aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_eal/linuxapp/eal/eal_memalloc.c
diff options
context:
space:
mode:
authorLuca Boccassi <luca.boccassi@gmail.com>2018-08-14 18:52:30 +0100
committerLuca Boccassi <luca.boccassi@gmail.com>2018-08-14 18:53:17 +0100
commitb63264c8342e6a1b6971c79550d2af2024b6a4de (patch)
tree83114aac64286fe616506c0b3dfaec2ab86ef835 /lib/librte_eal/linuxapp/eal/eal_memalloc.c
parentca33590b6af032bff57d9cc70455660466a654b2 (diff)
New upstream version 18.08upstream/18.08
Change-Id: I32fdf5e5016556d9c0a6d88ddaf1fc468961790a Signed-off-by: Luca Boccassi <luca.boccassi@gmail.com>
Diffstat (limited to 'lib/librte_eal/linuxapp/eal/eal_memalloc.c')
-rw-r--r--lib/librte_eal/linuxapp/eal/eal_memalloc.c1363
1 files changed, 1363 insertions, 0 deletions
diff --git a/lib/librte_eal/linuxapp/eal/eal_memalloc.c b/lib/librte_eal/linuxapp/eal/eal_memalloc.c
new file mode 100644
index 00000000..aa95551a
--- /dev/null
+++ b/lib/librte_eal/linuxapp/eal/eal_memalloc.c
@@ -0,0 +1,1363 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017-2018 Intel Corporation
+ */
+
+#define _FILE_OFFSET_BITS 64
+#include <errno.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/queue.h>
+#include <sys/file.h>
+#include <unistd.h>
+#include <limits.h>
+#include <fcntl.h>
+#include <sys/ioctl.h>
+#include <sys/time.h>
+#include <signal.h>
+#include <setjmp.h>
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+#include <numa.h>
+#include <numaif.h>
+#endif
+#include <linux/falloc.h>
+#include <linux/mman.h> /* for hugetlb-related mmap flags */
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_eal_memconfig.h>
+#include <rte_eal.h>
+#include <rte_memory.h>
+#include <rte_spinlock.h>
+
+#include "eal_filesystem.h"
+#include "eal_internal_cfg.h"
+#include "eal_memalloc.h"
+#include "eal_private.h"
+
+const int anonymous_hugepages_supported =
+#ifdef MAP_HUGE_SHIFT
+ 1;
+#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
+#else
+ 0;
+#define RTE_MAP_HUGE_SHIFT 26
+#endif
+
+/*
+ * not all kernel version support fallocate on hugetlbfs, so fall back to
+ * ftruncate and disallow deallocation if fallocate is not supported.
+ */
+static int fallocate_supported = -1; /* unknown */
+
+/* for single-file segments, we need some kind of mechanism to keep track of
+ * which hugepages can be freed back to the system, and which cannot. we cannot
+ * use flock() because they don't allow locking parts of a file, and we cannot
+ * use fcntl() due to issues with their semantics, so we will have to rely on a
+ * bunch of lockfiles for each page.
+ *
+ * we cannot know how many pages a system will have in advance, but we do know
+ * that they come in lists, and we know lengths of these lists. so, simply store
+ * a malloc'd array of fd's indexed by list and segment index.
+ *
+ * they will be initialized at startup, and filled as we allocate/deallocate
+ * segments. also, use this to track memseg list proper fd.
+ */
+static struct {
+ int *fds; /**< dynamically allocated array of segment lock fd's */
+ int memseg_list_fd; /**< memseg list fd */
+ int len; /**< total length of the array */
+ int count; /**< entries used in an array */
+} lock_fds[RTE_MAX_MEMSEG_LISTS];
+
+/** local copy of a memory map, used to synchronize memory hotplug in MP */
+static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
+
+static sigjmp_buf huge_jmpenv;
+
+static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
+{
+ siglongjmp(huge_jmpenv, 1);
+}
+
+/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
+ * non-static local variable in the stack frame calling sigsetjmp might be
+ * clobbered by a call to longjmp.
+ */
+static int __rte_unused huge_wrap_sigsetjmp(void)
+{
+ return sigsetjmp(huge_jmpenv, 1);
+}
+
+static struct sigaction huge_action_old;
+static int huge_need_recover;
+
+static void __rte_unused
+huge_register_sigbus(void)
+{
+ sigset_t mask;
+ struct sigaction action;
+
+ sigemptyset(&mask);
+ sigaddset(&mask, SIGBUS);
+ action.sa_flags = 0;
+ action.sa_mask = mask;
+ action.sa_handler = huge_sigbus_handler;
+
+ huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
+}
+
+static void __rte_unused
+huge_recover_sigbus(void)
+{
+ if (huge_need_recover) {
+ sigaction(SIGBUS, &huge_action_old, NULL);
+ huge_need_recover = 0;
+ }
+}
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+static bool
+check_numa(void)
+{
+ bool ret = true;
+ /* Check if kernel supports NUMA. */
+ if (numa_available() != 0) {
+ RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
+ ret = false;
+ }
+ return ret;
+}
+
+static void
+prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
+{
+ RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
+ if (get_mempolicy(oldpolicy, oldmask->maskp,
+ oldmask->size + 1, 0, 0) < 0) {
+ RTE_LOG(ERR, EAL,
+ "Failed to get current mempolicy: %s. "
+ "Assuming MPOL_DEFAULT.\n", strerror(errno));
+ oldpolicy = MPOL_DEFAULT;
+ }
+ RTE_LOG(DEBUG, EAL,
+ "Setting policy MPOL_PREFERRED for socket %d\n",
+ socket_id);
+ numa_set_preferred(socket_id);
+}
+
+static void
+restore_numa(int *oldpolicy, struct bitmask *oldmask)
+{
+ RTE_LOG(DEBUG, EAL,
+ "Restoring previous memory policy: %d\n", *oldpolicy);
+ if (*oldpolicy == MPOL_DEFAULT) {
+ numa_set_localalloc();
+ } else if (set_mempolicy(*oldpolicy, oldmask->maskp,
+ oldmask->size + 1) < 0) {
+ RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
+ strerror(errno));
+ numa_set_localalloc();
+ }
+ numa_free_cpumask(oldmask);
+}
+#endif
+
+/*
+ * uses fstat to report the size of a file on disk
+ */
+static off_t
+get_file_size(int fd)
+{
+ struct stat st;
+ if (fstat(fd, &st) < 0)
+ return 0;
+ return st.st_size;
+}
+
+/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
+static int lock(int fd, int type)
+{
+ int ret;
+
+ /* flock may be interrupted */
+ do {
+ ret = flock(fd, type | LOCK_NB);
+ } while (ret && errno == EINTR);
+
+ if (ret && errno == EWOULDBLOCK) {
+ /* couldn't lock */
+ return 0;
+ } else if (ret) {
+ RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
+ __func__, strerror(errno));
+ return -1;
+ }
+ /* lock was successful */
+ return 1;
+}
+
+static int get_segment_lock_fd(int list_idx, int seg_idx)
+{
+ char path[PATH_MAX] = {0};
+ int fd;
+
+ if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds))
+ return -1;
+ if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len)
+ return -1;
+
+ fd = lock_fds[list_idx].fds[seg_idx];
+ /* does this lock already exist? */
+ if (fd >= 0)
+ return fd;
+
+ eal_get_hugefile_lock_path(path, sizeof(path),
+ list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+
+ fd = open(path, O_CREAT | O_RDWR, 0660);
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "%s(): error creating lockfile '%s': %s\n",
+ __func__, path, strerror(errno));
+ return -1;
+ }
+ /* take out a read lock */
+ if (lock(fd, LOCK_SH) != 1) {
+ RTE_LOG(ERR, EAL, "%s(): failed to take out a readlock on '%s': %s\n",
+ __func__, path, strerror(errno));
+ close(fd);
+ return -1;
+ }
+ /* store it for future reference */
+ lock_fds[list_idx].fds[seg_idx] = fd;
+ lock_fds[list_idx].count++;
+ return fd;
+}
+
+static int unlock_segment(int list_idx, int seg_idx)
+{
+ int fd, ret;
+
+ if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds))
+ return -1;
+ if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len)
+ return -1;
+
+ fd = lock_fds[list_idx].fds[seg_idx];
+
+ /* upgrade lock to exclusive to see if we can remove the lockfile */
+ ret = lock(fd, LOCK_EX);
+ if (ret == 1) {
+ /* we've succeeded in taking exclusive lock, this lockfile may
+ * be removed.
+ */
+ char path[PATH_MAX] = {0};
+ eal_get_hugefile_lock_path(path, sizeof(path),
+ list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+ if (unlink(path)) {
+ RTE_LOG(ERR, EAL, "%s(): error removing lockfile '%s': %s\n",
+ __func__, path, strerror(errno));
+ }
+ }
+ /* we don't want to leak the fd, so even if we fail to lock, close fd
+ * and remove it from list anyway.
+ */
+ close(fd);
+ lock_fds[list_idx].fds[seg_idx] = -1;
+ lock_fds[list_idx].count--;
+
+ if (ret < 0)
+ return -1;
+ return 0;
+}
+
+static int
+get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
+ unsigned int list_idx, unsigned int seg_idx)
+{
+ int fd;
+
+ if (internal_config.single_file_segments) {
+ /* create a hugepage file path */
+ eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
+
+ fd = lock_fds[list_idx].memseg_list_fd;
+
+ if (fd < 0) {
+ fd = open(path, O_CREAT | O_RDWR, 0600);
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
+ __func__, strerror(errno));
+ return -1;
+ }
+ /* take out a read lock and keep it indefinitely */
+ if (lock(fd, LOCK_SH) < 0) {
+ RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
+ __func__, strerror(errno));
+ close(fd);
+ return -1;
+ }
+ lock_fds[list_idx].memseg_list_fd = fd;
+ }
+ } else {
+ /* create a hugepage file path */
+ eal_get_hugefile_path(path, buflen, hi->hugedir,
+ list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+ fd = open(path, O_CREAT | O_RDWR, 0600);
+ if (fd < 0) {
+ RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
+ strerror(errno));
+ return -1;
+ }
+ /* take out a read lock */
+ if (lock(fd, LOCK_SH) < 0) {
+ RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
+ __func__, strerror(errno));
+ close(fd);
+ return -1;
+ }
+ }
+ return fd;
+}
+
+static int
+resize_hugefile(int fd, char *path, int list_idx, int seg_idx,
+ uint64_t fa_offset, uint64_t page_sz, bool grow)
+{
+ bool again = false;
+ do {
+ if (fallocate_supported == 0) {
+ /* we cannot deallocate memory if fallocate() is not
+ * supported, and hugepage file is already locked at
+ * creation, so no further synchronization needed.
+ */
+
+ if (!grow) {
+ RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
+ __func__);
+ return -1;
+ }
+ uint64_t new_size = fa_offset + page_sz;
+ uint64_t cur_size = get_file_size(fd);
+
+ /* fallocate isn't supported, fall back to ftruncate */
+ if (new_size > cur_size &&
+ ftruncate(fd, new_size) < 0) {
+ RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
+ __func__, strerror(errno));
+ return -1;
+ }
+ } else {
+ int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
+ FALLOC_FL_KEEP_SIZE;
+ int ret, lock_fd;
+
+ /* if fallocate() is supported, we need to take out a
+ * read lock on allocate (to prevent other processes
+ * from deallocating this page), and take out a write
+ * lock on deallocate (to ensure nobody else is using
+ * this page).
+ *
+ * read locks on page itself are already taken out at
+ * file creation, in get_seg_fd().
+ *
+ * we cannot rely on simple use of flock() call, because
+ * we need to be able to lock a section of the file,
+ * and we cannot use fcntl() locks, because of numerous
+ * problems with their semantics, so we will use
+ * deterministically named lock files for each section
+ * of the file.
+ *
+ * if we're shrinking the file, we want to upgrade our
+ * lock from shared to exclusive.
+ *
+ * lock_fd is an fd for a lockfile, not for the segment
+ * list.
+ */
+ lock_fd = get_segment_lock_fd(list_idx, seg_idx);
+
+ if (!grow) {
+ /* we are using this lockfile to determine
+ * whether this particular page is locked, as we
+ * are in single file segments mode and thus
+ * cannot use regular flock() to get this info.
+ *
+ * we want to try and take out an exclusive lock
+ * on the lock file to determine if we're the
+ * last ones using this page, and if not, we
+ * won't be shrinking it, and will instead exit
+ * prematurely.
+ */
+ ret = lock(lock_fd, LOCK_EX);
+
+ /* drop the lock on the lockfile, so that even
+ * if we couldn't shrink the file ourselves, we
+ * are signalling to other processes that we're
+ * no longer using this page.
+ */
+ if (unlock_segment(list_idx, seg_idx))
+ RTE_LOG(ERR, EAL, "Could not unlock segment\n");
+
+ /* additionally, if this was the last lock on
+ * this segment list, we can safely close the
+ * page file fd, so that one of the processes
+ * could then delete the file after shrinking.
+ */
+ if (ret < 1 && lock_fds[list_idx].count == 0) {
+ close(fd);
+ lock_fds[list_idx].memseg_list_fd = -1;
+ }
+
+ if (ret < 0) {
+ RTE_LOG(ERR, EAL, "Could not lock segment\n");
+ return -1;
+ }
+ if (ret == 0)
+ /* failed to lock, not an error. */
+ return 0;
+ }
+
+ /* grow or shrink the file */
+ ret = fallocate(fd, flags, fa_offset, page_sz);
+
+ if (ret < 0) {
+ if (fallocate_supported == -1 &&
+ errno == ENOTSUP) {
+ RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
+ __func__);
+ again = true;
+ fallocate_supported = 0;
+ } else {
+ RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
+ __func__,
+ strerror(errno));
+ return -1;
+ }
+ } else {
+ fallocate_supported = 1;
+
+ /* we've grew/shrunk the file, and we hold an
+ * exclusive lock now. check if there are no
+ * more segments active in this segment list,
+ * and remove the file if there aren't.
+ */
+ if (lock_fds[list_idx].count == 0) {
+ if (unlink(path))
+ RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
+ __func__, path,
+ strerror(errno));
+ close(fd);
+ lock_fds[list_idx].memseg_list_fd = -1;
+ }
+ }
+ }
+ } while (again);
+ return 0;
+}
+
+static int
+alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
+ struct hugepage_info *hi, unsigned int list_idx,
+ unsigned int seg_idx)
+{
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ int cur_socket_id = 0;
+#endif
+ uint64_t map_offset;
+ rte_iova_t iova;
+ void *va;
+ char path[PATH_MAX];
+ int ret = 0;
+ int fd;
+ size_t alloc_sz;
+ int flags;
+ void *new_addr;
+
+ alloc_sz = hi->hugepage_sz;
+ if (!internal_config.single_file_segments &&
+ internal_config.in_memory &&
+ anonymous_hugepages_supported) {
+ int log2, flags;
+
+ log2 = rte_log2_u32(alloc_sz);
+ /* as per mmap() manpage, all page sizes are log2 of page size
+ * shifted by MAP_HUGE_SHIFT
+ */
+ flags = (log2 << RTE_MAP_HUGE_SHIFT) | MAP_HUGETLB | MAP_FIXED |
+ MAP_PRIVATE | MAP_ANONYMOUS;
+ fd = -1;
+ va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, flags, -1, 0);
+
+ /* single-file segments codepath will never be active because
+ * in-memory mode is incompatible with it and it's stopped at
+ * EAL initialization stage, however the compiler doesn't know
+ * that and complains about map_offset being used uninitialized
+ * on failure codepaths while having in-memory mode enabled. so,
+ * assign a value here.
+ */
+ map_offset = 0;
+ } else {
+ /* takes out a read lock on segment or segment list */
+ fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
+ return -1;
+ }
+
+ if (internal_config.single_file_segments) {
+ map_offset = seg_idx * alloc_sz;
+ ret = resize_hugefile(fd, path, list_idx, seg_idx,
+ map_offset, alloc_sz, true);
+ if (ret < 0)
+ goto resized;
+ } else {
+ map_offset = 0;
+ if (ftruncate(fd, alloc_sz) < 0) {
+ RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
+ __func__, strerror(errno));
+ goto resized;
+ }
+ if (internal_config.hugepage_unlink) {
+ if (unlink(path)) {
+ RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
+ __func__, strerror(errno));
+ goto resized;
+ }
+ }
+ }
+
+ /*
+ * map the segment, and populate page tables, the kernel fills
+ * this segment with zeros if it's a new page.
+ */
+ va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE,
+ MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd,
+ map_offset);
+ }
+
+ if (va == MAP_FAILED) {
+ RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
+ strerror(errno));
+ /* mmap failed, but the previous region might have been
+ * unmapped anyway. try to remap it
+ */
+ goto unmapped;
+ }
+ if (va != addr) {
+ RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
+ munmap(va, alloc_sz);
+ goto resized;
+ }
+
+ /* In linux, hugetlb limitations, like cgroup, are
+ * enforced at fault time instead of mmap(), even
+ * with the option of MAP_POPULATE. Kernel will send
+ * a SIGBUS signal. To avoid to be killed, save stack
+ * environment here, if SIGBUS happens, we can jump
+ * back here.
+ */
+ if (huge_wrap_sigsetjmp()) {
+ RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
+ (unsigned int)(alloc_sz >> 20));
+ goto mapped;
+ }
+
+ /* we need to trigger a write to the page to enforce page fault and
+ * ensure that page is accessible to us, but we can't overwrite value
+ * that is already there, so read the old value, and write itback.
+ * kernel populates the page with zeroes initially.
+ */
+ *(volatile int *)addr = *(volatile int *)addr;
+
+ iova = rte_mem_virt2iova(addr);
+ if (iova == RTE_BAD_PHYS_ADDR) {
+ RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
+ __func__);
+ goto mapped;
+ }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ move_pages(getpid(), 1, &addr, NULL, &cur_socket_id, 0);
+
+ if (cur_socket_id != socket_id) {
+ RTE_LOG(DEBUG, EAL,
+ "%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
+ __func__, socket_id, cur_socket_id);
+ goto mapped;
+ }
+#endif
+ /* for non-single file segments that aren't in-memory, we can close fd
+ * here */
+ if (!internal_config.single_file_segments && !internal_config.in_memory)
+ close(fd);
+
+ ms->addr = addr;
+ ms->hugepage_sz = alloc_sz;
+ ms->len = alloc_sz;
+ ms->nchannel = rte_memory_get_nchannel();
+ ms->nrank = rte_memory_get_nrank();
+ ms->iova = iova;
+ ms->socket_id = socket_id;
+
+ return 0;
+
+mapped:
+ munmap(addr, alloc_sz);
+unmapped:
+ flags = MAP_FIXED;
+#ifdef RTE_ARCH_PPC_64
+ flags |= MAP_HUGETLB;
+#endif
+ new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
+ if (new_addr != addr) {
+ if (new_addr != NULL)
+ munmap(new_addr, alloc_sz);
+ /* we're leaving a hole in our virtual address space. if
+ * somebody else maps this hole now, we could accidentally
+ * override it in the future.
+ */
+ RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
+ }
+resized:
+ /* in-memory mode will never be single-file-segments mode */
+ if (internal_config.single_file_segments) {
+ resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
+ alloc_sz, false);
+ /* ignore failure, can't make it any worse */
+ } else {
+ /* only remove file if we can take out a write lock */
+ if (internal_config.hugepage_unlink == 0 &&
+ internal_config.in_memory == 0 &&
+ lock(fd, LOCK_EX) == 1)
+ unlink(path);
+ close(fd);
+ }
+ return -1;
+}
+
+static int
+free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
+ unsigned int list_idx, unsigned int seg_idx)
+{
+ uint64_t map_offset;
+ char path[PATH_MAX];
+ int fd, ret;
+
+ /* erase page data */
+ memset(ms->addr, 0, ms->len);
+
+ if (mmap(ms->addr, ms->len, PROT_READ,
+ MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
+ MAP_FAILED) {
+ RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
+ return -1;
+ }
+
+ /* if we've already unlinked the page, nothing needs to be done */
+ if (internal_config.hugepage_unlink) {
+ memset(ms, 0, sizeof(*ms));
+ return 0;
+ }
+
+ /* if we are not in single file segments mode, we're going to unmap the
+ * segment and thus drop the lock on original fd, but hugepage dir is
+ * now locked so we can take out another one without races.
+ */
+ fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
+ if (fd < 0)
+ return -1;
+
+ if (internal_config.single_file_segments) {
+ map_offset = seg_idx * ms->len;
+ if (resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
+ ms->len, false))
+ return -1;
+ ret = 0;
+ } else {
+ /* if we're able to take out a write lock, we're the last one
+ * holding onto this page.
+ */
+ ret = lock(fd, LOCK_EX);
+ if (ret >= 0) {
+ /* no one else is using this page */
+ if (ret == 1)
+ unlink(path);
+ }
+ /* closing fd will drop the lock */
+ close(fd);
+ }
+
+ memset(ms, 0, sizeof(*ms));
+
+ return ret < 0 ? -1 : 0;
+}
+
+struct alloc_walk_param {
+ struct hugepage_info *hi;
+ struct rte_memseg **ms;
+ size_t page_sz;
+ unsigned int segs_allocated;
+ unsigned int n_segs;
+ int socket;
+ bool exact;
+};
+static int
+alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ struct alloc_walk_param *wa = arg;
+ struct rte_memseg_list *cur_msl;
+ size_t page_sz;
+ int cur_idx, start_idx, j, dir_fd = -1;
+ unsigned int msl_idx, need, i;
+
+ if (msl->page_sz != wa->page_sz)
+ return 0;
+ if (msl->socket_id != wa->socket)
+ return 0;
+
+ page_sz = (size_t)msl->page_sz;
+
+ msl_idx = msl - mcfg->memsegs;
+ cur_msl = &mcfg->memsegs[msl_idx];
+
+ need = wa->n_segs;
+
+ /* try finding space in memseg list */
+ cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0, need);
+ if (cur_idx < 0)
+ return 0;
+ start_idx = cur_idx;
+
+ /* do not allow any page allocations during the time we're allocating,
+ * because file creation and locking operations are not atomic,
+ * and we might be the first or the last ones to use a particular page,
+ * so we need to ensure atomicity of every operation.
+ *
+ * during init, we already hold a write lock, so don't try to take out
+ * another one.
+ */
+ if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
+ dir_fd = open(wa->hi->hugedir, O_RDONLY);
+ if (dir_fd < 0) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
+ __func__, wa->hi->hugedir, strerror(errno));
+ return -1;
+ }
+ /* blocking writelock */
+ if (flock(dir_fd, LOCK_EX)) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
+ __func__, wa->hi->hugedir, strerror(errno));
+ close(dir_fd);
+ return -1;
+ }
+ }
+
+ for (i = 0; i < need; i++, cur_idx++) {
+ struct rte_memseg *cur;
+ void *map_addr;
+
+ cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
+ map_addr = RTE_PTR_ADD(cur_msl->base_va,
+ cur_idx * page_sz);
+
+ if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
+ msl_idx, cur_idx)) {
+ RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
+ need, i);
+
+ /* if exact number wasn't requested, stop */
+ if (!wa->exact)
+ goto out;
+
+ /* clean up */
+ for (j = start_idx; j < cur_idx; j++) {
+ struct rte_memseg *tmp;
+ struct rte_fbarray *arr =
+ &cur_msl->memseg_arr;
+
+ tmp = rte_fbarray_get(arr, j);
+ rte_fbarray_set_free(arr, j);
+
+ /* free_seg may attempt to create a file, which
+ * may fail.
+ */
+ if (free_seg(tmp, wa->hi, msl_idx, j))
+ RTE_LOG(DEBUG, EAL, "Cannot free page\n");
+ }
+ /* clear the list */
+ if (wa->ms)
+ memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
+
+ if (dir_fd >= 0)
+ close(dir_fd);
+ return -1;
+ }
+ if (wa->ms)
+ wa->ms[i] = cur;
+
+ rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
+ }
+out:
+ wa->segs_allocated = i;
+ if (i > 0)
+ cur_msl->version++;
+ if (dir_fd >= 0)
+ close(dir_fd);
+ return 1;
+}
+
+struct free_walk_param {
+ struct hugepage_info *hi;
+ struct rte_memseg *ms;
+};
+static int
+free_seg_walk(const struct rte_memseg_list *msl, void *arg)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ struct rte_memseg_list *found_msl;
+ struct free_walk_param *wa = arg;
+ uintptr_t start_addr, end_addr;
+ int msl_idx, seg_idx, ret, dir_fd = -1;
+
+ start_addr = (uintptr_t) msl->base_va;
+ end_addr = start_addr + msl->memseg_arr.len * (size_t)msl->page_sz;
+
+ if ((uintptr_t)wa->ms->addr < start_addr ||
+ (uintptr_t)wa->ms->addr >= end_addr)
+ return 0;
+
+ msl_idx = msl - mcfg->memsegs;
+ seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
+
+ /* msl is const */
+ found_msl = &mcfg->memsegs[msl_idx];
+
+ /* do not allow any page allocations during the time we're freeing,
+ * because file creation and locking operations are not atomic,
+ * and we might be the first or the last ones to use a particular page,
+ * so we need to ensure atomicity of every operation.
+ *
+ * during init, we already hold a write lock, so don't try to take out
+ * another one.
+ */
+ if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
+ dir_fd = open(wa->hi->hugedir, O_RDONLY);
+ if (dir_fd < 0) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
+ __func__, wa->hi->hugedir, strerror(errno));
+ return -1;
+ }
+ /* blocking writelock */
+ if (flock(dir_fd, LOCK_EX)) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
+ __func__, wa->hi->hugedir, strerror(errno));
+ close(dir_fd);
+ return -1;
+ }
+ }
+
+ found_msl->version++;
+
+ rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
+
+ ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
+
+ if (dir_fd >= 0)
+ close(dir_fd);
+
+ if (ret < 0)
+ return -1;
+
+ return 1;
+}
+
+int
+eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
+ int socket, bool exact)
+{
+ int i, ret = -1;
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ bool have_numa = false;
+ int oldpolicy;
+ struct bitmask *oldmask;
+#endif
+ struct alloc_walk_param wa;
+ struct hugepage_info *hi = NULL;
+
+ memset(&wa, 0, sizeof(wa));
+
+ /* dynamic allocation not supported in legacy mode */
+ if (internal_config.legacy_mem)
+ return -1;
+
+ for (i = 0; i < (int) RTE_DIM(internal_config.hugepage_info); i++) {
+ if (page_sz ==
+ internal_config.hugepage_info[i].hugepage_sz) {
+ hi = &internal_config.hugepage_info[i];
+ break;
+ }
+ }
+ if (!hi) {
+ RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
+ __func__);
+ return -1;
+ }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ if (check_numa()) {
+ oldmask = numa_allocate_nodemask();
+ prepare_numa(&oldpolicy, oldmask, socket);
+ have_numa = true;
+ }
+#endif
+
+ wa.exact = exact;
+ wa.hi = hi;
+ wa.ms = ms;
+ wa.n_segs = n_segs;
+ wa.page_sz = page_sz;
+ wa.socket = socket;
+ wa.segs_allocated = 0;
+
+ /* memalloc is locked, so it's safe to use thread-unsafe version */
+ ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
+ if (ret == 0) {
+ RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
+ __func__);
+ ret = -1;
+ } else if (ret > 0) {
+ ret = (int)wa.segs_allocated;
+ }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+ if (have_numa)
+ restore_numa(&oldpolicy, oldmask);
+#endif
+ return ret;
+}
+
+struct rte_memseg *
+eal_memalloc_alloc_seg(size_t page_sz, int socket)
+{
+ struct rte_memseg *ms;
+ if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
+ return NULL;
+ /* return pointer to newly allocated memseg */
+ return ms;
+}
+
+int
+eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
+{
+ int seg, ret = 0;
+
+ /* dynamic free not supported in legacy mode */
+ if (internal_config.legacy_mem)
+ return -1;
+
+ for (seg = 0; seg < n_segs; seg++) {
+ struct rte_memseg *cur = ms[seg];
+ struct hugepage_info *hi = NULL;
+ struct free_walk_param wa;
+ int i, walk_res;
+
+ /* if this page is marked as unfreeable, fail */
+ if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
+ RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
+ ret = -1;
+ continue;
+ }
+
+ memset(&wa, 0, sizeof(wa));
+
+ for (i = 0; i < (int)RTE_DIM(internal_config.hugepage_info);
+ i++) {
+ hi = &internal_config.hugepage_info[i];
+ if (cur->hugepage_sz == hi->hugepage_sz)
+ break;
+ }
+ if (i == (int)RTE_DIM(internal_config.hugepage_info)) {
+ RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
+ ret = -1;
+ continue;
+ }
+
+ wa.ms = cur;
+ wa.hi = hi;
+
+ /* memalloc is locked, so it's safe to use thread-unsafe version
+ */
+ walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
+ &wa);
+ if (walk_res == 1)
+ continue;
+ if (walk_res == 0)
+ RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
+ ret = -1;
+ }
+ return ret;
+}
+
+int
+eal_memalloc_free_seg(struct rte_memseg *ms)
+{
+ /* dynamic free not supported in legacy mode */
+ if (internal_config.legacy_mem)
+ return -1;
+
+ return eal_memalloc_free_seg_bulk(&ms, 1);
+}
+
+static int
+sync_chunk(struct rte_memseg_list *primary_msl,
+ struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+ unsigned int msl_idx, bool used, int start, int end)
+{
+ struct rte_fbarray *l_arr, *p_arr;
+ int i, ret, chunk_len, diff_len;
+
+ l_arr = &local_msl->memseg_arr;
+ p_arr = &primary_msl->memseg_arr;
+
+ /* we need to aggregate allocations/deallocations into bigger chunks,
+ * as we don't want to spam the user with per-page callbacks.
+ *
+ * to avoid any potential issues, we also want to trigger
+ * deallocation callbacks *before* we actually deallocate
+ * memory, so that the user application could wrap up its use
+ * before it goes away.
+ */
+
+ chunk_len = end - start;
+
+ /* find how many contiguous pages we can map/unmap for this chunk */
+ diff_len = used ?
+ rte_fbarray_find_contig_free(l_arr, start) :
+ rte_fbarray_find_contig_used(l_arr, start);
+
+ /* has to be at least one page */
+ if (diff_len < 1)
+ return -1;
+
+ diff_len = RTE_MIN(chunk_len, diff_len);
+
+ /* if we are freeing memory, notify the application */
+ if (!used) {
+ struct rte_memseg *ms;
+ void *start_va;
+ size_t len, page_sz;
+
+ ms = rte_fbarray_get(l_arr, start);
+ start_va = ms->addr;
+ page_sz = (size_t)primary_msl->page_sz;
+ len = page_sz * diff_len;
+
+ eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
+ start_va, len);
+ }
+
+ for (i = 0; i < diff_len; i++) {
+ struct rte_memseg *p_ms, *l_ms;
+ int seg_idx = start + i;
+
+ l_ms = rte_fbarray_get(l_arr, seg_idx);
+ p_ms = rte_fbarray_get(p_arr, seg_idx);
+
+ if (l_ms == NULL || p_ms == NULL)
+ return -1;
+
+ if (used) {
+ ret = alloc_seg(l_ms, p_ms->addr,
+ p_ms->socket_id, hi,
+ msl_idx, seg_idx);
+ if (ret < 0)
+ return -1;
+ rte_fbarray_set_used(l_arr, seg_idx);
+ } else {
+ ret = free_seg(l_ms, hi, msl_idx, seg_idx);
+ rte_fbarray_set_free(l_arr, seg_idx);
+ if (ret < 0)
+ return -1;
+ }
+ }
+
+ /* if we just allocated memory, notify the application */
+ if (used) {
+ struct rte_memseg *ms;
+ void *start_va;
+ size_t len, page_sz;
+
+ ms = rte_fbarray_get(l_arr, start);
+ start_va = ms->addr;
+ page_sz = (size_t)primary_msl->page_sz;
+ len = page_sz * diff_len;
+
+ eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
+ start_va, len);
+ }
+
+ /* calculate how much we can advance until next chunk */
+ diff_len = used ?
+ rte_fbarray_find_contig_used(l_arr, start) :
+ rte_fbarray_find_contig_free(l_arr, start);
+ ret = RTE_MIN(chunk_len, diff_len);
+
+ return ret;
+}
+
+static int
+sync_status(struct rte_memseg_list *primary_msl,
+ struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+ unsigned int msl_idx, bool used)
+{
+ struct rte_fbarray *l_arr, *p_arr;
+ int p_idx, l_chunk_len, p_chunk_len, ret;
+ int start, end;
+
+ /* this is a little bit tricky, but the basic idea is - walk both lists
+ * and spot any places where there are discrepancies. walking both lists
+ * and noting discrepancies in a single go is a hard problem, so we do
+ * it in two passes - first we spot any places where allocated segments
+ * mismatch (i.e. ensure that everything that's allocated in the primary
+ * is also allocated in the secondary), and then we do it by looking at
+ * free segments instead.
+ *
+ * we also need to aggregate changes into chunks, as we have to call
+ * callbacks per allocation, not per page.
+ */
+ l_arr = &local_msl->memseg_arr;
+ p_arr = &primary_msl->memseg_arr;
+
+ if (used)
+ p_idx = rte_fbarray_find_next_used(p_arr, 0);
+ else
+ p_idx = rte_fbarray_find_next_free(p_arr, 0);
+
+ while (p_idx >= 0) {
+ int next_chunk_search_idx;
+
+ if (used) {
+ p_chunk_len = rte_fbarray_find_contig_used(p_arr,
+ p_idx);
+ l_chunk_len = rte_fbarray_find_contig_used(l_arr,
+ p_idx);
+ } else {
+ p_chunk_len = rte_fbarray_find_contig_free(p_arr,
+ p_idx);
+ l_chunk_len = rte_fbarray_find_contig_free(l_arr,
+ p_idx);
+ }
+ /* best case scenario - no differences (or bigger, which will be
+ * fixed during next iteration), look for next chunk
+ */
+ if (l_chunk_len >= p_chunk_len) {
+ next_chunk_search_idx = p_idx + p_chunk_len;
+ goto next_chunk;
+ }
+
+ /* if both chunks start at the same point, skip parts we know
+ * are identical, and sync the rest. each call to sync_chunk
+ * will only sync contiguous segments, so we need to call this
+ * until we are sure there are no more differences in this
+ * chunk.
+ */
+ start = p_idx + l_chunk_len;
+ end = p_idx + p_chunk_len;
+ do {
+ ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
+ used, start, end);
+ start += ret;
+ } while (start < end && ret >= 0);
+ /* if ret is negative, something went wrong */
+ if (ret < 0)
+ return -1;
+
+ next_chunk_search_idx = p_idx + p_chunk_len;
+next_chunk:
+ /* skip to end of this chunk */
+ if (used) {
+ p_idx = rte_fbarray_find_next_used(p_arr,
+ next_chunk_search_idx);
+ } else {
+ p_idx = rte_fbarray_find_next_free(p_arr,
+ next_chunk_search_idx);
+ }
+ }
+ return 0;
+}
+
+static int
+sync_existing(struct rte_memseg_list *primary_msl,
+ struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+ unsigned int msl_idx)
+{
+ int ret, dir_fd;
+
+ /* do not allow any page allocations during the time we're allocating,
+ * because file creation and locking operations are not atomic,
+ * and we might be the first or the last ones to use a particular page,
+ * so we need to ensure atomicity of every operation.
+ */
+ dir_fd = open(hi->hugedir, O_RDONLY);
+ if (dir_fd < 0) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
+ hi->hugedir, strerror(errno));
+ return -1;
+ }
+ /* blocking writelock */
+ if (flock(dir_fd, LOCK_EX)) {
+ RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
+ hi->hugedir, strerror(errno));
+ close(dir_fd);
+ return -1;
+ }
+
+ /* ensure all allocated space is the same in both lists */
+ ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
+ if (ret < 0)
+ goto fail;
+
+ /* ensure all unallocated space is the same in both lists */
+ ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
+ if (ret < 0)
+ goto fail;
+
+ /* update version number */
+ local_msl->version = primary_msl->version;
+
+ close(dir_fd);
+
+ return 0;
+fail:
+ close(dir_fd);
+ return -1;
+}
+
+static int
+sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ struct rte_memseg_list *primary_msl, *local_msl;
+ struct hugepage_info *hi = NULL;
+ unsigned int i;
+ int msl_idx;
+
+ msl_idx = msl - mcfg->memsegs;
+ primary_msl = &mcfg->memsegs[msl_idx];
+ local_msl = &local_memsegs[msl_idx];
+
+ for (i = 0; i < RTE_DIM(internal_config.hugepage_info); i++) {
+ uint64_t cur_sz =
+ internal_config.hugepage_info[i].hugepage_sz;
+ uint64_t msl_sz = primary_msl->page_sz;
+ if (msl_sz == cur_sz) {
+ hi = &internal_config.hugepage_info[i];
+ break;
+ }
+ }
+ if (!hi) {
+ RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
+ return -1;
+ }
+
+ /* if versions don't match, synchronize everything */
+ if (local_msl->version != primary_msl->version &&
+ sync_existing(primary_msl, local_msl, hi, msl_idx))
+ return -1;
+ return 0;
+}
+
+
+int
+eal_memalloc_sync_with_primary(void)
+{
+ /* nothing to be done in primary */
+ if (rte_eal_process_type() == RTE_PROC_PRIMARY)
+ return 0;
+
+ /* memalloc is locked, so it's safe to call thread-unsafe version */
+ if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
+ return -1;
+ return 0;
+}
+
+static int
+secondary_msl_create_walk(const struct rte_memseg_list *msl,
+ void *arg __rte_unused)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ struct rte_memseg_list *primary_msl, *local_msl;
+ char name[PATH_MAX];
+ int msl_idx, ret;
+
+ msl_idx = msl - mcfg->memsegs;
+ primary_msl = &mcfg->memsegs[msl_idx];
+ local_msl = &local_memsegs[msl_idx];
+
+ /* create distinct fbarrays for each secondary */
+ snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
+ primary_msl->memseg_arr.name, getpid());
+
+ ret = rte_fbarray_init(&local_msl->memseg_arr, name,
+ primary_msl->memseg_arr.len,
+ primary_msl->memseg_arr.elt_sz);
+ if (ret < 0) {
+ RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
+ return -1;
+ }
+ local_msl->base_va = primary_msl->base_va;
+
+ return 0;
+}
+
+static int
+secondary_lock_list_create_walk(const struct rte_memseg_list *msl,
+ void *arg __rte_unused)
+{
+ struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+ unsigned int i, len;
+ int msl_idx;
+ int *data;
+
+ msl_idx = msl - mcfg->memsegs;
+ len = msl->memseg_arr.len;
+
+ /* ensure we have space to store lock fd per each possible segment */
+ data = malloc(sizeof(int) * len);
+ if (data == NULL) {
+ RTE_LOG(ERR, EAL, "Unable to allocate space for lock descriptors\n");
+ return -1;
+ }
+ /* set all fd's as invalid */
+ for (i = 0; i < len; i++)
+ data[i] = -1;
+
+ lock_fds[msl_idx].fds = data;
+ lock_fds[msl_idx].len = len;
+ lock_fds[msl_idx].count = 0;
+ lock_fds[msl_idx].memseg_list_fd = -1;
+
+ return 0;
+}
+
+int
+eal_memalloc_init(void)
+{
+ if (rte_eal_process_type() == RTE_PROC_SECONDARY)
+ if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
+ return -1;
+
+ /* initialize all of the lock fd lists */
+ if (internal_config.single_file_segments)
+ if (rte_memseg_list_walk(secondary_lock_list_create_walk, NULL))
+ return -1;
+ return 0;
+}