
+ (unsigned) tx_pkt->pkt_len,
+ (unsigned) tx_id,
+ (unsigned) tx_last);
+
+ /*
+ * Make sure there are enough TX descriptors available to
+ * transmit the entire packet.
+ * nb_used better be less than or equal to txq->tx_rs_thresh
+ */
+ while (unlikely (nb_used > txq->nb_tx_free)) {
+ PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
+ "nb_used=%4u nb_free=%4u "
+ "(port=%d queue=%d)",
+ nb_used, txq->nb_tx_free,
+ txq->port_id, txq->queue_id);
+
+ if (em_xmit_cleanup(txq) != 0) {
+ /* Could not clean any descriptors */
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+ }
+
+ /*
+ * By now there are enough free TX descriptors to transmit
+ * the packet.
+ */
+
+ /*
+ * Set common flags of all TX Data Descriptors.
+ *
+ * The following bits must be set in all Data Descriptors:
+ * - E1000_TXD_DTYP_DATA
+ * - E1000_TXD_DTYP_DEXT
+ *
+ * The following bits must be set in the first Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_TXD_POPTS_IXSM
+ * - E1000_TXD_POPTS_TXSM
+ *
+ * The following bits must be set in the last Data Descriptor
+ * and are ignored in the other ones:
+ * - E1000_TXD_CMD_VLE
+ * - E1000_TXD_CMD_IFCS
+ *
+ * The following bits must only be set in the last Data
+ * Descriptor:
+ * - E1000_TXD_CMD_EOP
+ *
+ * The following bits can be set in any Data Descriptor, but
+ * are only set in the last Data Descriptor:
+ * - E1000_TXD_CMD_RS
+ */
+ cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
+ E1000_TXD_CMD_IFCS;
+ popts_spec = 0;
+
+ /* Set VLAN Tag offload fields. */
+ if (ol_flags & PKT_TX_VLAN_PKT) {
+ cmd_type_len |= E1000_TXD_CMD_VLE;
+ popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
+ }
+
+ if (tx_ol_req) {
+ /*
+ * Setup the TX Context Descriptor if required
+ */
+ if (new_ctx) {
+ volatile struct e1000_context_desc *ctx_txd;
+
+ ctx_txd = (volatile struct e1000_context_desc *)
+ &txr[tx_id];
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
+ hdrlen);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ /*
+ * Setup the TX Data Descriptor,
+ * This path will go through
+ * whatever new/reuse the context descriptor
+ */
+ popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txd = &txr[tx_id];
+ txn = &sw_ring[txe->next_id];
+
+ if (txe->mbuf != NULL)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /*
+ * Set up Transmit Data Descriptor.
+ */
+ slen = m_seg->data_len;
+ buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
+
+ txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+ txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
+ txd->upper.data = rte_cpu_to_le_32(popts_spec);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg != NULL);
+
+ /*
+ * The last packet data descriptor needs End Of Packet (EOP)
+ */
+ cmd_type_len |= E1000_TXD_CMD_EOP;
+ txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+ /* Set RS bit only on threshold packets' last descriptor */
+ if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+ PMD_TX_FREE_LOG(DEBUG,
+ "Setting RS bit on TXD id=%4u "
+ "(port=%d queue=%d)",
+ tx_last, txq->port_id, txq->queue_id);
+
+ cmd_type_len |= E1000_TXD_CMD_RS;
+
+ /* Update txq RS bit counters */
+ txq->nb_tx_used = 0;
+ }
+ txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
+ }
+end_of_tx:
+ rte_wmb();
+
+ /*
+ * Set the Transmit Descriptor Tail (TDT)
+ */
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+ E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
+ txq->tx_tail = tx_id;
+
+ return nb_tx;
+}
+
+/*********************************************************************
+ *
+ * RX functions
+ *
+ **********************************************************************/
+
+static inline uint64_t
+rx_desc_status_to_pkt_flags(uint32_t rx_status)
+{
+ uint64_t pkt_flags;
+
+ /* Check if VLAN present */
+ pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0);
+
+ return pkt_flags;
+}
+
+static inline uint64_t
+rx_desc_error_to_pkt_flags(uint32_t rx_error)
+{
+ uint64_t pkt_flags = 0;
+
+ if (rx_error & E1000_RXD_ERR_IPE)
+ pkt_flags |= PKT_RX_IP_CKSUM_BAD;
+ if (rx_error & E1000_RXD_ERR_TCPE)
+ pkt_flags |= PKT_RX_L4_CKSUM_BAD;
+ return pkt_flags;
+}
+
+uint16_t
+eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct e1000_rx_desc *rx_ring;
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq;
+ struct em_rx_entry *sw_ring;
+ struct em_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ struct e1000_rx_desc rxd;
+ uint64_t dma_addr;
+ uint16_t pkt_len;
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint8_t status;
+
+ rxq = rx_queue;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+ while (nb_rx < nb_pkts) {
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ status = rxdp->status;
+ if (! (status & E1000_RXD_STAT_DD))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * End of packet.
+ *
+ * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
+ * likely to be invalid and to be dropped by the various
+ * validation checks performed by the network stack.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy do not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "status=0x%x pkt_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) status,
+ (unsigned) rte_le_to_cpu_16(rxd.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u",
+ (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_em_prefetch(&rx_ring[rx_id]);
+ rte_em_prefetch(&sw_ring[rx_id]);
+ }
+
+ /* Rearm RXD: attach new mbuf and reset status to zero. */
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+ rxdp->buffer_addr = dma_addr;
+ rxdp->status = 0;
+
+ /*
+ * Initialize the returned mbuf.
+ * 1) setup generic mbuf fields:
+ * - number of segments,
+ * - next segment,
+ * - packet length,
+ * - RX port identifier.
+ * 2) integrate hardware offload data, if any:
+ * - RSS flag & hash,
+ * - IP checksum flag,
+ * - VLAN TCI, if any,
+ * - error flags.
+ */
+ pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
+ rxq->crc_len);
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = pkt_len;
+ rxm->data_len = pkt_len;
+ rxm->port = rxq->port_id;
+
+ rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
+ rxm->ol_flags = rxm->ol_flags |
+ rx_desc_error_to_pkt_flags(rxd.errors);
+
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return nb_rx;
+}
+
+uint16_t
+eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct em_rx_queue *rxq;
+ volatile struct e1000_rx_desc *rx_ring;
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_entry *sw_ring;
+ struct em_rx_entry *rxe;
+ struct rte_mbuf *first_seg;
+ struct rte_mbuf *last_seg;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ struct e1000_rx_desc rxd;
+ uint64_t dma; /* Physical address of mbuf data buffer */
+ uint16_t rx_id;
+ uint16_t nb_rx;
+ uint16_t nb_hold;
+ uint16_t data_len;
+ uint8_t status;
+
+ rxq = rx_queue;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ /*
+ * Retrieve RX context of current packet, if any.
+ */
+ first_seg = rxq->pkt_first_seg;
+ last_seg = rxq->pkt_last_seg;
+
+ while (nb_rx < nb_pkts) {
+ next_desc:
+ /*
+ * The order of operations here is important as the DD status
+ * bit must not be read after any other descriptor fields.
+ * rx_ring and rxdp are pointing to volatile data so the order
+ * of accesses cannot be reordered by the compiler. If they were
+ * not volatile, they could be reordered which could lead to
+ * using invalid descriptor fields when read from rxd.
+ */
+ rxdp = &rx_ring[rx_id];
+ status = rxdp->status;
+ if (! (status & E1000_RXD_STAT_DD))
+ break;
+ rxd = *rxdp;
+
+ /*
+ * Descriptor done.
+ *
+ * Allocate a new mbuf to replenish the RX ring descriptor.
+ * If the allocation fails:
+ * - arrange for that RX descriptor to be the first one
+ * being parsed the next time the receive function is
+ * invoked [on the same queue].
+ *
+ * - Stop parsing the RX ring and return immediately.
+ *
+ * This policy does not drop the packet received in the RX
+ * descriptor for which the allocation of a new mbuf failed.
+ * Thus, it allows that packet to be later retrieved if
+ * mbuf have been freed in the mean time.
+ * As a side effect, holding RX descriptors instead of
+ * systematically giving them back to the NIC may lead to
+ * RX ring exhaustion situations.
+ * However, the NIC can gracefully prevent such situations
+ * to happen by sending specific "back-pressure" flow control
+ * frames to its peer(s).
+ */
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
+ "status=0x%x data_len=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) status,
+ (unsigned) rte_le_to_cpu_16(rxd.length));
+
+ nmb = rte_rxmbuf_alloc(rxq->mb_pool);
+ if (nmb == NULL) {
+ PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
+ "queue_id=%u", (unsigned) rxq->port_id,
+ (unsigned) rxq->queue_id);
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
+ break;
+ }
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf while processing current one. */
+ rte_em_prefetch(sw_ring[rx_id].mbuf);
+
+ /*
+ * When next RX descriptor is on a cache-line boundary,
+ * prefetch the next 4 RX descriptors and the next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_em_prefetch(&rx_ring[rx_id]);
+ rte_em_prefetch(&sw_ring[rx_id]);
+ }
+
+ /*
+ * Update RX descriptor with the physical address of the new
+ * data buffer of the new allocated mbuf.
+ */
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma = rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+ rxdp->buffer_addr = dma;
+ rxdp->status = 0;
+
+ /*
+ * Set data length & data buffer address of mbuf.
+ */
+ data_len = rte_le_to_cpu_16(rxd.length);
+ rxm->data_len = data_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+ /*
+ * If this is the first buffer of the received packet,
+ * set the pointer to the first mbuf of the packet and
+ * initialize its context.
+ * Otherwise, update the total length and the number of segments
+ * of the current scattered packet, and update the pointer to
+ * the last mbuf of the current packet.
+ */
+ if (first_seg == NULL) {
+ first_seg = rxm;
+ first_seg->pkt_len = data_len;
+ first_seg->nb_segs = 1;
+ } else {
+ first_seg->pkt_len += data_len;
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /*
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (! (status & E1000_RXD_STAT_EOP)) {
+ last_seg = rxm;
+ goto next_desc;
+ }
+
+ /*
+ * This is the last buffer of the received packet.
+ * If the CRC is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer.
+ * If part of the CRC is also contained in the previous
+ * mbuf, subtract the length of that CRC part from the
+ * data length of the previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (data_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len = (uint16_t)
+ (last_seg->data_len -
+ (ETHER_CRC_LEN - data_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len =
+ (uint16_t) (data_len - ETHER_CRC_LEN);
+ }
+
+ /*
+ * Initialize the first mbuf of the returned packet:
+ * - RX port identifier,
+ * - hardware offload data, if any:
+ * - IP checksum flag,
+ * - error flags.
+ */
+ first_seg->port = rxq->port_id;
+
+ first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
+ first_seg->ol_flags = first_seg->ol_flags |
+ rx_desc_error_to_pkt_flags(rxd.errors);
+
+ /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
+ rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_packet_prefetch((char *)first_seg->buf_addr +
+ first_seg->data_off);
+
+ /*
+ * Store the mbuf address into the next entry of the array
+ * of returned packets.
+ */
+ rx_pkts[nb_rx++] = first_seg;
+
+ /*
+ * Setup receipt context for a new packet.
+ */
+ first_seg = NULL;
+ }
+
+ /*
+ * Record index of the next RX descriptor to probe.
+ */
+ rxq->rx_tail = rx_id;
+
+ /*
+ * Save receive context.
+ */
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /*
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register.
+ * Update the RDT with the value of the last processed RX descriptor
+ * minus 1, to guarantee that the RDT register is never equal to the
+ * RDH register, which creates a "full" ring situtation from the
+ * hardware point of view...
+ */
+ nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
+ "nb_hold=%u nb_rx=%u",
+ (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
+ (unsigned) rx_id, (unsigned) nb_hold,
+ (unsigned) nb_rx);
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+ return nb_rx;
+}
+
+#define EM_MAX_BUF_SIZE 16384
+#define EM_RCTL_FLXBUF_STEP 1024
+
+static void
+em_tx_queue_release_mbufs(struct em_tx_queue *txq)
+{
+ unsigned i;
+
+ if (txq->sw_ring != NULL) {
+ for (i = 0; i != txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+em_tx_queue_release(struct em_tx_queue *txq)
+{
+ if (txq != NULL) {
+ em_tx_queue_release_mbufs(txq);
+ rte_free(txq->sw_ring);
+ rte_free(txq);
+ }
+}
+
+void
+eth_em_tx_queue_release(void *txq)
+{
+ em_tx_queue_release(txq);
+}
+
+/* (Re)set dynamic em_tx_queue fields to defaults */
+static void
+em_reset_tx_queue(struct em_tx_queue *txq)
+{
+ uint16_t i, nb_desc, prev;
+ static const struct e1000_data_desc txd_init = {
+ .upper.fields = {.status = E1000_TXD_STAT_DD},
+ };
+
+ nb_desc = txq->nb_tx_desc;
+
+ /* Initialize ring entries */
+
+ prev = (uint16_t) (nb_desc - 1);
+
+ for (i = 0; i < nb_desc; i++) {
+ txq->tx_ring[i] = txd_init;
+ txq->sw_ring[i].mbuf = NULL;
+ txq->sw_ring[i].last_id = i;
+ txq->sw_ring[prev].next_id = i;
+ prev = i;
+ }
+
+ /*
+ * Always allow 1 descriptor to be un-allocated to avoid
+ * a H/W race condition
+ */
+ txq->nb_tx_free = (uint16_t)(nb_desc - 1);
+ txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
+ txq->nb_tx_used = 0;
+ txq->tx_tail = 0;
+
+ memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
+}
+
+int
+eth_em_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ const struct rte_memzone *tz;
+ struct em_tx_queue *txq;
+ struct e1000_hw *hw;
+ uint32_t tsize;
+ uint16_t tx_rs_thresh, tx_free_thresh;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of transmit descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of E1000_ALIGN.
+ */
+ if (nb_desc % EM_TXD_ALIGN != 0 ||
+ (nb_desc > E1000_MAX_RING_DESC) ||
+ (nb_desc < E1000_MIN_RING_DESC)) {
+ return -(EINVAL);
+ }
+
+ tx_free_thresh = tx_conf->tx_free_thresh;
+ if (tx_free_thresh == 0)
+ tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
+ DEFAULT_TX_FREE_THRESH);
+
+ tx_rs_thresh = tx_conf->tx_rs_thresh;
+ if (tx_rs_thresh == 0)
+ tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
+ DEFAULT_TX_RS_THRESH);
+
+ if (tx_free_thresh >= (nb_desc - 3)) {
+ PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
+ "number of TX descriptors minus 3. "
+ "(tx_free_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (int)dev->data->port_id, (int)queue_idx);
+ return -(EINVAL);
+ }
+ if (tx_rs_thresh > tx_free_thresh) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
+ "tx_free_thresh. (tx_free_thresh=%u "
+ "tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -(EINVAL);
+ }
+
+ /*
+ * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
+ * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
+ * by the NIC and all descriptors are written back after the NIC
+ * accumulates WTHRESH descriptors.
+ */
+ if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
+ PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+ "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
+ "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id, (int)queue_idx);
+ return -(EINVAL);
+ }
+
+ /* Free memory prior to re-allocation if needed... */
+ if (dev->data->tx_queues[queue_idx] != NULL) {
+ em_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /*
+ * Allocate TX ring hardware descriptors. A memzone large enough to
+ * handle the maximum ring size is allocated in order to allow for
+ * resizing in later calls to the queue setup function.
+ */
+ tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC;
+ tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
+ RTE_CACHE_LINE_SIZE, socket_id);
+ if (tz == NULL)
+ return -ENOMEM;
+
+ /* Allocate the tx queue data structure. */
+ if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
+ RTE_CACHE_LINE_SIZE)) == NULL)
+ return -ENOMEM;
+
+ /* Allocate software ring */
+ if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
+ sizeof(txq->sw_ring[0]) * nb_desc,
+ RTE_CACHE_LINE_SIZE)) == NULL) {
+ em_tx_queue_release(txq);
+ return -ENOMEM;
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->tx_free_thresh = tx_free_thresh;
+ txq->tx_rs_thresh = tx_rs_thresh;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+ txq->port_id = dev->data->port_id;
+
+ txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
+ txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+ txq->tx_ring = (struct e1000_data_desc *) tz->addr;
+
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
+
+ em_reset_tx_queue(txq);
+
+ dev->data->tx_queues[queue_idx] = txq;
+ return 0;
+}
+
+static void
+em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
+{
+ unsigned i;
+
+ if (rxq->sw_ring != NULL) {
+ for (i = 0; i != rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf != NULL) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+ }
+}
+
+static void
+em_rx_queue_release(struct em_rx_queue *rxq)
+{
+ if (rxq != NULL) {
+ em_rx_queue_release_mbufs(rxq);
+ rte_free(rxq->sw_ring);
+ rte_free(rxq);
+ }
+}
+
+void
+eth_em_rx_queue_release(void *rxq)
+{
+ em_rx_queue_release(rxq);
+}
+
+/* Reset dynamic em_rx_queue fields back to defaults */
+static void
+em_reset_rx_queue(struct em_rx_queue *rxq)
+{
+ rxq->rx_tail = 0;
+ rxq->nb_rx_hold = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+}
+
+int
+eth_em_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ const struct rte_memzone *rz;
+ struct em_rx_queue *rxq;
+ struct e1000_hw *hw;
+ uint32_t rsize;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Validate number of receive descriptors.
+ * It must not exceed hardware maximum, and must be multiple
+ * of E1000_ALIGN.
+ */
+ if (nb_desc % EM_RXD_ALIGN != 0 ||
+ (nb_desc > E1000_MAX_RING_DESC) ||
+ (nb_desc < E1000_MIN_RING_DESC)) {
+ return -EINVAL;
+ }
+
+ /*
+ * EM devices don't support drop_en functionality
+ */
+ if (rx_conf->rx_drop_en) {
+ PMD_INIT_LOG(ERR, "drop_en functionality not supported by "
+ "device");
+ return -EINVAL;
+ }
+
+ /* Free memory prior to re-allocation if needed. */
+ if (dev->data->rx_queues[queue_idx] != NULL) {
+ em_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate RX ring for max possible mumber of hardware descriptors. */
+ rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC;
+ rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
+ RTE_CACHE_LINE_SIZE, socket_id);
+ if (rz == NULL)
+ return -ENOMEM;
+
+ /* Allocate the RX queue data structure. */
+ if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
+ RTE_CACHE_LINE_SIZE)) == NULL)
+ return -ENOMEM;
+
+ /* Allocate software ring. */
+ if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
+ sizeof (rxq->sw_ring[0]) * nb_desc,
+ RTE_CACHE_LINE_SIZE)) == NULL) {
+ em_rx_queue_release(rxq);
+ return -ENOMEM;
+ }
+
+ rxq->mb_pool = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->pthresh = rx_conf->rx_thresh.pthresh;
+ rxq->hthresh = rx_conf->rx_thresh.hthresh;
+ rxq->wthresh = rx_conf->rx_thresh.wthresh;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+ 0 : ETHER_CRC_LEN);
+
+ rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
+ rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
+ rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+ rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
+
+ PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
+ rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
+
+ dev->data->rx_queues[queue_idx] = rxq;
+ em_reset_rx_queue(rxq);
+
+ return 0;
+}
+
+uint32_t
+eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define EM_RXQ_SCAN_INTERVAL 4
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq;
+ uint32_t desc = 0;
+
+ if (rx_queue_id >= dev->data->nb_rx_queues) {
+ PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id);
+ return 0;
+ }
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+
+ while ((desc < rxq->nb_rx_desc) &&
+ (rxdp->status & E1000_RXD_STAT_DD)) {
+ desc += EM_RXQ_SCAN_INTERVAL;
+ rxdp += EM_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return desc;
+}
+
+int
+eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+ volatile struct e1000_rx_desc *rxdp;
+ struct em_rx_queue *rxq = rx_queue;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return 0;
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ rxdp = &rxq->rx_ring[desc];
+ return !!(rxdp->status & E1000_RXD_STAT_DD);
+}
+
+void
+em_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+ struct em_tx_queue *txq;
+ struct em_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (txq != NULL) {
+ em_tx_queue_release_mbufs(txq);
+ em_reset_tx_queue(txq);
+ }
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (rxq != NULL) {
+ em_rx_queue_release_mbufs(rxq);
+ em_reset_rx_queue(rxq);
+ }
+ }
+}
+
+void
+em_dev_free_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ eth_em_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ dev->data->nb_rx_queues = 0;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ eth_em_tx_queue_release(dev->data->tx_queues[i]);
+ dev->data->tx_queues[i] = NULL;
+ }
+ dev->data->nb_tx_queues = 0;
+}
+
+/*
+ * Takes as input/output parameter RX buffer size.
+ * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
+ */
+static uint32_t
+em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
+{
+ /*
+ * For BSIZE & BSEX all configurable sizes are:
+ * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
+ * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
+ * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
+ * 2048: rctl |= E1000_RCTL_SZ_2048;
+ * 1024: rctl |= E1000_RCTL_SZ_1024;
+ * 512: rctl |= E1000_RCTL_SZ_512;
+ * 256: rctl |= E1000_RCTL_SZ_256;
+ */
+ static const struct {
+ uint32_t bufsz;
+ uint32_t rctl;
+ } bufsz_to_rctl[] = {
+ {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
+ {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
+ {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
+ {2048, E1000_RCTL_SZ_2048},
+ {1024, E1000_RCTL_SZ_1024},
+ {512, E1000_RCTL_SZ_512},
+ {256, E1000_RCTL_SZ_256},
+ };
+
+ int i;
+ uint32_t rctl_bsize;
+
+ rctl_bsize = *bufsz;
+
+ /*
+ * Starting from 82571 it is possible to specify RX buffer size
+ * by RCTL.FLXBUF. When this field is different from zero, the
+ * RX buffer size = RCTL.FLXBUF * 1K
+ * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
+ * It is working ok on real HW, but by some reason doesn't work
+ * on VMware emulated 82574L.
+ * So for now, always use BSIZE/BSEX to setup RX buffer size.
+ * If you don't plan to use it on VMware emulated 82574L and
+ * would like to specify RX buffer size in 1K granularity,
+ * uncomment the following lines:
+ * ***************************************************************
+ * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
+ * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
+ * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
+ * *bufsz = rctl_bsize;
+ * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
+ * E1000_RCTL_FLXBUF_MASK);
+ * }
+ * ***************************************************************
+ */
+
+ for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
+ i++) {
+ if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
+ *bufsz = bufsz_to_rctl[i].bufsz;
+ return bufsz_to_rctl[i].rctl;
+ }
+ }
+
+ /* Should never happen. */
+ return -EINVAL;
+}
+
+static int
+em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
+{
+ struct em_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ unsigned i;
+ static const struct e1000_rx_desc rxd_init = {
+ .buffer_addr = 0,
+ };
+
+ /* Initialize software ring entries */
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile struct e1000_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
+
+ if (mbuf == NULL) {
+ PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
+ "queue_id=%hu", rxq->queue_id);
+ return -ENOMEM;
+ }
+
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
+
+ /* Clear HW ring memory */
+ rxq->rx_ring[i] = rxd_init;
+
+ rxd = &rxq->rx_ring[i];
+ rxd->buffer_addr = dma_addr;
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable receive unit.
+ *
+ **********************************************************************/
+int
+eth_em_rx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct em_rx_queue *rxq;
+ uint32_t rctl;
+ uint32_t rfctl;
+ uint32_t rxcsum;
+ uint32_t rctl_bsize;
+ uint16_t i;
+ int ret;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /*
+ * Make sure receives are disabled while setting
+ * up the descriptor ring.
+ */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
+
+ rfctl = E1000_READ_REG(hw, E1000_RFCTL);
+
+ /* Disable extended descriptor type. */
+ rfctl &= ~E1000_RFCTL_EXTEN;
+ /* Disable accelerated acknowledge */
+ if (hw->mac.type == e1000_82574)
+ rfctl |= E1000_RFCTL_ACK_DIS;
+
+ E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
+
+ /*
+ * XXX TEMPORARY WORKAROUND: on some systems with 82573
+ * long latencies are observed, like Lenovo X60. This
+ * change eliminates the problem, but since having positive
+ * values in RDTR is a known source of problems on other
+ * platforms another solution is being sought.
+ */
+ if (hw->mac.type == e1000_82573)
+ E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
+
+ dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
+
+ /* Determine RX bufsize. */
+ rctl_bsize = EM_MAX_BUF_SIZE;
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint32_t buf_size;
+
+ rxq = dev->data->rx_queues[i];
+ buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
+ RTE_PKTMBUF_HEADROOM;
+ rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
+ }
+
+ rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
+
+ /* Configure and enable each RX queue. */
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ uint64_t bus_addr;
+ uint32_t rxdctl;
+
+ rxq = dev->data->rx_queues[i];
+
+ /* Allocate buffers for descriptor rings and setup queue */
+ ret = em_alloc_rx_queue_mbufs(rxq);
+ if (ret)
+ return ret;
+
+ /*
+ * Reset crc_len in case it was changed after queue setup by a
+ * call to configure
+ */
+ rxq->crc_len =
+ (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
+ 0 : ETHER_CRC_LEN);
+
+ bus_addr = rxq->rx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_RDLEN(i),
+ rxq->nb_rx_desc *
+ sizeof(*rxq->rx_ring));
+ E1000_WRITE_REG(hw, E1000_RDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
+
+ E1000_WRITE_REG(hw, E1000_RDH(i), 0);
+ E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
+
+ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+ rxdctl &= 0xFE000000;
+ rxdctl |= rxq->pthresh & 0x3F;
+ rxdctl |= (rxq->hthresh & 0x3F) << 8;
+ rxdctl |= (rxq->wthresh & 0x3F) << 16;
+ rxdctl |= E1000_RXDCTL_GRAN;
+ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
+
+ /*
+ * Due to EM devices not having any sort of hardware
+ * limit for packet length, jumbo frame of any size
+ * can be accepted, thus we have to enable scattered
+ * rx if jumbo frames are enabled (or if buffer size
+ * is too small to accommodate non-jumbo packets)
+ * to avoid splitting packets that don't fit into
+ * one buffer.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame ||
+ rctl_bsize < ETHER_MAX_LEN) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst =
+ (eth_rx_burst_t)eth_em_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+ }
+
+ if (dev->data->dev_conf.rxmode.enable_scatter) {
+ if (!dev->data->scattered_rx)
+ PMD_INIT_LOG(DEBUG, "forcing scatter mode");
+ dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
+ dev->data->scattered_rx = 1;
+ }
+
+ /*
+ * Setup the Checksum Register.
+ * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+
+ if (dev->data->dev_conf.rxmode.hw_ip_checksum)
+ rxcsum |= E1000_RXCSUM_IPOFL;
+ else
+ rxcsum &= ~E1000_RXCSUM_IPOFL;
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+
+ /* No MRQ or RSS support for now */
+
+ /* Set early receive threshold on appropriate hw */
+ if ((hw->mac.type == e1000_ich9lan ||
+ hw->mac.type == e1000_pch2lan ||
+ hw->mac.type == e1000_ich10lan) &&
+ dev->data->dev_conf.rxmode.jumbo_frame == 1) {
+ u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
+ E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
+ E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
+ }
+
+ if (hw->mac.type == e1000_pch2lan) {
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
+ else
+ e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
+ }
+
+ /* Setup the Receive Control Register. */
+ if (dev->data->dev_conf.rxmode.hw_strip_crc)
+ rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
+ else
+ rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
+
+ rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
+ rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
+ E1000_RCTL_RDMTS_HALF |
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
+
+ /* Make sure VLAN Filters are off. */
+ rctl &= ~E1000_RCTL_VFE;
+ /* Don't store bad packets. */
+ rctl &= ~E1000_RCTL_SBP;
+ /* Legacy descriptor type. */
+ rctl &= ~E1000_RCTL_DTYP_MASK;
+
+ /*
+ * Configure support of jumbo frames, if any.
+ */
+ if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
+ rctl |= E1000_RCTL_LPE;
+ else
+ rctl &= ~E1000_RCTL_LPE;
+
+ /* Enable Receives. */
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ return 0;
+}
+
+/*********************************************************************
+ *
+ * Enable transmit unit.
+ *
+ **********************************************************************/
+void
+eth_em_tx_init(struct rte_eth_dev *dev)
+{
+ struct e1000_hw *hw;
+ struct em_tx_queue *txq;
+ uint32_t tctl;
+ uint32_t txdctl;
+ uint16_t i;
+
+ hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ /* Setup the Base and Length of the Tx Descriptor Rings. */
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ uint64_t bus_addr;
+
+ txq = dev->data->tx_queues[i];
+ bus_addr = txq->tx_ring_phys_addr;
+ E1000_WRITE_REG(hw, E1000_TDLEN(i),
+ txq->nb_tx_desc *
+ sizeof(*txq->tx_ring));
+ E1000_WRITE_REG(hw, E1000_TDBAH(i),
+ (uint32_t)(bus_addr >> 32));
+ E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
+
+ /* Setup the HW Tx Head and Tail descriptor pointers. */
+ E1000_WRITE_REG(hw, E1000_TDT(i), 0);
+ E1000_WRITE_REG(hw, E1000_TDH(i), 0);
+
+ /* Setup Transmit threshold registers. */
+ txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
+ /*
+ * bit 22 is reserved, on some models should always be 0,
+ * on others - always 1.
+ */
+ txdctl &= E1000_TXDCTL_COUNT_DESC;
+ txdctl |= txq->pthresh & 0x3F;
+ txdctl |= (txq->hthresh & 0x3F) << 8;
+ txdctl |= (txq->wthresh & 0x3F) << 16;
+ txdctl |= E1000_TXDCTL_GRAN;
+ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
+ }
+
+ /* Program the Transmit Control Register. */
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+ tctl &= ~E1000_TCTL_CT;
+ tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
+
+ /* This write will effectively turn on the transmit unit. */
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+}
+
+void
+em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_rxq_info *qinfo)
+{
+ struct em_rx_queue *rxq;
+
+ rxq = dev->data->rx_queues[queue_id];
+
+ qinfo->mp = rxq->mb_pool;
+ qinfo->scattered_rx = dev->data->scattered_rx;
+ qinfo->nb_desc = rxq->nb_rx_desc;
+ qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
+}
+
+void
+em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_txq_info *qinfo)
+{
+ struct em_tx_queue *txq;
+
+ txq = dev->data->tx_queues[queue_id];
+
+ qinfo->nb_desc = txq->nb_tx_desc;
+
+ qinfo->conf.tx_thresh.pthresh = txq->pthresh;
+ qinfo->conf.tx_thresh.hthresh = txq->hthresh;
+ qinfo->conf.tx_thresh.wthresh = txq->wthresh;
+ qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
+ qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
+}