summaryrefslogtreecommitdiffstats
path: root/drivers/net/i40e/i40e_rxtx.c
diff options
context:
space:
mode:
authorC.J. Collier <cjcollier@linuxfoundation.org>2016-06-14 07:54:47 -0700
committerC.J. Collier <cjcollier@linuxfoundation.org>2016-06-14 07:55:43 -0700
commit5129044dce1f85ce4950f31bcf90f3886466f06a (patch)
tree1c6269614c0c15ffef8451c58ae8f8b30a1bc804 /drivers/net/i40e/i40e_rxtx.c
parente04be89c2409570e0055b2cda60bd11395bb93b0 (diff)
Imported upstream release 16.04
* gbp import-orig ../dpdk-16.04.tar.xz Change-Id: Iac2196db782ba322f6974d8a752acc34ce5024c3 Signed-off-by: C.J. Collier <cjcollier@linuxfoundation.org>
Diffstat (limited to 'drivers/net/i40e/i40e_rxtx.c')
-rw-r--r--drivers/net/i40e/i40e_rxtx.c3319
1 files changed, 3319 insertions, 0 deletions
diff --git a/drivers/net/i40e/i40e_rxtx.c b/drivers/net/i40e/i40e_rxtx.c
new file mode 100644
index 00000000..4d35d83f
--- /dev/null
+++ b/drivers/net/i40e/i40e_rxtx.c
@@ -0,0 +1,3319 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <unistd.h>
+#include <inttypes.h>
+#include <sys/queue.h>
+
+#include <rte_string_fns.h>
+#include <rte_memzone.h>
+#include <rte_mbuf.h>
+#include <rte_malloc.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_udp.h>
+
+#include "i40e_logs.h"
+#include "base/i40e_prototype.h"
+#include "base/i40e_type.h"
+#include "i40e_ethdev.h"
+#include "i40e_rxtx.h"
+
+#define DEFAULT_TX_RS_THRESH 32
+#define DEFAULT_TX_FREE_THRESH 32
+#define I40E_MAX_PKT_TYPE 256
+
+#define I40E_TX_MAX_BURST 32
+
+#define I40E_DMA_MEM_ALIGN 4096
+
+/* Base address of the HW descriptor ring should be 128B aligned. */
+#define I40E_RING_BASE_ALIGN 128
+
+#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
+ ETH_TXQ_FLAGS_NOOFFLOADS)
+
+#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
+
+#define I40E_TX_CKSUM_OFFLOAD_MASK ( \
+ PKT_TX_IP_CKSUM | \
+ PKT_TX_L4_MASK | \
+ PKT_TX_TCP_SEG | \
+ PKT_TX_OUTER_IP_CKSUM)
+
+static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+
+static inline void
+i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
+{
+ if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+ (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
+ mb->ol_flags |= PKT_RX_VLAN_PKT;
+ mb->vlan_tci =
+ rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
+ PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
+ rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
+ } else {
+ mb->vlan_tci = 0;
+ }
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
+ (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
+ mb->ol_flags |= PKT_RX_QINQ_PKT;
+ mb->vlan_tci_outer = mb->vlan_tci;
+ mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
+ PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
+ rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
+ rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
+ } else {
+ mb->vlan_tci_outer = 0;
+ }
+#endif
+ PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
+ mb->vlan_tci, mb->vlan_tci_outer);
+}
+
+/* Translate the rx descriptor status to pkt flags */
+static inline uint64_t
+i40e_rxd_status_to_pkt_flags(uint64_t qword)
+{
+ uint64_t flags;
+
+ /* Check if RSS_HASH */
+ flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
+ I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
+ I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
+
+ /* Check if FDIR Match */
+ flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
+ PKT_RX_FDIR : 0);
+
+ return flags;
+}
+
+static inline uint64_t
+i40e_rxd_error_to_pkt_flags(uint64_t qword)
+{
+ uint64_t flags = 0;
+ uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
+
+#define I40E_RX_ERR_BITS 0x3f
+ if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
+ return flags;
+ /* If RXE bit set, all other status bits are meaningless */
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
+ flags |= PKT_RX_MAC_ERR;
+ return flags;
+ }
+
+ /* If RECIPE bit set, all other status indications should be ignored */
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
+ flags |= PKT_RX_RECIP_ERR;
+ return flags;
+ }
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
+ flags |= PKT_RX_HBUF_OVERFLOW;
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
+ flags |= PKT_RX_IP_CKSUM_BAD;
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
+ flags |= PKT_RX_L4_CKSUM_BAD;
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
+ flags |= PKT_RX_EIP_CKSUM_BAD;
+ if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
+ flags |= PKT_RX_OVERSIZE;
+
+ return flags;
+}
+
+/* Function to check and set the ieee1588 timesync index and get the
+ * appropriate flags.
+ */
+#ifdef RTE_LIBRTE_IEEE1588
+static inline uint64_t
+i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
+{
+ uint64_t pkt_flags = 0;
+ uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
+ | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
+ >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
+
+ if ((mb->packet_type & RTE_PTYPE_L2_MASK)
+ == RTE_PTYPE_L2_ETHER_TIMESYNC)
+ pkt_flags = PKT_RX_IEEE1588_PTP;
+ if (tsyn & 0x04) {
+ pkt_flags |= PKT_RX_IEEE1588_TMST;
+ mb->timesync = tsyn & 0x03;
+ }
+
+ return pkt_flags;
+}
+#endif
+
+/* For each value it means, datasheet of hardware can tell more details
+ *
+ * @note: fix i40e_dev_supported_ptypes_get() if any change here.
+ */
+static inline uint32_t
+i40e_rxd_pkt_type_mapping(uint8_t ptype)
+{
+ static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
+ /* L2 types */
+ /* [0] reserved */
+ [1] = RTE_PTYPE_L2_ETHER,
+ [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
+ /* [3] - [5] reserved */
+ [6] = RTE_PTYPE_L2_ETHER_LLDP,
+ /* [7] - [10] reserved */
+ [11] = RTE_PTYPE_L2_ETHER_ARP,
+ /* [12] - [21] reserved */
+
+ /* Non tunneled IPv4 */
+ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [25] reserved */
+ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+
+ /* IPv4 --> IPv4 */
+ [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [32] reserved */
+ [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> IPv6 */
+ [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [39] reserved */
+ [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN */
+ [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
+ [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [47] reserved */
+ [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
+ [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [54] reserved */
+ [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
+ [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+ [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [62] reserved */
+ [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+ [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [69] reserved */
+ [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+ [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+ [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [77] reserved */
+ [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+ [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [84] reserved */
+ [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* Non tunneled IPv6 */
+ [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [91] reserved */
+ [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+
+ /* IPv6 --> IPv4 */
+ [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [98] reserved */
+ [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> IPv6 */
+ [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [105] reserved */
+ [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN */
+ [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
+ [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [113] reserved */
+ [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
+ [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [120] reserved */
+ [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
+ [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+ [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [128] reserved */
+ [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+ [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [135] reserved */
+ [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+ [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+ [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [143] reserved */
+ [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+ [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [150] reserved */
+ [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* All others reserved */
+ };
+
+ return type_table[ptype];
+}
+
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
+#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
+#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
+
+static inline uint64_t
+i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
+{
+ uint64_t flags = 0;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ uint16_t flexbh, flexbl;
+
+ flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
+ I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
+ I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
+ flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
+ I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
+ I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
+
+
+ if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
+ mb->hash.fdir.hi =
+ rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
+ flags |= PKT_RX_FDIR_ID;
+ } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
+ mb->hash.fdir.hi =
+ rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
+ flags |= PKT_RX_FDIR_FLX;
+ }
+ if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
+ mb->hash.fdir.lo =
+ rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
+ flags |= PKT_RX_FDIR_FLX;
+ }
+#else
+ mb->hash.fdir.hi =
+ rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
+ flags |= PKT_RX_FDIR_ID;
+#endif
+ return flags;
+}
+static inline void
+i40e_txd_enable_checksum(uint64_t ol_flags,
+ uint32_t *td_cmd,
+ uint32_t *td_offset,
+ union i40e_tx_offload tx_offload,
+ uint32_t *cd_tunneling)
+{
+ /* UDP tunneling packet TX checksum offload */
+ if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
+
+ *td_offset |= (tx_offload.outer_l2_len >> 1)
+ << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
+
+ if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
+ else if (ol_flags & PKT_TX_OUTER_IPV4)
+ *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
+ else if (ol_flags & PKT_TX_OUTER_IPV6)
+ *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
+
+ /* Now set the ctx descriptor fields */
+ *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
+ I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
+ (tx_offload.l2_len >> 1) <<
+ I40E_TXD_CTX_QW0_NATLEN_SHIFT;
+
+ } else
+ *td_offset |= (tx_offload.l2_len >> 1)
+ << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
+
+ /* Enable L3 checksum offloads */
+ if (ol_flags & PKT_TX_IP_CKSUM) {
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
+ *td_offset |= (tx_offload.l3_len >> 2)
+ << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+ } else if (ol_flags & PKT_TX_IPV4) {
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
+ *td_offset |= (tx_offload.l3_len >> 2)
+ << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+ } else if (ol_flags & PKT_TX_IPV6) {
+ *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
+ *td_offset |= (tx_offload.l3_len >> 2)
+ << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+ }
+
+ if (ol_flags & PKT_TX_TCP_SEG) {
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
+ *td_offset |= (tx_offload.l4_len >> 2)
+ << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+ return;
+ }
+
+ /* Enable L4 checksum offloads */
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_TCP_CKSUM:
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
+ *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
+ *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+ break;
+ case PKT_TX_UDP_CKSUM:
+ *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
+ *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
+ I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+ break;
+ default:
+ break;
+ }
+}
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+ struct rte_mbuf *m;
+
+ m = __rte_mbuf_raw_alloc(mp);
+ __rte_mbuf_sanity_check_raw(m, 0);
+
+ return m;
+}
+
+/* Construct the tx flags */
+static inline uint64_t
+i40e_build_ctob(uint32_t td_cmd,
+ uint32_t td_offset,
+ unsigned int size,
+ uint32_t td_tag)
+{
+ return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
+ ((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
+ ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
+ ((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
+ ((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
+}
+
+static inline int
+i40e_xmit_cleanup(struct i40e_tx_queue *txq)
+{
+ struct i40e_tx_entry *sw_ring = txq->sw_ring;
+ volatile struct i40e_tx_desc *txd = txq->tx_ring;
+ uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+ uint16_t nb_tx_desc = txq->nb_tx_desc;
+ uint16_t desc_to_clean_to;
+ uint16_t nb_tx_to_clean;
+
+ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+ if (desc_to_clean_to >= nb_tx_desc)
+ desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+ if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
+ rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
+ rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
+ PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
+ "(port=%d queue=%d)", desc_to_clean_to,
+ txq->port_id, txq->queue_id);
+ return -1;
+ }
+
+ if (last_desc_cleaned > desc_to_clean_to)
+ nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+ desc_to_clean_to);
+ else
+ nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+ last_desc_cleaned);
+
+ txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
+
+ txq->last_desc_cleaned = desc_to_clean_to;
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+ return 0;
+}
+
+static inline int
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
+#else
+check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
+#endif
+{
+ int ret = 0;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->rx_free_thresh=%d, "
+ "RTE_PMD_I40E_RX_MAX_BURST=%d",
+ rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
+ ret = -EINVAL;
+ } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->rx_free_thresh=%d, "
+ "rxq->nb_rx_desc=%d",
+ rxq->rx_free_thresh, rxq->nb_rx_desc);
+ ret = -EINVAL;
+ } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->nb_rx_desc=%d, "
+ "rxq->rx_free_thresh=%d",
+ rxq->nb_rx_desc, rxq->rx_free_thresh);
+ ret = -EINVAL;
+ } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
+ RTE_PMD_I40E_RX_MAX_BURST))) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->nb_rx_desc=%d, "
+ "I40E_MAX_RING_DESC=%d, "
+ "RTE_PMD_I40E_RX_MAX_BURST=%d",
+ rxq->nb_rx_desc, I40E_MAX_RING_DESC,
+ RTE_PMD_I40E_RX_MAX_BURST);
+ ret = -EINVAL;
+ }
+#else
+ ret = -EINVAL;
+#endif
+
+ return ret;
+}
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+#define I40E_LOOK_AHEAD 8
+#if (I40E_LOOK_AHEAD != 8)
+#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
+#endif
+static inline int
+i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
+{
+ volatile union i40e_rx_desc *rxdp;
+ struct i40e_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t pkt_len;
+ uint64_t qword1;
+ uint32_t rx_status;
+ int32_t s[I40E_LOOK_AHEAD], nb_dd;
+ int32_t i, j, nb_rx = 0;
+ uint64_t pkt_flags;
+
+ rxdp = &rxq->rx_ring[rxq->rx_tail];
+ rxep = &rxq->sw_ring[rxq->rx_tail];
+
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+ I40E_RXD_QW1_STATUS_SHIFT;
+
+ /* Make sure there is at least 1 packet to receive */
+ if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+ return 0;
+
+ /**
+ * Scan LOOK_AHEAD descriptors at a time to determine which
+ * descriptors reference packets that are ready to be received.
+ */
+ for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
+ rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
+ /* Read desc statuses backwards to avoid race condition */
+ for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
+ qword1 = rte_le_to_cpu_64(\
+ rxdp[j].wb.qword1.status_error_len);
+ s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+ I40E_RXD_QW1_STATUS_SHIFT;
+ }
+
+ /* Compute how many status bits were set */
+ for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
+ nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
+
+ nb_rx += nb_dd;
+
+ /* Translate descriptor info to mbuf parameters */
+ for (j = 0; j < nb_dd; j++) {
+ mb = rxep[j].mbuf;
+ qword1 = rte_le_to_cpu_64(\
+ rxdp[j].wb.qword1.status_error_len);
+ pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+ I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
+ mb->data_len = pkt_len;
+ mb->pkt_len = pkt_len;
+ mb->ol_flags = 0;
+ i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
+ pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+ mb->packet_type =
+ i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+ I40E_RXD_QW1_PTYPE_MASK) >>
+ I40E_RXD_QW1_PTYPE_SHIFT));
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ mb->hash.rss = rte_le_to_cpu_32(\
+ rxdp[j].wb.qword0.hi_dword.rss);
+ if (pkt_flags & PKT_RX_FDIR)
+ pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
+
+#ifdef RTE_LIBRTE_IEEE1588
+ pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
+#endif
+ mb->ol_flags |= pkt_flags;
+
+ }
+
+ for (j = 0; j < I40E_LOOK_AHEAD; j++)
+ rxq->rx_stage[i + j] = rxep[j].mbuf;
+
+ if (nb_dd != I40E_LOOK_AHEAD)
+ break;
+ }
+
+ /* Clear software ring entries */
+ for (i = 0; i < nb_rx; i++)
+ rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
+
+ return nb_rx;
+}
+
+static inline uint16_t
+i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t i;
+ struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
+
+ nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
+
+ for (i = 0; i < nb_pkts; i++)
+ rx_pkts[i] = stage[i];
+
+ rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
+ rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
+
+ return nb_pkts;
+}
+
+static inline int
+i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
+{
+ volatile union i40e_rx_desc *rxdp;
+ struct i40e_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t alloc_idx, i;
+ uint64_t dma_addr;
+ int diag;
+
+ /* Allocate buffers in bulk */
+ alloc_idx = (uint16_t)(rxq->rx_free_trigger -
+ (rxq->rx_free_thresh - 1));
+ rxep = &(rxq->sw_ring[alloc_idx]);
+ diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
+ rxq->rx_free_thresh);
+ if (unlikely(diag != 0)) {
+ PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
+ return -ENOMEM;
+ }
+
+ rxdp = &rxq->rx_ring[alloc_idx];
+ for (i = 0; i < rxq->rx_free_thresh; i++) {
+ if (likely(i < (rxq->rx_free_thresh - 1)))
+ /* Prefetch next mbuf */
+ rte_prefetch0(rxep[i + 1].mbuf);
+
+ mb = rxep[i].mbuf;
+ rte_mbuf_refcnt_set(mb, 1);
+ mb->next = NULL;
+ mb->data_off = RTE_PKTMBUF_HEADROOM;
+ mb->nb_segs = 1;
+ mb->port = rxq->port_id;
+ dma_addr = rte_cpu_to_le_64(\
+ rte_mbuf_data_dma_addr_default(mb));
+ rxdp[i].read.hdr_addr = 0;
+ rxdp[i].read.pkt_addr = dma_addr;
+ }
+
+ /* Update rx tail regsiter */
+ rte_wmb();
+ I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
+
+ rxq->rx_free_trigger =
+ (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
+ if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
+ rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+
+ return 0;
+}
+
+static inline uint16_t
+rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+ struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
+ uint16_t nb_rx = 0;
+
+ if (!nb_pkts)
+ return 0;
+
+ if (rxq->rx_nb_avail)
+ return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
+ rxq->rx_next_avail = 0;
+ rxq->rx_nb_avail = nb_rx;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
+
+ if (rxq->rx_tail > rxq->rx_free_trigger) {
+ if (i40e_rx_alloc_bufs(rxq) != 0) {
+ uint16_t i, j;
+
+ PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
+ "port_id=%u, queue_id=%u",
+ rxq->port_id, rxq->queue_id);
+ rxq->rx_nb_avail = 0;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
+ for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
+ rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
+
+ return 0;
+ }
+ }
+
+ if (rxq->rx_tail >= rxq->nb_rx_desc)
+ rxq->rx_tail = 0;
+
+ if (rxq->rx_nb_avail)
+ return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ return 0;
+}
+
+static uint16_t
+i40e_recv_pkts_bulk_alloc(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_rx = 0, n, count;
+
+ if (unlikely(nb_pkts == 0))
+ return 0;
+
+ if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
+ return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
+ count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
+ nb_rx = (uint16_t)(nb_rx + count);
+ nb_pkts = (uint16_t)(nb_pkts - count);
+ if (count < n)
+ break;
+ }
+
+ return nb_rx;
+}
+#else
+static uint16_t
+i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
+ struct rte_mbuf __rte_unused **rx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+
+uint16_t
+i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+ struct i40e_rx_queue *rxq;
+ volatile union i40e_rx_desc *rx_ring;
+ volatile union i40e_rx_desc *rxdp;
+ union i40e_rx_desc rxd;
+ struct i40e_rx_entry *sw_ring;
+ struct i40e_rx_entry *rxe;
+ struct rte_mbuf *rxm;
+ struct rte_mbuf *nmb;
+ uint16_t nb_rx;
+ uint32_t rx_status;
+ uint64_t qword1;
+ uint16_t rx_packet_len;
+ uint16_t rx_id, nb_hold;
+ uint64_t dma_addr;
+ uint64_t pkt_flags;
+
+ nb_rx = 0;
+ nb_hold = 0;
+ rxq = rx_queue;
+ rx_id = rxq->rx_tail;
+ rx_ring = rxq->rx_ring;
+ sw_ring = rxq->sw_ring;
+
+ while (nb_rx < nb_pkts) {
+ rxdp = &rx_ring[rx_id];
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
+ >> I40E_RXD_QW1_STATUS_SHIFT;
+
+ /* Check the DD bit first */
+ if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+ break;
+
+ nmb = rte_rxmbuf_alloc(rxq->mp);
+ if (unlikely(!nmb))
+ break;
+ rxd = *rxdp;
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (unlikely(rx_id == rxq->nb_rx_desc))
+ rx_id = 0;
+
+ /* Prefetch next mbuf */
+ rte_prefetch0(sw_ring[rx_id].mbuf);
+
+ /**
+ * When next RX descriptor is on a cache line boundary,
+ * prefetch the next 4 RX descriptors and next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_prefetch0(&rx_ring[rx_id]);
+ rte_prefetch0(&sw_ring[rx_id]);
+ }
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+
+ rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+ I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
+
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = rx_packet_len;
+ rxm->data_len = rx_packet_len;
+ rxm->port = rxq->port_id;
+ rxm->ol_flags = 0;
+ i40e_rxd_to_vlan_tci(rxm, &rxd);
+ pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+ rxm->packet_type =
+ i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+ I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ rxm->hash.rss =
+ rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+ if (pkt_flags & PKT_RX_FDIR)
+ pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
+
+#ifdef RTE_LIBRTE_IEEE1588
+ pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
+#endif
+ rxm->ol_flags |= pkt_flags;
+
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+
+ /**
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the receive tail register of queue.
+ * Update that register with the value of the last processed RX
+ * descriptor minus 1.
+ */
+ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ rx_id = (uint16_t) ((rx_id == 0) ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+
+ return nb_rx;
+}
+
+uint16_t
+i40e_recv_scattered_pkts(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct i40e_rx_queue *rxq = rx_queue;
+ volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
+ volatile union i40e_rx_desc *rxdp;
+ union i40e_rx_desc rxd;
+ struct i40e_rx_entry *sw_ring = rxq->sw_ring;
+ struct i40e_rx_entry *rxe;
+ struct rte_mbuf *first_seg = rxq->pkt_first_seg;
+ struct rte_mbuf *last_seg = rxq->pkt_last_seg;
+ struct rte_mbuf *nmb, *rxm;
+ uint16_t rx_id = rxq->rx_tail;
+ uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
+ uint32_t rx_status;
+ uint64_t qword1;
+ uint64_t dma_addr;
+ uint64_t pkt_flags;
+
+ while (nb_rx < nb_pkts) {
+ rxdp = &rx_ring[rx_id];
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+ I40E_RXD_QW1_STATUS_SHIFT;
+
+ /* Check the DD bit */
+ if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+ break;
+
+ nmb = rte_rxmbuf_alloc(rxq->mp);
+ if (unlikely(!nmb))
+ break;
+ rxd = *rxdp;
+ nb_hold++;
+ rxe = &sw_ring[rx_id];
+ rx_id++;
+ if (rx_id == rxq->nb_rx_desc)
+ rx_id = 0;
+
+ /* Prefetch next mbuf */
+ rte_prefetch0(sw_ring[rx_id].mbuf);
+
+ /**
+ * When next RX descriptor is on a cache line boundary,
+ * prefetch the next 4 RX descriptors and next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_prefetch0(&rx_ring[rx_id]);
+ rte_prefetch0(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+
+ /* Set data buffer address and data length of the mbuf */
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+ rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+ I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
+ rxm->data_len = rx_packet_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+ /**
+ * If this is the first buffer of the received packet, set the
+ * pointer to the first mbuf of the packet and initialize its
+ * context. Otherwise, update the total length and the number
+ * of segments of the current scattered packet, and update the
+ * pointer to the last mbuf of the current packet.
+ */
+ if (!first_seg) {
+ first_seg = rxm;
+ first_seg->nb_segs = 1;
+ first_seg->pkt_len = rx_packet_len;
+ } else {
+ first_seg->pkt_len =
+ (uint16_t)(first_seg->pkt_len +
+ rx_packet_len);
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /**
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
+ last_seg = rxm;
+ continue;
+ }
+
+ /**
+ * This is the last buffer of the received packet. If the CRC
+ * is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer. If part
+ * of the CRC is also contained in the previous mbuf, subtract
+ * the length of that CRC part from the data length of the
+ * previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (rx_packet_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len =
+ (uint16_t)(last_seg->data_len -
+ (ETHER_CRC_LEN - rx_packet_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len = (uint16_t)(rx_packet_len -
+ ETHER_CRC_LEN);
+ }
+
+ first_seg->port = rxq->port_id;
+ first_seg->ol_flags = 0;
+ i40e_rxd_to_vlan_tci(first_seg, &rxd);
+ pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+ first_seg->packet_type =
+ i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+ I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ rxm->hash.rss =
+ rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+ if (pkt_flags & PKT_RX_FDIR)
+ pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
+
+#ifdef RTE_LIBRTE_IEEE1588
+ pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
+#endif
+ first_seg->ol_flags |= pkt_flags;
+
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
+ first_seg->data_off));
+ rx_pkts[nb_rx++] = first_seg;
+ first_seg = NULL;
+ }
+
+ /* Record index of the next RX descriptor to probe. */
+ rxq->rx_tail = rx_id;
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /**
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register. Update the RDT with the value of the last processed RX
+ * descriptor minus 1, to guarantee that the RDT register is never
+ * equal to the RDH register, which creates a "full" ring situtation
+ * from the hardware point of view.
+ */
+ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ rx_id = (uint16_t)(rx_id == 0 ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+
+ return nb_rx;
+}
+
+/* Check if the context descriptor is needed for TX offloading */
+static inline uint16_t
+i40e_calc_context_desc(uint64_t flags)
+{
+ static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
+ PKT_TX_TCP_SEG |
+ PKT_TX_QINQ_PKT;
+
+#ifdef RTE_LIBRTE_IEEE1588
+ mask |= PKT_TX_IEEE1588_TMST;
+#endif
+
+ return (flags & mask) ? 1 : 0;
+}
+
+/* set i40e TSO context descriptor */
+static inline uint64_t
+i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
+{
+ uint64_t ctx_desc = 0;
+ uint32_t cd_cmd, hdr_len, cd_tso_len;
+
+ if (!tx_offload.l4_len) {
+ PMD_DRV_LOG(DEBUG, "L4 length set to 0");
+ return ctx_desc;
+ }
+
+ /**
+ * in case of tunneling packet, the outer_l2_len and
+ * outer_l3_len must be 0.
+ */
+ hdr_len = tx_offload.outer_l2_len +
+ tx_offload.outer_l3_len +
+ tx_offload.l2_len +
+ tx_offload.l3_len +
+ tx_offload.l4_len;
+
+ cd_cmd = I40E_TX_CTX_DESC_TSO;
+ cd_tso_len = mbuf->pkt_len - hdr_len;
+ ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
+ ((uint64_t)cd_tso_len <<
+ I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
+ ((uint64_t)mbuf->tso_segsz <<
+ I40E_TXD_CTX_QW1_MSS_SHIFT);
+
+ return ctx_desc;
+}
+
+uint16_t
+i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
+{
+ struct i40e_tx_queue *txq;
+ struct i40e_tx_entry *sw_ring;
+ struct i40e_tx_entry *txe, *txn;
+ volatile struct i40e_tx_desc *txd;
+ volatile struct i40e_tx_desc *txr;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint32_t cd_tunneling_params;
+ uint16_t tx_id;
+ uint16_t nb_tx;
+ uint32_t td_cmd;
+ uint32_t td_offset;
+ uint32_t tx_flags;
+ uint32_t td_tag;
+ uint64_t ol_flags;
+ uint16_t nb_used;
+ uint16_t nb_ctx;
+ uint16_t tx_last;
+ uint16_t slen;
+ uint64_t buf_dma_addr;
+ union i40e_tx_offload tx_offload = {0};
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ txr = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ /* Check if the descriptor ring needs to be cleaned. */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ i40e_xmit_cleanup(txq);
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ td_cmd = 0;
+ td_tag = 0;
+ td_offset = 0;
+ tx_flags = 0;
+
+ tx_pkt = *tx_pkts++;
+ RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+ ol_flags = tx_pkt->ol_flags;
+ tx_offload.l2_len = tx_pkt->l2_len;
+ tx_offload.l3_len = tx_pkt->l3_len;
+ tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
+ tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
+ tx_offload.l4_len = tx_pkt->l4_len;
+ tx_offload.tso_segsz = tx_pkt->tso_segsz;
+
+ /* Calculate the number of context descriptors needed. */
+ nb_ctx = i40e_calc_context_desc(ol_flags);
+
+ /**
+ * The number of descriptors that must be allocated for
+ * a packet equals to the number of the segments of that
+ * packet plus 1 context descriptor if needed.
+ */
+ nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
+ tx_last = (uint16_t)(tx_id + nb_used - 1);
+
+ /* Circular ring */
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
+
+ if (nb_used > txq->nb_tx_free) {
+ if (i40e_xmit_cleanup(txq) != 0) {
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+ if (unlikely(nb_used > txq->tx_rs_thresh)) {
+ while (nb_used > txq->nb_tx_free) {
+ if (i40e_xmit_cleanup(txq) != 0) {
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+ }
+ }
+ }
+
+ /* Descriptor based VLAN insertion */
+ if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
+ tx_flags |= tx_pkt->vlan_tci <<
+ I40E_TX_FLAG_L2TAG1_SHIFT;
+ tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
+ td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
+ td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
+ I40E_TX_FLAG_L2TAG1_SHIFT;
+ }
+
+ /* Always enable CRC offload insertion */
+ td_cmd |= I40E_TX_DESC_CMD_ICRC;
+
+ /* Enable checksum offloading */
+ cd_tunneling_params = 0;
+ if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
+ i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
+ tx_offload, &cd_tunneling_params);
+ }
+
+ if (nb_ctx) {
+ /* Setup TX context descriptor if required */
+ volatile struct i40e_tx_context_desc *ctx_txd =
+ (volatile struct i40e_tx_context_desc *)\
+ &txr[tx_id];
+ uint16_t cd_l2tag2 = 0;
+ uint64_t cd_type_cmd_tso_mss =
+ I40E_TX_DESC_DTYPE_CONTEXT;
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+ if (txe->mbuf != NULL) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ /* TSO enabled means no timestamp */
+ if (ol_flags & PKT_TX_TCP_SEG)
+ cd_type_cmd_tso_mss |=
+ i40e_set_tso_ctx(tx_pkt, tx_offload);
+ else {
+#ifdef RTE_LIBRTE_IEEE1588
+ if (ol_flags & PKT_TX_IEEE1588_TMST)
+ cd_type_cmd_tso_mss |=
+ ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
+ I40E_TXD_CTX_QW1_CMD_SHIFT);
+#endif
+ }
+
+ ctx_txd->tunneling_params =
+ rte_cpu_to_le_32(cd_tunneling_params);
+ if (ol_flags & PKT_TX_QINQ_PKT) {
+ cd_l2tag2 = tx_pkt->vlan_tci_outer;
+ cd_type_cmd_tso_mss |=
+ ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
+ I40E_TXD_CTX_QW1_CMD_SHIFT);
+ }
+ ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
+ ctx_txd->type_cmd_tso_mss =
+ rte_cpu_to_le_64(cd_type_cmd_tso_mss);
+
+ PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
+ "tunneling_params: %#x;\n"
+ "l2tag2: %#hx;\n"
+ "rsvd: %#hx;\n"
+ "type_cmd_tso_mss: %#"PRIx64";\n",
+ tx_pkt, tx_id,
+ ctx_txd->tunneling_params,
+ ctx_txd->l2tag2,
+ ctx_txd->rsvd,
+ ctx_txd->type_cmd_tso_mss);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+
+ m_seg = tx_pkt;
+ do {
+ txd = &txr[tx_id];
+ txn = &sw_ring[txe->next_id];
+
+ if (txe->mbuf)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /* Setup TX Descriptor */
+ slen = m_seg->data_len;
+ buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
+
+ PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
+ "buf_dma_addr: %#"PRIx64";\n"
+ "td_cmd: %#x;\n"
+ "td_offset: %#x;\n"
+ "td_len: %u;\n"
+ "td_tag: %#x;\n",
+ tx_pkt, tx_id, buf_dma_addr,
+ td_cmd, td_offset, slen, td_tag);
+
+ txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+ txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
+ td_offset, slen, td_tag);
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg != NULL);
+
+ /* The last packet data descriptor needs End Of Packet (EOP) */
+ td_cmd |= I40E_TX_DESC_CMD_EOP;
+ txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+ if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+ PMD_TX_FREE_LOG(DEBUG,
+ "Setting RS bit on TXD id="
+ "%4u (port=%d queue=%d)",
+ tx_last, txq->port_id, txq->queue_id);
+
+ td_cmd |= I40E_TX_DESC_CMD_RS;
+
+ /* Update txq RS bit counters */
+ txq->nb_tx_used = 0;
+ }
+
+ txd->cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)td_cmd) <<
+ I40E_TXD_QW1_CMD_SHIFT);
+ }
+
+end_of_tx:
+ rte_wmb();
+
+ PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+ (unsigned) txq->port_id, (unsigned) txq->queue_id,
+ (unsigned) tx_id, (unsigned) nb_tx);
+
+ I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
+ txq->tx_tail = tx_id;
+
+ return nb_tx;
+}
+
+static inline int __attribute__((always_inline))
+i40e_tx_free_bufs(struct i40e_tx_queue *txq)
+{
+ struct i40e_tx_entry *txep;
+ uint16_t i;
+
+ if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
+ rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
+ rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
+ return 0;
+
+ txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
+
+ for (i = 0; i < txq->tx_rs_thresh; i++)
+ rte_prefetch0((txep + i)->mbuf);
+
+ if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_mempool_put(txep->mbuf->pool, txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ } else {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_pktmbuf_free_seg(txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ }
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
+ txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
+ if (txq->tx_next_dd >= txq->nb_tx_desc)
+ txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ return txq->tx_rs_thresh;
+}
+
+/* Populate 4 descriptors with data from 4 mbufs */
+static inline void
+tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+ uint32_t i;
+
+ for (i = 0; i < 4; i++, txdp++, pkts++) {
+ dma_addr = rte_mbuf_data_dma_addr(*pkts);
+ txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+ }
+}
+
+/* Populate 1 descriptor with data from 1 mbuf */
+static inline void
+tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+
+ dma_addr = rte_mbuf_data_dma_addr(*pkts);
+ txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+}
+
+/* Fill hardware descriptor ring with mbuf data */
+static inline void
+i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
+ struct rte_mbuf **pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
+ struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
+ const int N_PER_LOOP = 4;
+ const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
+ int mainpart, leftover;
+ int i, j;
+
+ mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
+ leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
+ for (i = 0; i < mainpart; i += N_PER_LOOP) {
+ for (j = 0; j < N_PER_LOOP; ++j) {
+ (txep + i + j)->mbuf = *(pkts + i + j);
+ }
+ tx4(txdp + i, pkts + i);
+ }
+ if (unlikely(leftover > 0)) {
+ for (i = 0; i < leftover; ++i) {
+ (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
+ tx1(txdp + mainpart + i, pkts + mainpart + i);
+ }
+ }
+}
+
+static inline uint16_t
+tx_xmit_pkts(struct i40e_tx_queue *txq,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct i40e_tx_desc *txr = txq->tx_ring;
+ uint16_t n = 0;
+
+ /**
+ * Begin scanning the H/W ring for done descriptors when the number
+ * of available descriptors drops below tx_free_thresh. For each done
+ * descriptor, free the associated buffer.
+ */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ i40e_tx_free_bufs(txq);
+
+ /* Use available descriptor only */
+ nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+ if (unlikely(!nb_pkts))
+ return 0;
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+ if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
+ n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
+ i40e_tx_fill_hw_ring(txq, tx_pkts, n);
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
+ I40E_TXD_QW1_CMD_SHIFT);
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ txq->tx_tail = 0;
+ }
+
+ /* Fill hardware descriptor ring with mbuf data */
+ i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
+ txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
+
+ /* Determin if RS bit needs to be set */
+ if (txq->tx_tail > txq->tx_next_rs) {
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
+ I40E_TXD_QW1_CMD_SHIFT);
+ txq->tx_next_rs =
+ (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+ if (txq->tx_next_rs >= txq->nb_tx_desc)
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ }
+
+ if (txq->tx_tail >= txq->nb_tx_desc)
+ txq->tx_tail = 0;
+
+ /* Update the tx tail register */
+ rte_wmb();
+ I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+static uint16_t
+i40e_xmit_pkts_simple(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+
+ if (likely(nb_pkts <= I40E_TX_MAX_BURST))
+ return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
+ tx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
+ I40E_TX_MAX_BURST);
+
+ ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
+ &tx_pkts[nb_tx], num);
+ nb_tx = (uint16_t)(nb_tx + ret);
+ nb_pkts = (uint16_t)(nb_pkts - ret);
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
+
+/*
+ * Find the VSI the queue belongs to. 'queue_idx' is the queue index
+ * application used, which assume having sequential ones. But from driver's
+ * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
+ * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
+ * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
+ * use queue_idx from 0 to 95 to access queues, while real queue would be
+ * different. This function will do a queue mapping to find VSI the queue
+ * belongs to.
+ */
+static struct i40e_vsi*
+i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
+{
+ /* the queue in MAIN VSI range */
+ if (queue_idx < pf->main_vsi->nb_qps)
+ return pf->main_vsi;
+
+ queue_idx -= pf->main_vsi->nb_qps;
+
+ /* queue_idx is greater than VMDQ VSIs range */
+ if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
+ PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
+ return NULL;
+ }
+
+ return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
+}
+
+static uint16_t
+i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
+{
+ /* the queue in MAIN VSI range */
+ if (queue_idx < pf->main_vsi->nb_qps)
+ return queue_idx;
+
+ /* It's VMDQ queues */
+ queue_idx -= pf->main_vsi->nb_qps;
+
+ if (pf->nb_cfg_vmdq_vsi)
+ return queue_idx % pf->vmdq_nb_qps;
+ else {
+ PMD_INIT_LOG(ERR, "Fail to get queue offset");
+ return (uint16_t)(-1);
+ }
+}
+
+int
+i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+ struct i40e_rx_queue *rxq;
+ int err = -1;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+
+ if (rx_queue_id < dev->data->nb_rx_queues) {
+ rxq = dev->data->rx_queues[rx_queue_id];
+
+ err = i40e_alloc_rx_queue_mbufs(rxq);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
+ return err;
+ }
+
+ rte_wmb();
+
+ /* Init the RX tail regieter. */
+ I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+ err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
+
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
+ rx_queue_id);
+
+ i40e_rx_queue_release_mbufs(rxq);
+ i40e_reset_rx_queue(rxq);
+ } else
+ dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
+ }
+
+ return err;
+}
+
+int
+i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+ struct i40e_rx_queue *rxq;
+ int err;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (rx_queue_id < dev->data->nb_rx_queues) {
+ rxq = dev->data->rx_queues[rx_queue_id];
+
+ /*
+ * rx_queue_id is queue id aplication refers to, while
+ * rxq->reg_idx is the real queue index.
+ */
+ err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
+
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
+ rx_queue_id);
+ return err;
+ }
+ i40e_rx_queue_release_mbufs(rxq);
+ i40e_reset_rx_queue(rxq);
+ dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
+ }
+
+ return 0;
+}
+
+int
+i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+ int err = -1;
+ struct i40e_tx_queue *txq;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+
+ if (tx_queue_id < dev->data->nb_tx_queues) {
+ txq = dev->data->tx_queues[tx_queue_id];
+
+ /*
+ * tx_queue_id is queue id aplication refers to, while
+ * rxq->reg_idx is the real queue index.
+ */
+ err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
+ if (err)
+ PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
+ tx_queue_id);
+ else
+ dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
+ }
+
+ return err;
+}
+
+int
+i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+ struct i40e_tx_queue *txq;
+ int err;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (tx_queue_id < dev->data->nb_tx_queues) {
+ txq = dev->data->tx_queues[tx_queue_id];
+
+ /*
+ * tx_queue_id is queue id aplication refers to, while
+ * txq->reg_idx is the real queue index.
+ */
+ err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
+
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
+ tx_queue_id);
+ return err;
+ }
+
+ i40e_tx_queue_release_mbufs(txq);
+ i40e_reset_tx_queue(txq);
+ dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
+ }
+
+ return 0;
+}
+
+const uint32_t *
+i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
+{
+ static const uint32_t ptypes[] = {
+ /* refers to i40e_rxd_pkt_type_mapping() */
+ RTE_PTYPE_L2_ETHER,
+ RTE_PTYPE_L2_ETHER_TIMESYNC,
+ RTE_PTYPE_L2_ETHER_LLDP,
+ RTE_PTYPE_L2_ETHER_ARP,
+ RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
+ RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
+ RTE_PTYPE_L4_FRAG,
+ RTE_PTYPE_L4_ICMP,
+ RTE_PTYPE_L4_NONFRAG,
+ RTE_PTYPE_L4_SCTP,
+ RTE_PTYPE_L4_TCP,
+ RTE_PTYPE_L4_UDP,
+ RTE_PTYPE_TUNNEL_GRENAT,
+ RTE_PTYPE_TUNNEL_IP,
+ RTE_PTYPE_INNER_L2_ETHER,
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
+ RTE_PTYPE_INNER_L4_FRAG,
+ RTE_PTYPE_INNER_L4_ICMP,
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ RTE_PTYPE_INNER_L4_SCTP,
+ RTE_PTYPE_INNER_L4_TCP,
+ RTE_PTYPE_INNER_L4_UDP,
+ RTE_PTYPE_UNKNOWN
+ };
+
+ if (dev->rx_pkt_burst == i40e_recv_pkts ||
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
+#endif
+ dev->rx_pkt_burst == i40e_recv_scattered_pkts)
+ return ptypes;
+ return NULL;
+}
+
+int
+i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ struct i40e_vsi *vsi;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+ struct i40e_adapter *ad =
+ I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+ struct i40e_rx_queue *rxq;
+ const struct rte_memzone *rz;
+ uint32_t ring_size;
+ uint16_t len, i;
+ uint16_t base, bsf, tc_mapping;
+ int use_def_burst_func = 1;
+
+ if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
+ struct i40e_vf *vf =
+ I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
+ vsi = &vf->vsi;
+ } else
+ vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
+
+ if (vsi == NULL) {
+ PMD_DRV_LOG(ERR, "VSI not available or queue "
+ "index exceeds the maximum");
+ return I40E_ERR_PARAM;
+ }
+ if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
+ (nb_desc > I40E_MAX_RING_DESC) ||
+ (nb_desc < I40E_MIN_RING_DESC)) {
+ PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
+ "invalid", nb_desc);
+ return I40E_ERR_PARAM;
+ }
+
+ /* Free memory if needed */
+ if (dev->data->rx_queues[queue_idx]) {
+ i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate the rx queue data structure */
+ rxq = rte_zmalloc_socket("i40e rx queue",
+ sizeof(struct i40e_rx_queue),
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!rxq) {
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+ "rx queue data structure");
+ return -ENOMEM;
+ }
+ rxq->mp = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+ if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
+ rxq->reg_idx = queue_idx;
+ else /* PF device */
+ rxq->reg_idx = vsi->base_queue +
+ i40e_get_queue_offset_by_qindex(pf, queue_idx);
+
+ rxq->port_id = dev->data->port_id;
+ rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+ 0 : ETHER_CRC_LEN);
+ rxq->drop_en = rx_conf->rx_drop_en;
+ rxq->vsi = vsi;
+ rxq->rx_deferred_start = rx_conf->rx_deferred_start;
+
+ /* Allocate the maximun number of RX ring hardware descriptor. */
+ ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
+ ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+ rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
+ ring_size, I40E_RING_BASE_ALIGN, socket_id);
+ if (!rz) {
+ i40e_dev_rx_queue_release(rxq);
+ PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
+ return -ENOMEM;
+ }
+
+ /* Zero all the descriptors in the ring. */
+ memset(rz->addr, 0, ring_size);
+
+ rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+ rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
+#else
+ len = nb_desc;
+#endif
+
+ /* Allocate the software ring. */
+ rxq->sw_ring =
+ rte_zmalloc_socket("i40e rx sw ring",
+ sizeof(struct i40e_rx_entry) * len,
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!rxq->sw_ring) {
+ i40e_dev_rx_queue_release(rxq);
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
+ return -ENOMEM;
+ }
+
+ i40e_reset_rx_queue(rxq);
+ rxq->q_set = TRUE;
+ dev->data->rx_queues[queue_idx] = rxq;
+
+ use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
+
+ if (!use_def_burst_func) {
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+ "satisfied. Rx Burst Bulk Alloc function will be "
+ "used on port=%d, queue=%d.",
+ rxq->port_id, rxq->queue_id);
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+ } else {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+ "not satisfied, Scattered Rx is requested, "
+ "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
+ "not enabled on port=%d, queue=%d.",
+ rxq->port_id, rxq->queue_id);
+ ad->rx_bulk_alloc_allowed = false;
+ }
+
+ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
+ if (!(vsi->enabled_tc & (1 << i)))
+ continue;
+ tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
+ base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
+ I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
+ bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
+ I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
+
+ if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
+ rxq->dcb_tc = i;
+ }
+
+ return 0;
+}
+
+void
+i40e_dev_rx_queue_release(void *rxq)
+{
+ struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
+
+ if (!q) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+ return;
+ }
+
+ i40e_rx_queue_release_mbufs(q);
+ rte_free(q->sw_ring);
+ rte_free(q);
+}
+
+uint32_t
+i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define I40E_RXQ_SCAN_INTERVAL 4
+ volatile union i40e_rx_desc *rxdp;
+ struct i40e_rx_queue *rxq;
+ uint16_t desc = 0;
+
+ if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
+ PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
+ return 0;
+ }
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+ while ((desc < rxq->nb_rx_desc) &&
+ ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+ I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
+ (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
+ /**
+ * Check the DD bit of a rx descriptor of each 4 in a group,
+ * to avoid checking too frequently and downgrading performance
+ * too much.
+ */
+ desc += I40E_RXQ_SCAN_INTERVAL;
+ rxdp += I40E_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return desc;
+}
+
+int
+i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+ volatile union i40e_rx_desc *rxdp;
+ struct i40e_rx_queue *rxq = rx_queue;
+ uint16_t desc;
+ int ret;
+
+ if (unlikely(offset >= rxq->nb_rx_desc)) {
+ PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
+ return 0;
+ }
+
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ rxdp = &(rxq->rx_ring[desc]);
+
+ ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+ I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
+ (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
+
+ return ret;
+}
+
+int
+i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ struct i40e_vsi *vsi;
+ struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+ struct i40e_tx_queue *txq;
+ const struct rte_memzone *tz;
+ uint32_t ring_size;
+ uint16_t tx_rs_thresh, tx_free_thresh;
+ uint16_t i, base, bsf, tc_mapping;
+
+ if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
+ struct i40e_vf *vf =
+ I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
+ vsi = &vf->vsi;
+ } else
+ vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
+
+ if (vsi == NULL) {
+ PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
+ "exceeds the maximum", queue_idx);
+ return I40E_ERR_PARAM;
+ }
+
+ if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
+ (nb_desc > I40E_MAX_RING_DESC) ||
+ (nb_desc < I40E_MIN_RING_DESC)) {
+ PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
+ "invalid", nb_desc);
+ return I40E_ERR_PARAM;
+ }
+
+ /**
+ * The following two parameters control the setting of the RS bit on
+ * transmit descriptors. TX descriptors will have their RS bit set
+ * after txq->tx_rs_thresh descriptors have been used. The TX
+ * descriptor ring will be cleaned after txq->tx_free_thresh
+ * descriptors are used or if the number of descriptors required to
+ * transmit a packet is greater than the number of free TX descriptors.
+ *
+ * The following constraints must be satisfied:
+ * - tx_rs_thresh must be greater than 0.
+ * - tx_rs_thresh must be less than the size of the ring minus 2.
+ * - tx_rs_thresh must be less than or equal to tx_free_thresh.
+ * - tx_rs_thresh must be a divisor of the ring size.
+ * - tx_free_thresh must be greater than 0.
+ * - tx_free_thresh must be less than the size of the ring minus 3.
+ *
+ * One descriptor in the TX ring is used as a sentinel to avoid a H/W
+ * race condition, hence the maximum threshold constraints. When set
+ * to zero use default values.
+ */
+ tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
+ tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
+ tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
+ tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
+ if (tx_rs_thresh >= (nb_desc - 2)) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+ "number of TX descriptors minus 2. "
+ "(tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return I40E_ERR_PARAM;
+ }
+ if (tx_free_thresh >= (nb_desc - 3)) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+ "tx_free_thresh must be less than the "
+ "number of TX descriptors minus 3. "
+ "(tx_free_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return I40E_ERR_PARAM;
+ }
+ if (tx_rs_thresh > tx_free_thresh) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
+ "equal to tx_free_thresh. (tx_free_thresh=%u"
+ " tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return I40E_ERR_PARAM;
+ }
+ if ((nb_desc % tx_rs_thresh) != 0) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
+ "number of TX descriptors. (tx_rs_thresh=%u"
+ " port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return I40E_ERR_PARAM;
+ }
+ if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
+ PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+ "tx_rs_thresh is greater than 1. "
+ "(tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return I40E_ERR_PARAM;
+ }
+
+ /* Free memory if needed. */
+ if (dev->data->tx_queues[queue_idx]) {
+ i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate the TX queue data structure. */
+ txq = rte_zmalloc_socket("i40e tx queue",
+ sizeof(struct i40e_tx_queue),
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!txq) {
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+ "tx queue structure");
+ return -ENOMEM;
+ }
+
+ /* Allocate TX hardware ring descriptors. */
+ ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
+ ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+ tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
+ ring_size, I40E_RING_BASE_ALIGN, socket_id);
+ if (!tz) {
+ i40e_dev_tx_queue_release(txq);
+ PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
+ return -ENOMEM;
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->tx_rs_thresh = tx_rs_thresh;
+ txq->tx_free_thresh = tx_free_thresh;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+ if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
+ txq->reg_idx = queue_idx;
+ else /* PF device */
+ txq->reg_idx = vsi->base_queue +
+ i40e_get_queue_offset_by_qindex(pf, queue_idx);
+
+ txq->port_id = dev->data->port_id;
+ txq->txq_flags = tx_conf->txq_flags;
+ txq->vsi = vsi;
+ txq->tx_deferred_start = tx_conf->tx_deferred_start;
+
+ txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+ txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
+
+ /* Allocate software ring */
+ txq->sw_ring =
+ rte_zmalloc_socket("i40e tx sw ring",
+ sizeof(struct i40e_tx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!txq->sw_ring) {
+ i40e_dev_tx_queue_release(txq);
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
+ return -ENOMEM;
+ }
+
+ i40e_reset_tx_queue(txq);
+ txq->q_set = TRUE;
+ dev->data->tx_queues[queue_idx] = txq;
+
+ /* Use a simple TX queue without offloads or multi segs if possible */
+ i40e_set_tx_function_flag(dev, txq);
+
+ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
+ if (!(vsi->enabled_tc & (1 << i)))
+ continue;
+ tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
+ base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
+ I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
+ bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
+ I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
+
+ if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
+ txq->dcb_tc = i;
+ }
+
+ return 0;
+}
+
+void
+i40e_dev_tx_queue_release(void *txq)
+{
+ struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
+
+ if (!q) {
+ PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
+ return;
+ }
+
+ i40e_tx_queue_release_mbufs(q);
+ rte_free(q->sw_ring);
+ rte_free(q);
+}
+
+const struct rte_memzone *
+i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
+{
+ const struct rte_memzone *mz;
+
+ mz = rte_memzone_lookup(name);
+ if (mz)
+ return mz;
+
+ if (rte_xen_dom0_supported())
+ mz = rte_memzone_reserve_bounded(name, len,
+ socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
+ else
+ mz = rte_memzone_reserve_aligned(name, len,
+ socket_id, 0, I40E_RING_BASE_ALIGN);
+ return mz;
+}
+
+void
+i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
+{
+ uint16_t i;
+
+ /* SSE Vector driver has a different way of releasing mbufs. */
+ if (rxq->rx_using_sse) {
+ i40e_rx_queue_release_mbufs_vec(rxq);
+ return;
+ }
+
+ if (!rxq || !rxq->sw_ring) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
+ return;
+ }
+
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ if (rxq->rx_nb_avail == 0)
+ return;
+ for (i = 0; i < rxq->rx_nb_avail; i++) {
+ struct rte_mbuf *mbuf;
+
+ mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
+ rte_pktmbuf_free_seg(mbuf);
+ }
+ rxq->rx_nb_avail = 0;
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+}
+
+void
+i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
+{
+ unsigned i;
+ uint16_t len;
+
+ if (!rxq) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+ return;
+ }
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
+ len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
+ else
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+ len = rxq->nb_rx_desc;
+
+ for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
+ ((volatile char *)rxq->rx_ring)[i] = 0;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+ memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
+ for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
+ rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
+
+ rxq->rx_nb_avail = 0;
+ rxq->rx_next_avail = 0;
+ rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+ rxq->rx_tail = 0;
+ rxq->nb_rx_hold = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+
+ rxq->rxrearm_start = 0;
+ rxq->rxrearm_nb = 0;
+}
+
+void
+i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
+{
+ uint16_t i;
+
+ if (!txq || !txq->sw_ring) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
+ return;
+ }
+
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+}
+
+void
+i40e_reset_tx_queue(struct i40e_tx_queue *txq)
+{
+ struct i40e_tx_entry *txe;
+ uint16_t i, prev, size;
+
+ if (!txq) {
+ PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
+ return;
+ }
+
+ txe = txq->sw_ring;
+ size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
+ for (i = 0; i < size; i++)
+ ((volatile char *)txq->tx_ring)[i] = 0;
+
+ prev = (uint16_t)(txq->nb_tx_desc - 1);
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
+
+ txd->cmd_type_offset_bsz =
+ rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ txq->tx_tail = 0;
+ txq->nb_tx_used = 0;
+
+ txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
+}
+
+/* Init the TX queue in hardware */
+int
+i40e_tx_queue_init(struct i40e_tx_queue *txq)
+{
+ enum i40e_status_code err = I40E_SUCCESS;
+ struct i40e_vsi *vsi = txq->vsi;
+ struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
+ uint16_t pf_q = txq->reg_idx;
+ struct i40e_hmc_obj_txq tx_ctx;
+ uint32_t qtx_ctl;
+
+ /* clear the context structure first */
+ memset(&tx_ctx, 0, sizeof(tx_ctx));
+ tx_ctx.new_context = 1;
+ tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
+ tx_ctx.qlen = txq->nb_tx_desc;
+
+#ifdef RTE_LIBRTE_IEEE1588
+ tx_ctx.timesync_ena = 1;
+#endif
+ tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
+ if (vsi->type == I40E_VSI_FDIR)
+ tx_ctx.fd_ena = TRUE;
+
+ err = i40e_clear_lan_tx_queue_context(hw, pf_q);
+ if (err != I40E_SUCCESS) {
+ PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
+ return err;
+ }
+
+ err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
+ if (err != I40E_SUCCESS) {
+ PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
+ return err;
+ }
+
+ /* Now associate this queue with this PCI function */
+ qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
+ qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
+ I40E_QTX_CTL_PF_INDX_MASK);
+ I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
+ I40E_WRITE_FLUSH(hw);
+
+ txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
+
+ return err;
+}
+
+int
+i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
+{
+ struct i40e_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ uint16_t i;
+
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union i40e_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
+
+ if (unlikely(!mbuf)) {
+ PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
+ return -ENOMEM;
+ }
+
+ rte_mbuf_refcnt_set(mbuf, 1);
+ mbuf->next = NULL;
+ mbuf->data_off = RTE_PKTMBUF_HEADROOM;
+ mbuf->nb_segs = 1;
+ mbuf->port = rxq->port_id;
+
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
+
+ rxd = &rxq->rx_ring[i];
+ rxd->read.pkt_addr = dma_addr;
+ rxd->read.hdr_addr = 0;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ rxd->read.rsvd1 = 0;
+ rxd->read.rsvd2 = 0;
+#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
+
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+/*
+ * Calculate the buffer length, and check the jumbo frame
+ * and maximum packet length.
+ */
+static int
+i40e_rx_queue_config(struct i40e_rx_queue *rxq)
+{
+ struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
+ struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
+ struct rte_eth_dev_data *data = pf->dev_data;
+ uint16_t buf_size, len;
+
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+ RTE_PKTMBUF_HEADROOM);
+
+ switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
+ I40E_FLAG_HEADER_SPLIT_ENABLED)) {
+ case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
+ rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
+ (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
+ rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
+ (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
+ rxq->hs_mode = i40e_header_split_enabled;
+ break;
+ case I40E_FLAG_HEADER_SPLIT_DISABLED:
+ default:
+ rxq->rx_hdr_len = 0;
+ rxq->rx_buf_len = RTE_ALIGN(buf_size,
+ (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
+ rxq->hs_mode = i40e_header_split_none;
+ break;
+ }
+
+ len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
+ rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
+ if (data->dev_conf.rxmode.jumbo_frame == 1) {
+ if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
+ rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
+ PMD_DRV_LOG(ERR, "maximum packet length must "
+ "be larger than %u and smaller than %u,"
+ "as jumbo frame is enabled",
+ (uint32_t)ETHER_MAX_LEN,
+ (uint32_t)I40E_FRAME_SIZE_MAX);
+ return I40E_ERR_CONFIG;
+ }
+ } else {
+ if (rxq->max_pkt_len < ETHER_MIN_LEN ||
+ rxq->max_pkt_len > ETHER_MAX_LEN) {
+ PMD_DRV_LOG(ERR, "maximum packet length must be "
+ "larger than %u and smaller than %u, "
+ "as jumbo frame is disabled",
+ (uint32_t)ETHER_MIN_LEN,
+ (uint32_t)ETHER_MAX_LEN);
+ return I40E_ERR_CONFIG;
+ }
+ }
+
+ return 0;
+}
+
+/* Init the RX queue in hardware */
+int
+i40e_rx_queue_init(struct i40e_rx_queue *rxq)
+{
+ int err = I40E_SUCCESS;
+ struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
+ struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
+ uint16_t pf_q = rxq->reg_idx;
+ uint16_t buf_size;
+ struct i40e_hmc_obj_rxq rx_ctx;
+
+ err = i40e_rx_queue_config(rxq);
+ if (err < 0) {
+ PMD_DRV_LOG(ERR, "Failed to config RX queue");
+ return err;
+ }
+
+ /* Clear the context structure first */
+ memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
+ rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
+ rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
+
+ rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
+ rx_ctx.qlen = rxq->nb_rx_desc;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+ rx_ctx.dsize = 1;
+#endif
+ rx_ctx.dtype = rxq->hs_mode;
+ if (rxq->hs_mode)
+ rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
+ else
+ rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
+ rx_ctx.rxmax = rxq->max_pkt_len;
+ rx_ctx.tphrdesc_ena = 1;
+ rx_ctx.tphwdesc_ena = 1;
+ rx_ctx.tphdata_ena = 1;
+ rx_ctx.tphhead_ena = 1;
+ rx_ctx.lrxqthresh = 2;
+ rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
+ rx_ctx.l2tsel = 1;
+ rx_ctx.showiv = 1;
+ rx_ctx.prefena = 1;
+
+ err = i40e_clear_lan_rx_queue_context(hw, pf_q);
+ if (err != I40E_SUCCESS) {
+ PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
+ return err;
+ }
+ err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
+ if (err != I40E_SUCCESS) {
+ PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
+ return err;
+ }
+
+ rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
+
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+ RTE_PKTMBUF_HEADROOM);
+
+ /* Check if scattered RX needs to be used. */
+ if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
+ dev_data->scattered_rx = 1;
+ }
+
+ /* Init the RX tail regieter. */
+ I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+ return 0;
+}
+
+void
+i40e_dev_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
+ i40e_reset_tx_queue(dev->data->tx_queues[i]);
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
+ i40e_reset_rx_queue(dev->data->rx_queues[i]);
+ }
+}
+
+void
+i40e_dev_free_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ dev->data->nb_rx_queues = 0;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
+ dev->data->tx_queues[i] = NULL;
+ }
+ dev->data->nb_tx_queues = 0;
+}
+
+#define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
+#define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
+
+enum i40e_status_code
+i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
+{
+ struct i40e_tx_queue *txq;
+ const struct rte_memzone *tz = NULL;
+ uint32_t ring_size;
+ struct rte_eth_dev *dev = pf->adapter->eth_dev;
+
+ if (!pf) {
+ PMD_DRV_LOG(ERR, "PF is not available");
+ return I40E_ERR_BAD_PTR;
+ }
+
+ /* Allocate the TX queue data structure. */
+ txq = rte_zmalloc_socket("i40e fdir tx queue",
+ sizeof(struct i40e_tx_queue),
+ RTE_CACHE_LINE_SIZE,
+ SOCKET_ID_ANY);
+ if (!txq) {
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+ "tx queue structure.");
+ return I40E_ERR_NO_MEMORY;
+ }
+
+ /* Allocate TX hardware ring descriptors. */
+ ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
+ ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+
+ tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
+ I40E_FDIR_QUEUE_ID, ring_size,
+ I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
+ if (!tz) {
+ i40e_dev_tx_queue_release(txq);
+ PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
+ return I40E_ERR_NO_MEMORY;
+ }
+
+ txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
+ txq->queue_id = I40E_FDIR_QUEUE_ID;
+ txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
+ txq->vsi = pf->fdir.fdir_vsi;
+
+ txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+ txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
+ /*
+ * don't need to allocate software ring and reset for the fdir
+ * program queue just set the queue has been configured.
+ */
+ txq->q_set = TRUE;
+ pf->fdir.txq = txq;
+
+ return I40E_SUCCESS;
+}
+
+enum i40e_status_code
+i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
+{
+ struct i40e_rx_queue *rxq;
+ const struct rte_memzone *rz = NULL;
+ uint32_t ring_size;
+ struct rte_eth_dev *dev = pf->adapter->eth_dev;
+
+ if (!pf) {
+ PMD_DRV_LOG(ERR, "PF is not available");
+ return I40E_ERR_BAD_PTR;
+ }
+
+ /* Allocate the RX queue data structure. */
+ rxq = rte_zmalloc_socket("i40e fdir rx queue",
+ sizeof(struct i40e_rx_queue),
+ RTE_CACHE_LINE_SIZE,
+ SOCKET_ID_ANY);
+ if (!rxq) {
+ PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+ "rx queue structure.");
+ return I40E_ERR_NO_MEMORY;
+ }
+
+ /* Allocate RX hardware ring descriptors. */
+ ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
+ ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+
+ rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
+ I40E_FDIR_QUEUE_ID, ring_size,
+ I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
+ if (!rz) {
+ i40e_dev_rx_queue_release(rxq);
+ PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
+ return I40E_ERR_NO_MEMORY;
+ }
+
+ rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
+ rxq->queue_id = I40E_FDIR_QUEUE_ID;
+ rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
+ rxq->vsi = pf->fdir.fdir_vsi;
+
+ rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+ rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
+
+ /*
+ * Don't need to allocate software ring and reset for the fdir
+ * rx queue, just set the queue has been configured.
+ */
+ rxq->q_set = TRUE;
+ pf->fdir.rxq = rxq;
+
+ return I40E_SUCCESS;
+}
+
+void
+i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_rxq_info *qinfo)
+{
+ struct i40e_rx_queue *rxq;
+
+ rxq = dev->data->rx_queues[queue_id];
+
+ qinfo->mp = rxq->mp;
+ qinfo->scattered_rx = dev->data->scattered_rx;
+ qinfo->nb_desc = rxq->nb_rx_desc;
+
+ qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
+ qinfo->conf.rx_drop_en = rxq->drop_en;
+ qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
+}
+
+void
+i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_txq_info *qinfo)
+{
+ struct i40e_tx_queue *txq;
+
+ txq = dev->data->tx_queues[queue_id];
+
+ qinfo->nb_desc = txq->nb_tx_desc;
+
+ qinfo->conf.tx_thresh.pthresh = txq->pthresh;
+ qinfo->conf.tx_thresh.hthresh = txq->hthresh;
+ qinfo->conf.tx_thresh.wthresh = txq->wthresh;
+
+ qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
+ qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
+ qinfo->conf.txq_flags = txq->txq_flags;
+ qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
+}
+
+void __attribute__((cold))
+i40e_set_rx_function(struct rte_eth_dev *dev)
+{
+ struct i40e_adapter *ad =
+ I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+ uint16_t rx_using_sse, i;
+ /* In order to allow Vector Rx there are a few configuration
+ * conditions to be met and Rx Bulk Allocation should be allowed.
+ */
+ if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+ if (i40e_rx_vec_dev_conf_condition_check(dev) ||
+ !ad->rx_bulk_alloc_allowed) {
+ PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
+ " Vector Rx preconditions",
+ dev->data->port_id);
+
+ ad->rx_vec_allowed = false;
+ }
+ if (ad->rx_vec_allowed) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ struct i40e_rx_queue *rxq =
+ dev->data->rx_queues[i];
+
+ if (i40e_rxq_vec_setup(rxq)) {
+ ad->rx_vec_allowed = false;
+ break;
+ }
+ }
+ }
+ }
+
+ if (dev->data->scattered_rx) {
+ /* Set the non-LRO scattered callback: there are Vector and
+ * single allocation versions.
+ */
+ if (ad->rx_vec_allowed) {
+ PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
+ "callback (port=%d).",
+ dev->data->port_id);
+
+ dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
+ } else {
+ PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
+ "allocation callback (port=%d).",
+ dev->data->port_id);
+ dev->rx_pkt_burst = i40e_recv_scattered_pkts;
+ }
+ /* If parameters allow we are going to choose between the following
+ * callbacks:
+ * - Vector
+ * - Bulk Allocation
+ * - Single buffer allocation (the simplest one)
+ */
+ } else if (ad->rx_vec_allowed) {
+ PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
+ "burst size no less than %d (port=%d).",
+ RTE_I40E_DESCS_PER_LOOP,
+ dev->data->port_id);
+
+ dev->rx_pkt_burst = i40e_recv_pkts_vec;
+ } else if (ad->rx_bulk_alloc_allowed) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+ "satisfied. Rx Burst Bulk Alloc function "
+ "will be used on port=%d.",
+ dev->data->port_id);
+
+ dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
+ } else {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
+ "satisfied, or Scattered Rx is requested "
+ "(port=%d).",
+ dev->data->port_id);
+
+ dev->rx_pkt_burst = i40e_recv_pkts;
+ }
+
+ /* Propagate information about RX function choice through all queues. */
+ if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+ rx_using_sse =
+ (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
+ dev->rx_pkt_burst == i40e_recv_pkts_vec);
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
+
+ rxq->rx_using_sse = rx_using_sse;
+ }
+ }
+}
+
+void __attribute__((cold))
+i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
+{
+ struct i40e_adapter *ad =
+ I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+
+ /* Use a simple Tx queue (no offloads, no multi segs) if possible */
+ if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
+ && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
+ if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
+ PMD_INIT_LOG(DEBUG, "Vector tx"
+ " can be enabled on this txq.");
+
+ } else {
+ ad->tx_vec_allowed = false;
+ }
+ } else {
+ ad->tx_simple_allowed = false;
+ }
+}
+
+void __attribute__((cold))
+i40e_set_tx_function(struct rte_eth_dev *dev)
+{
+ struct i40e_adapter *ad =
+ I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+ int i;
+
+ if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+ if (ad->tx_vec_allowed) {
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ struct i40e_tx_queue *txq =
+ dev->data->tx_queues[i];
+
+ if (i40e_txq_vec_setup(txq)) {
+ ad->tx_vec_allowed = false;
+ break;
+ }
+ }
+ }
+ }
+
+ if (ad->tx_simple_allowed) {
+ if (ad->tx_vec_allowed) {
+ PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
+ dev->tx_pkt_burst = i40e_xmit_pkts_vec;
+ } else {
+ PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
+ dev->tx_pkt_burst = i40e_xmit_pkts_simple;
+ }
+ } else {
+ PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
+ dev->tx_pkt_burst = i40e_xmit_pkts;
+ }
+}
+
+/* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
+int __attribute__((weak))
+i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
+{
+ return -1;
+}
+
+uint16_t __attribute__((weak))
+i40e_recv_pkts_vec(
+ void __rte_unused *rx_queue,
+ struct rte_mbuf __rte_unused **rx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}
+
+uint16_t __attribute__((weak))
+i40e_recv_scattered_pkts_vec(
+ void __rte_unused *rx_queue,
+ struct rte_mbuf __rte_unused **rx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}
+
+int __attribute__((weak))
+i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
+{
+ return -1;
+}
+
+int __attribute__((weak))
+i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
+{
+ return -1;
+}
+
+void __attribute__((weak))
+i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
+{
+ return;
+}
+
+uint16_t __attribute__((weak))
+i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
+ struct rte_mbuf __rte_unused **tx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}