diff options
author | Luca Boccassi <luca.boccassi@gmail.com> | 2018-08-14 18:52:30 +0100 |
---|---|---|
committer | Luca Boccassi <luca.boccassi@gmail.com> | 2018-08-14 18:53:17 +0100 |
commit | b63264c8342e6a1b6971c79550d2af2024b6a4de (patch) | |
tree | 83114aac64286fe616506c0b3dfaec2ab86ef835 /lib/librte_eal/linuxapp/eal/eal_memalloc.c | |
parent | ca33590b6af032bff57d9cc70455660466a654b2 (diff) |
New upstream version 18.08upstream/18.08
Change-Id: I32fdf5e5016556d9c0a6d88ddaf1fc468961790a
Signed-off-by: Luca Boccassi <luca.boccassi@gmail.com>
Diffstat (limited to 'lib/librte_eal/linuxapp/eal/eal_memalloc.c')
-rw-r--r-- | lib/librte_eal/linuxapp/eal/eal_memalloc.c | 1363 |
1 files changed, 1363 insertions, 0 deletions
diff --git a/lib/librte_eal/linuxapp/eal/eal_memalloc.c b/lib/librte_eal/linuxapp/eal/eal_memalloc.c new file mode 100644 index 00000000..aa95551a --- /dev/null +++ b/lib/librte_eal/linuxapp/eal/eal_memalloc.c @@ -0,0 +1,1363 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2017-2018 Intel Corporation + */ + +#define _FILE_OFFSET_BITS 64 +#include <errno.h> +#include <stdarg.h> +#include <stdbool.h> +#include <stdlib.h> +#include <stdio.h> +#include <stdint.h> +#include <inttypes.h> +#include <string.h> +#include <sys/mman.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <sys/queue.h> +#include <sys/file.h> +#include <unistd.h> +#include <limits.h> +#include <fcntl.h> +#include <sys/ioctl.h> +#include <sys/time.h> +#include <signal.h> +#include <setjmp.h> +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES +#include <numa.h> +#include <numaif.h> +#endif +#include <linux/falloc.h> +#include <linux/mman.h> /* for hugetlb-related mmap flags */ + +#include <rte_common.h> +#include <rte_log.h> +#include <rte_eal_memconfig.h> +#include <rte_eal.h> +#include <rte_memory.h> +#include <rte_spinlock.h> + +#include "eal_filesystem.h" +#include "eal_internal_cfg.h" +#include "eal_memalloc.h" +#include "eal_private.h" + +const int anonymous_hugepages_supported = +#ifdef MAP_HUGE_SHIFT + 1; +#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT +#else + 0; +#define RTE_MAP_HUGE_SHIFT 26 +#endif + +/* + * not all kernel version support fallocate on hugetlbfs, so fall back to + * ftruncate and disallow deallocation if fallocate is not supported. + */ +static int fallocate_supported = -1; /* unknown */ + +/* for single-file segments, we need some kind of mechanism to keep track of + * which hugepages can be freed back to the system, and which cannot. we cannot + * use flock() because they don't allow locking parts of a file, and we cannot + * use fcntl() due to issues with their semantics, so we will have to rely on a + * bunch of lockfiles for each page. + * + * we cannot know how many pages a system will have in advance, but we do know + * that they come in lists, and we know lengths of these lists. so, simply store + * a malloc'd array of fd's indexed by list and segment index. + * + * they will be initialized at startup, and filled as we allocate/deallocate + * segments. also, use this to track memseg list proper fd. + */ +static struct { + int *fds; /**< dynamically allocated array of segment lock fd's */ + int memseg_list_fd; /**< memseg list fd */ + int len; /**< total length of the array */ + int count; /**< entries used in an array */ +} lock_fds[RTE_MAX_MEMSEG_LISTS]; + +/** local copy of a memory map, used to synchronize memory hotplug in MP */ +static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS]; + +static sigjmp_buf huge_jmpenv; + +static void __rte_unused huge_sigbus_handler(int signo __rte_unused) +{ + siglongjmp(huge_jmpenv, 1); +} + +/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile, + * non-static local variable in the stack frame calling sigsetjmp might be + * clobbered by a call to longjmp. + */ +static int __rte_unused huge_wrap_sigsetjmp(void) +{ + return sigsetjmp(huge_jmpenv, 1); +} + +static struct sigaction huge_action_old; +static int huge_need_recover; + +static void __rte_unused +huge_register_sigbus(void) +{ + sigset_t mask; + struct sigaction action; + + sigemptyset(&mask); + sigaddset(&mask, SIGBUS); + action.sa_flags = 0; + action.sa_mask = mask; + action.sa_handler = huge_sigbus_handler; + + huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old); +} + +static void __rte_unused +huge_recover_sigbus(void) +{ + if (huge_need_recover) { + sigaction(SIGBUS, &huge_action_old, NULL); + huge_need_recover = 0; + } +} + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES +static bool +check_numa(void) +{ + bool ret = true; + /* Check if kernel supports NUMA. */ + if (numa_available() != 0) { + RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n"); + ret = false; + } + return ret; +} + +static void +prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id) +{ + RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n"); + if (get_mempolicy(oldpolicy, oldmask->maskp, + oldmask->size + 1, 0, 0) < 0) { + RTE_LOG(ERR, EAL, + "Failed to get current mempolicy: %s. " + "Assuming MPOL_DEFAULT.\n", strerror(errno)); + oldpolicy = MPOL_DEFAULT; + } + RTE_LOG(DEBUG, EAL, + "Setting policy MPOL_PREFERRED for socket %d\n", + socket_id); + numa_set_preferred(socket_id); +} + +static void +restore_numa(int *oldpolicy, struct bitmask *oldmask) +{ + RTE_LOG(DEBUG, EAL, + "Restoring previous memory policy: %d\n", *oldpolicy); + if (*oldpolicy == MPOL_DEFAULT) { + numa_set_localalloc(); + } else if (set_mempolicy(*oldpolicy, oldmask->maskp, + oldmask->size + 1) < 0) { + RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n", + strerror(errno)); + numa_set_localalloc(); + } + numa_free_cpumask(oldmask); +} +#endif + +/* + * uses fstat to report the size of a file on disk + */ +static off_t +get_file_size(int fd) +{ + struct stat st; + if (fstat(fd, &st) < 0) + return 0; + return st.st_size; +} + +/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */ +static int lock(int fd, int type) +{ + int ret; + + /* flock may be interrupted */ + do { + ret = flock(fd, type | LOCK_NB); + } while (ret && errno == EINTR); + + if (ret && errno == EWOULDBLOCK) { + /* couldn't lock */ + return 0; + } else if (ret) { + RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n", + __func__, strerror(errno)); + return -1; + } + /* lock was successful */ + return 1; +} + +static int get_segment_lock_fd(int list_idx, int seg_idx) +{ + char path[PATH_MAX] = {0}; + int fd; + + if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds)) + return -1; + if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len) + return -1; + + fd = lock_fds[list_idx].fds[seg_idx]; + /* does this lock already exist? */ + if (fd >= 0) + return fd; + + eal_get_hugefile_lock_path(path, sizeof(path), + list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); + + fd = open(path, O_CREAT | O_RDWR, 0660); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): error creating lockfile '%s': %s\n", + __func__, path, strerror(errno)); + return -1; + } + /* take out a read lock */ + if (lock(fd, LOCK_SH) != 1) { + RTE_LOG(ERR, EAL, "%s(): failed to take out a readlock on '%s': %s\n", + __func__, path, strerror(errno)); + close(fd); + return -1; + } + /* store it for future reference */ + lock_fds[list_idx].fds[seg_idx] = fd; + lock_fds[list_idx].count++; + return fd; +} + +static int unlock_segment(int list_idx, int seg_idx) +{ + int fd, ret; + + if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds)) + return -1; + if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len) + return -1; + + fd = lock_fds[list_idx].fds[seg_idx]; + + /* upgrade lock to exclusive to see if we can remove the lockfile */ + ret = lock(fd, LOCK_EX); + if (ret == 1) { + /* we've succeeded in taking exclusive lock, this lockfile may + * be removed. + */ + char path[PATH_MAX] = {0}; + eal_get_hugefile_lock_path(path, sizeof(path), + list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); + if (unlink(path)) { + RTE_LOG(ERR, EAL, "%s(): error removing lockfile '%s': %s\n", + __func__, path, strerror(errno)); + } + } + /* we don't want to leak the fd, so even if we fail to lock, close fd + * and remove it from list anyway. + */ + close(fd); + lock_fds[list_idx].fds[seg_idx] = -1; + lock_fds[list_idx].count--; + + if (ret < 0) + return -1; + return 0; +} + +static int +get_seg_fd(char *path, int buflen, struct hugepage_info *hi, + unsigned int list_idx, unsigned int seg_idx) +{ + int fd; + + if (internal_config.single_file_segments) { + /* create a hugepage file path */ + eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx); + + fd = lock_fds[list_idx].memseg_list_fd; + + if (fd < 0) { + fd = open(path, O_CREAT | O_RDWR, 0600); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", + __func__, strerror(errno)); + return -1; + } + /* take out a read lock and keep it indefinitely */ + if (lock(fd, LOCK_SH) < 0) { + RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n", + __func__, strerror(errno)); + close(fd); + return -1; + } + lock_fds[list_idx].memseg_list_fd = fd; + } + } else { + /* create a hugepage file path */ + eal_get_hugefile_path(path, buflen, hi->hugedir, + list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); + fd = open(path, O_CREAT | O_RDWR, 0600); + if (fd < 0) { + RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__, + strerror(errno)); + return -1; + } + /* take out a read lock */ + if (lock(fd, LOCK_SH) < 0) { + RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n", + __func__, strerror(errno)); + close(fd); + return -1; + } + } + return fd; +} + +static int +resize_hugefile(int fd, char *path, int list_idx, int seg_idx, + uint64_t fa_offset, uint64_t page_sz, bool grow) +{ + bool again = false; + do { + if (fallocate_supported == 0) { + /* we cannot deallocate memory if fallocate() is not + * supported, and hugepage file is already locked at + * creation, so no further synchronization needed. + */ + + if (!grow) { + RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n", + __func__); + return -1; + } + uint64_t new_size = fa_offset + page_sz; + uint64_t cur_size = get_file_size(fd); + + /* fallocate isn't supported, fall back to ftruncate */ + if (new_size > cur_size && + ftruncate(fd, new_size) < 0) { + RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n", + __func__, strerror(errno)); + return -1; + } + } else { + int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE | + FALLOC_FL_KEEP_SIZE; + int ret, lock_fd; + + /* if fallocate() is supported, we need to take out a + * read lock on allocate (to prevent other processes + * from deallocating this page), and take out a write + * lock on deallocate (to ensure nobody else is using + * this page). + * + * read locks on page itself are already taken out at + * file creation, in get_seg_fd(). + * + * we cannot rely on simple use of flock() call, because + * we need to be able to lock a section of the file, + * and we cannot use fcntl() locks, because of numerous + * problems with their semantics, so we will use + * deterministically named lock files for each section + * of the file. + * + * if we're shrinking the file, we want to upgrade our + * lock from shared to exclusive. + * + * lock_fd is an fd for a lockfile, not for the segment + * list. + */ + lock_fd = get_segment_lock_fd(list_idx, seg_idx); + + if (!grow) { + /* we are using this lockfile to determine + * whether this particular page is locked, as we + * are in single file segments mode and thus + * cannot use regular flock() to get this info. + * + * we want to try and take out an exclusive lock + * on the lock file to determine if we're the + * last ones using this page, and if not, we + * won't be shrinking it, and will instead exit + * prematurely. + */ + ret = lock(lock_fd, LOCK_EX); + + /* drop the lock on the lockfile, so that even + * if we couldn't shrink the file ourselves, we + * are signalling to other processes that we're + * no longer using this page. + */ + if (unlock_segment(list_idx, seg_idx)) + RTE_LOG(ERR, EAL, "Could not unlock segment\n"); + + /* additionally, if this was the last lock on + * this segment list, we can safely close the + * page file fd, so that one of the processes + * could then delete the file after shrinking. + */ + if (ret < 1 && lock_fds[list_idx].count == 0) { + close(fd); + lock_fds[list_idx].memseg_list_fd = -1; + } + + if (ret < 0) { + RTE_LOG(ERR, EAL, "Could not lock segment\n"); + return -1; + } + if (ret == 0) + /* failed to lock, not an error. */ + return 0; + } + + /* grow or shrink the file */ + ret = fallocate(fd, flags, fa_offset, page_sz); + + if (ret < 0) { + if (fallocate_supported == -1 && + errno == ENOTSUP) { + RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n", + __func__); + again = true; + fallocate_supported = 0; + } else { + RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n", + __func__, + strerror(errno)); + return -1; + } + } else { + fallocate_supported = 1; + + /* we've grew/shrunk the file, and we hold an + * exclusive lock now. check if there are no + * more segments active in this segment list, + * and remove the file if there aren't. + */ + if (lock_fds[list_idx].count == 0) { + if (unlink(path)) + RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n", + __func__, path, + strerror(errno)); + close(fd); + lock_fds[list_idx].memseg_list_fd = -1; + } + } + } + } while (again); + return 0; +} + +static int +alloc_seg(struct rte_memseg *ms, void *addr, int socket_id, + struct hugepage_info *hi, unsigned int list_idx, + unsigned int seg_idx) +{ +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + int cur_socket_id = 0; +#endif + uint64_t map_offset; + rte_iova_t iova; + void *va; + char path[PATH_MAX]; + int ret = 0; + int fd; + size_t alloc_sz; + int flags; + void *new_addr; + + alloc_sz = hi->hugepage_sz; + if (!internal_config.single_file_segments && + internal_config.in_memory && + anonymous_hugepages_supported) { + int log2, flags; + + log2 = rte_log2_u32(alloc_sz); + /* as per mmap() manpage, all page sizes are log2 of page size + * shifted by MAP_HUGE_SHIFT + */ + flags = (log2 << RTE_MAP_HUGE_SHIFT) | MAP_HUGETLB | MAP_FIXED | + MAP_PRIVATE | MAP_ANONYMOUS; + fd = -1; + va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, flags, -1, 0); + + /* single-file segments codepath will never be active because + * in-memory mode is incompatible with it and it's stopped at + * EAL initialization stage, however the compiler doesn't know + * that and complains about map_offset being used uninitialized + * on failure codepaths while having in-memory mode enabled. so, + * assign a value here. + */ + map_offset = 0; + } else { + /* takes out a read lock on segment or segment list */ + fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx); + if (fd < 0) { + RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n"); + return -1; + } + + if (internal_config.single_file_segments) { + map_offset = seg_idx * alloc_sz; + ret = resize_hugefile(fd, path, list_idx, seg_idx, + map_offset, alloc_sz, true); + if (ret < 0) + goto resized; + } else { + map_offset = 0; + if (ftruncate(fd, alloc_sz) < 0) { + RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n", + __func__, strerror(errno)); + goto resized; + } + if (internal_config.hugepage_unlink) { + if (unlink(path)) { + RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n", + __func__, strerror(errno)); + goto resized; + } + } + } + + /* + * map the segment, and populate page tables, the kernel fills + * this segment with zeros if it's a new page. + */ + va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, + map_offset); + } + + if (va == MAP_FAILED) { + RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__, + strerror(errno)); + /* mmap failed, but the previous region might have been + * unmapped anyway. try to remap it + */ + goto unmapped; + } + if (va != addr) { + RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__); + munmap(va, alloc_sz); + goto resized; + } + + /* In linux, hugetlb limitations, like cgroup, are + * enforced at fault time instead of mmap(), even + * with the option of MAP_POPULATE. Kernel will send + * a SIGBUS signal. To avoid to be killed, save stack + * environment here, if SIGBUS happens, we can jump + * back here. + */ + if (huge_wrap_sigsetjmp()) { + RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n", + (unsigned int)(alloc_sz >> 20)); + goto mapped; + } + + /* we need to trigger a write to the page to enforce page fault and + * ensure that page is accessible to us, but we can't overwrite value + * that is already there, so read the old value, and write itback. + * kernel populates the page with zeroes initially. + */ + *(volatile int *)addr = *(volatile int *)addr; + + iova = rte_mem_virt2iova(addr); + if (iova == RTE_BAD_PHYS_ADDR) { + RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n", + __func__); + goto mapped; + } + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + move_pages(getpid(), 1, &addr, NULL, &cur_socket_id, 0); + + if (cur_socket_id != socket_id) { + RTE_LOG(DEBUG, EAL, + "%s(): allocation happened on wrong socket (wanted %d, got %d)\n", + __func__, socket_id, cur_socket_id); + goto mapped; + } +#endif + /* for non-single file segments that aren't in-memory, we can close fd + * here */ + if (!internal_config.single_file_segments && !internal_config.in_memory) + close(fd); + + ms->addr = addr; + ms->hugepage_sz = alloc_sz; + ms->len = alloc_sz; + ms->nchannel = rte_memory_get_nchannel(); + ms->nrank = rte_memory_get_nrank(); + ms->iova = iova; + ms->socket_id = socket_id; + + return 0; + +mapped: + munmap(addr, alloc_sz); +unmapped: + flags = MAP_FIXED; +#ifdef RTE_ARCH_PPC_64 + flags |= MAP_HUGETLB; +#endif + new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags); + if (new_addr != addr) { + if (new_addr != NULL) + munmap(new_addr, alloc_sz); + /* we're leaving a hole in our virtual address space. if + * somebody else maps this hole now, we could accidentally + * override it in the future. + */ + RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n"); + } +resized: + /* in-memory mode will never be single-file-segments mode */ + if (internal_config.single_file_segments) { + resize_hugefile(fd, path, list_idx, seg_idx, map_offset, + alloc_sz, false); + /* ignore failure, can't make it any worse */ + } else { + /* only remove file if we can take out a write lock */ + if (internal_config.hugepage_unlink == 0 && + internal_config.in_memory == 0 && + lock(fd, LOCK_EX) == 1) + unlink(path); + close(fd); + } + return -1; +} + +static int +free_seg(struct rte_memseg *ms, struct hugepage_info *hi, + unsigned int list_idx, unsigned int seg_idx) +{ + uint64_t map_offset; + char path[PATH_MAX]; + int fd, ret; + + /* erase page data */ + memset(ms->addr, 0, ms->len); + + if (mmap(ms->addr, ms->len, PROT_READ, + MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) == + MAP_FAILED) { + RTE_LOG(DEBUG, EAL, "couldn't unmap page\n"); + return -1; + } + + /* if we've already unlinked the page, nothing needs to be done */ + if (internal_config.hugepage_unlink) { + memset(ms, 0, sizeof(*ms)); + return 0; + } + + /* if we are not in single file segments mode, we're going to unmap the + * segment and thus drop the lock on original fd, but hugepage dir is + * now locked so we can take out another one without races. + */ + fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx); + if (fd < 0) + return -1; + + if (internal_config.single_file_segments) { + map_offset = seg_idx * ms->len; + if (resize_hugefile(fd, path, list_idx, seg_idx, map_offset, + ms->len, false)) + return -1; + ret = 0; + } else { + /* if we're able to take out a write lock, we're the last one + * holding onto this page. + */ + ret = lock(fd, LOCK_EX); + if (ret >= 0) { + /* no one else is using this page */ + if (ret == 1) + unlink(path); + } + /* closing fd will drop the lock */ + close(fd); + } + + memset(ms, 0, sizeof(*ms)); + + return ret < 0 ? -1 : 0; +} + +struct alloc_walk_param { + struct hugepage_info *hi; + struct rte_memseg **ms; + size_t page_sz; + unsigned int segs_allocated; + unsigned int n_segs; + int socket; + bool exact; +}; +static int +alloc_seg_walk(const struct rte_memseg_list *msl, void *arg) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct alloc_walk_param *wa = arg; + struct rte_memseg_list *cur_msl; + size_t page_sz; + int cur_idx, start_idx, j, dir_fd = -1; + unsigned int msl_idx, need, i; + + if (msl->page_sz != wa->page_sz) + return 0; + if (msl->socket_id != wa->socket) + return 0; + + page_sz = (size_t)msl->page_sz; + + msl_idx = msl - mcfg->memsegs; + cur_msl = &mcfg->memsegs[msl_idx]; + + need = wa->n_segs; + + /* try finding space in memseg list */ + cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0, need); + if (cur_idx < 0) + return 0; + start_idx = cur_idx; + + /* do not allow any page allocations during the time we're allocating, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + * + * during init, we already hold a write lock, so don't try to take out + * another one. + */ + if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) { + dir_fd = open(wa->hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } + } + + for (i = 0; i < need; i++, cur_idx++) { + struct rte_memseg *cur; + void *map_addr; + + cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx); + map_addr = RTE_PTR_ADD(cur_msl->base_va, + cur_idx * page_sz); + + if (alloc_seg(cur, map_addr, wa->socket, wa->hi, + msl_idx, cur_idx)) { + RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n", + need, i); + + /* if exact number wasn't requested, stop */ + if (!wa->exact) + goto out; + + /* clean up */ + for (j = start_idx; j < cur_idx; j++) { + struct rte_memseg *tmp; + struct rte_fbarray *arr = + &cur_msl->memseg_arr; + + tmp = rte_fbarray_get(arr, j); + rte_fbarray_set_free(arr, j); + + /* free_seg may attempt to create a file, which + * may fail. + */ + if (free_seg(tmp, wa->hi, msl_idx, j)) + RTE_LOG(DEBUG, EAL, "Cannot free page\n"); + } + /* clear the list */ + if (wa->ms) + memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs); + + if (dir_fd >= 0) + close(dir_fd); + return -1; + } + if (wa->ms) + wa->ms[i] = cur; + + rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx); + } +out: + wa->segs_allocated = i; + if (i > 0) + cur_msl->version++; + if (dir_fd >= 0) + close(dir_fd); + return 1; +} + +struct free_walk_param { + struct hugepage_info *hi; + struct rte_memseg *ms; +}; +static int +free_seg_walk(const struct rte_memseg_list *msl, void *arg) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *found_msl; + struct free_walk_param *wa = arg; + uintptr_t start_addr, end_addr; + int msl_idx, seg_idx, ret, dir_fd = -1; + + start_addr = (uintptr_t) msl->base_va; + end_addr = start_addr + msl->memseg_arr.len * (size_t)msl->page_sz; + + if ((uintptr_t)wa->ms->addr < start_addr || + (uintptr_t)wa->ms->addr >= end_addr) + return 0; + + msl_idx = msl - mcfg->memsegs; + seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz; + + /* msl is const */ + found_msl = &mcfg->memsegs[msl_idx]; + + /* do not allow any page allocations during the time we're freeing, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + * + * during init, we already hold a write lock, so don't try to take out + * another one. + */ + if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) { + dir_fd = open(wa->hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } + } + + found_msl->version++; + + rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx); + + ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx); + + if (dir_fd >= 0) + close(dir_fd); + + if (ret < 0) + return -1; + + return 1; +} + +int +eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz, + int socket, bool exact) +{ + int i, ret = -1; +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + bool have_numa = false; + int oldpolicy; + struct bitmask *oldmask; +#endif + struct alloc_walk_param wa; + struct hugepage_info *hi = NULL; + + memset(&wa, 0, sizeof(wa)); + + /* dynamic allocation not supported in legacy mode */ + if (internal_config.legacy_mem) + return -1; + + for (i = 0; i < (int) RTE_DIM(internal_config.hugepage_info); i++) { + if (page_sz == + internal_config.hugepage_info[i].hugepage_sz) { + hi = &internal_config.hugepage_info[i]; + break; + } + } + if (!hi) { + RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n", + __func__); + return -1; + } + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + if (check_numa()) { + oldmask = numa_allocate_nodemask(); + prepare_numa(&oldpolicy, oldmask, socket); + have_numa = true; + } +#endif + + wa.exact = exact; + wa.hi = hi; + wa.ms = ms; + wa.n_segs = n_segs; + wa.page_sz = page_sz; + wa.socket = socket; + wa.segs_allocated = 0; + + /* memalloc is locked, so it's safe to use thread-unsafe version */ + ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa); + if (ret == 0) { + RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n", + __func__); + ret = -1; + } else if (ret > 0) { + ret = (int)wa.segs_allocated; + } + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + if (have_numa) + restore_numa(&oldpolicy, oldmask); +#endif + return ret; +} + +struct rte_memseg * +eal_memalloc_alloc_seg(size_t page_sz, int socket) +{ + struct rte_memseg *ms; + if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0) + return NULL; + /* return pointer to newly allocated memseg */ + return ms; +} + +int +eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs) +{ + int seg, ret = 0; + + /* dynamic free not supported in legacy mode */ + if (internal_config.legacy_mem) + return -1; + + for (seg = 0; seg < n_segs; seg++) { + struct rte_memseg *cur = ms[seg]; + struct hugepage_info *hi = NULL; + struct free_walk_param wa; + int i, walk_res; + + /* if this page is marked as unfreeable, fail */ + if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) { + RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n"); + ret = -1; + continue; + } + + memset(&wa, 0, sizeof(wa)); + + for (i = 0; i < (int)RTE_DIM(internal_config.hugepage_info); + i++) { + hi = &internal_config.hugepage_info[i]; + if (cur->hugepage_sz == hi->hugepage_sz) + break; + } + if (i == (int)RTE_DIM(internal_config.hugepage_info)) { + RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n"); + ret = -1; + continue; + } + + wa.ms = cur; + wa.hi = hi; + + /* memalloc is locked, so it's safe to use thread-unsafe version + */ + walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk, + &wa); + if (walk_res == 1) + continue; + if (walk_res == 0) + RTE_LOG(ERR, EAL, "Couldn't find memseg list\n"); + ret = -1; + } + return ret; +} + +int +eal_memalloc_free_seg(struct rte_memseg *ms) +{ + /* dynamic free not supported in legacy mode */ + if (internal_config.legacy_mem) + return -1; + + return eal_memalloc_free_seg_bulk(&ms, 1); +} + +static int +sync_chunk(struct rte_memseg_list *primary_msl, + struct rte_memseg_list *local_msl, struct hugepage_info *hi, + unsigned int msl_idx, bool used, int start, int end) +{ + struct rte_fbarray *l_arr, *p_arr; + int i, ret, chunk_len, diff_len; + + l_arr = &local_msl->memseg_arr; + p_arr = &primary_msl->memseg_arr; + + /* we need to aggregate allocations/deallocations into bigger chunks, + * as we don't want to spam the user with per-page callbacks. + * + * to avoid any potential issues, we also want to trigger + * deallocation callbacks *before* we actually deallocate + * memory, so that the user application could wrap up its use + * before it goes away. + */ + + chunk_len = end - start; + + /* find how many contiguous pages we can map/unmap for this chunk */ + diff_len = used ? + rte_fbarray_find_contig_free(l_arr, start) : + rte_fbarray_find_contig_used(l_arr, start); + + /* has to be at least one page */ + if (diff_len < 1) + return -1; + + diff_len = RTE_MIN(chunk_len, diff_len); + + /* if we are freeing memory, notify the application */ + if (!used) { + struct rte_memseg *ms; + void *start_va; + size_t len, page_sz; + + ms = rte_fbarray_get(l_arr, start); + start_va = ms->addr; + page_sz = (size_t)primary_msl->page_sz; + len = page_sz * diff_len; + + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, + start_va, len); + } + + for (i = 0; i < diff_len; i++) { + struct rte_memseg *p_ms, *l_ms; + int seg_idx = start + i; + + l_ms = rte_fbarray_get(l_arr, seg_idx); + p_ms = rte_fbarray_get(p_arr, seg_idx); + + if (l_ms == NULL || p_ms == NULL) + return -1; + + if (used) { + ret = alloc_seg(l_ms, p_ms->addr, + p_ms->socket_id, hi, + msl_idx, seg_idx); + if (ret < 0) + return -1; + rte_fbarray_set_used(l_arr, seg_idx); + } else { + ret = free_seg(l_ms, hi, msl_idx, seg_idx); + rte_fbarray_set_free(l_arr, seg_idx); + if (ret < 0) + return -1; + } + } + + /* if we just allocated memory, notify the application */ + if (used) { + struct rte_memseg *ms; + void *start_va; + size_t len, page_sz; + + ms = rte_fbarray_get(l_arr, start); + start_va = ms->addr; + page_sz = (size_t)primary_msl->page_sz; + len = page_sz * diff_len; + + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, + start_va, len); + } + + /* calculate how much we can advance until next chunk */ + diff_len = used ? + rte_fbarray_find_contig_used(l_arr, start) : + rte_fbarray_find_contig_free(l_arr, start); + ret = RTE_MIN(chunk_len, diff_len); + + return ret; +} + +static int +sync_status(struct rte_memseg_list *primary_msl, + struct rte_memseg_list *local_msl, struct hugepage_info *hi, + unsigned int msl_idx, bool used) +{ + struct rte_fbarray *l_arr, *p_arr; + int p_idx, l_chunk_len, p_chunk_len, ret; + int start, end; + + /* this is a little bit tricky, but the basic idea is - walk both lists + * and spot any places where there are discrepancies. walking both lists + * and noting discrepancies in a single go is a hard problem, so we do + * it in two passes - first we spot any places where allocated segments + * mismatch (i.e. ensure that everything that's allocated in the primary + * is also allocated in the secondary), and then we do it by looking at + * free segments instead. + * + * we also need to aggregate changes into chunks, as we have to call + * callbacks per allocation, not per page. + */ + l_arr = &local_msl->memseg_arr; + p_arr = &primary_msl->memseg_arr; + + if (used) + p_idx = rte_fbarray_find_next_used(p_arr, 0); + else + p_idx = rte_fbarray_find_next_free(p_arr, 0); + + while (p_idx >= 0) { + int next_chunk_search_idx; + + if (used) { + p_chunk_len = rte_fbarray_find_contig_used(p_arr, + p_idx); + l_chunk_len = rte_fbarray_find_contig_used(l_arr, + p_idx); + } else { + p_chunk_len = rte_fbarray_find_contig_free(p_arr, + p_idx); + l_chunk_len = rte_fbarray_find_contig_free(l_arr, + p_idx); + } + /* best case scenario - no differences (or bigger, which will be + * fixed during next iteration), look for next chunk + */ + if (l_chunk_len >= p_chunk_len) { + next_chunk_search_idx = p_idx + p_chunk_len; + goto next_chunk; + } + + /* if both chunks start at the same point, skip parts we know + * are identical, and sync the rest. each call to sync_chunk + * will only sync contiguous segments, so we need to call this + * until we are sure there are no more differences in this + * chunk. + */ + start = p_idx + l_chunk_len; + end = p_idx + p_chunk_len; + do { + ret = sync_chunk(primary_msl, local_msl, hi, msl_idx, + used, start, end); + start += ret; + } while (start < end && ret >= 0); + /* if ret is negative, something went wrong */ + if (ret < 0) + return -1; + + next_chunk_search_idx = p_idx + p_chunk_len; +next_chunk: + /* skip to end of this chunk */ + if (used) { + p_idx = rte_fbarray_find_next_used(p_arr, + next_chunk_search_idx); + } else { + p_idx = rte_fbarray_find_next_free(p_arr, + next_chunk_search_idx); + } + } + return 0; +} + +static int +sync_existing(struct rte_memseg_list *primary_msl, + struct rte_memseg_list *local_msl, struct hugepage_info *hi, + unsigned int msl_idx) +{ + int ret, dir_fd; + + /* do not allow any page allocations during the time we're allocating, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + */ + dir_fd = open(hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__, + hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__, + hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } + + /* ensure all allocated space is the same in both lists */ + ret = sync_status(primary_msl, local_msl, hi, msl_idx, true); + if (ret < 0) + goto fail; + + /* ensure all unallocated space is the same in both lists */ + ret = sync_status(primary_msl, local_msl, hi, msl_idx, false); + if (ret < 0) + goto fail; + + /* update version number */ + local_msl->version = primary_msl->version; + + close(dir_fd); + + return 0; +fail: + close(dir_fd); + return -1; +} + +static int +sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *primary_msl, *local_msl; + struct hugepage_info *hi = NULL; + unsigned int i; + int msl_idx; + + msl_idx = msl - mcfg->memsegs; + primary_msl = &mcfg->memsegs[msl_idx]; + local_msl = &local_memsegs[msl_idx]; + + for (i = 0; i < RTE_DIM(internal_config.hugepage_info); i++) { + uint64_t cur_sz = + internal_config.hugepage_info[i].hugepage_sz; + uint64_t msl_sz = primary_msl->page_sz; + if (msl_sz == cur_sz) { + hi = &internal_config.hugepage_info[i]; + break; + } + } + if (!hi) { + RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n"); + return -1; + } + + /* if versions don't match, synchronize everything */ + if (local_msl->version != primary_msl->version && + sync_existing(primary_msl, local_msl, hi, msl_idx)) + return -1; + return 0; +} + + +int +eal_memalloc_sync_with_primary(void) +{ + /* nothing to be done in primary */ + if (rte_eal_process_type() == RTE_PROC_PRIMARY) + return 0; + + /* memalloc is locked, so it's safe to call thread-unsafe version */ + if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL)) + return -1; + return 0; +} + +static int +secondary_msl_create_walk(const struct rte_memseg_list *msl, + void *arg __rte_unused) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *primary_msl, *local_msl; + char name[PATH_MAX]; + int msl_idx, ret; + + msl_idx = msl - mcfg->memsegs; + primary_msl = &mcfg->memsegs[msl_idx]; + local_msl = &local_memsegs[msl_idx]; + + /* create distinct fbarrays for each secondary */ + snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i", + primary_msl->memseg_arr.name, getpid()); + + ret = rte_fbarray_init(&local_msl->memseg_arr, name, + primary_msl->memseg_arr.len, + primary_msl->memseg_arr.elt_sz); + if (ret < 0) { + RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n"); + return -1; + } + local_msl->base_va = primary_msl->base_va; + + return 0; +} + +static int +secondary_lock_list_create_walk(const struct rte_memseg_list *msl, + void *arg __rte_unused) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + unsigned int i, len; + int msl_idx; + int *data; + + msl_idx = msl - mcfg->memsegs; + len = msl->memseg_arr.len; + + /* ensure we have space to store lock fd per each possible segment */ + data = malloc(sizeof(int) * len); + if (data == NULL) { + RTE_LOG(ERR, EAL, "Unable to allocate space for lock descriptors\n"); + return -1; + } + /* set all fd's as invalid */ + for (i = 0; i < len; i++) + data[i] = -1; + + lock_fds[msl_idx].fds = data; + lock_fds[msl_idx].len = len; + lock_fds[msl_idx].count = 0; + lock_fds[msl_idx].memseg_list_fd = -1; + + return 0; +} + +int +eal_memalloc_init(void) +{ + if (rte_eal_process_type() == RTE_PROC_SECONDARY) + if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0) + return -1; + + /* initialize all of the lock fd lists */ + if (internal_config.single_file_segments) + if (rte_memseg_list_walk(secondary_lock_list_create_walk, NULL)) + return -1; + return 0; +} |