aboutsummaryrefslogtreecommitdiffstats
path: root/app/test/test_memcpy_perf.c
diff options
context:
space:
mode:
Diffstat (limited to 'app/test/test_memcpy_perf.c')
-rw-r--r--app/test/test_memcpy_perf.c358
1 files changed, 358 insertions, 0 deletions
diff --git a/app/test/test_memcpy_perf.c b/app/test/test_memcpy_perf.c
new file mode 100644
index 00000000..be69eada
--- /dev/null
+++ b/app/test/test_memcpy_perf.c
@@ -0,0 +1,358 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_random.h>
+#include <rte_malloc.h>
+
+#include <rte_memcpy.h>
+
+#include "test.h"
+
+/*
+ * Set this to the maximum buffer size you want to test. If it is 0, then the
+ * values in the buf_sizes[] array below will be used.
+ */
+#define TEST_VALUE_RANGE 0
+
+/* List of buffer sizes to test */
+#if TEST_VALUE_RANGE == 0
+static size_t buf_sizes[] = {
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
+ 129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
+ 449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
+ 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
+};
+/* MUST be as large as largest packet size above */
+#define SMALL_BUFFER_SIZE 8192
+#else /* TEST_VALUE_RANGE != 0 */
+static size_t buf_sizes[TEST_VALUE_RANGE];
+#define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
+#endif /* TEST_VALUE_RANGE == 0 */
+
+
+/*
+ * Arrays of this size are used for measuring uncached memory accesses by
+ * picking a random location within the buffer. Make this smaller if there are
+ * memory allocation errors.
+ */
+#define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
+
+/* How many times to run timing loop for performance tests */
+#define TEST_ITERATIONS 1000000
+#define TEST_BATCH_SIZE 100
+
+/* Data is aligned on this many bytes (power of 2) */
+#ifdef RTE_MACHINE_CPUFLAG_AVX512F
+#define ALIGNMENT_UNIT 64
+#elif defined RTE_MACHINE_CPUFLAG_AVX2
+#define ALIGNMENT_UNIT 32
+#else /* RTE_MACHINE_CPUFLAG */
+#define ALIGNMENT_UNIT 16
+#endif /* RTE_MACHINE_CPUFLAG */
+
+/*
+ * Pointers used in performance tests. The two large buffers are for uncached
+ * access where random addresses within the buffer are used for each
+ * memcpy. The two small buffers are for cached access.
+ */
+static uint8_t *large_buf_read, *large_buf_write;
+static uint8_t *small_buf_read, *small_buf_write;
+
+/* Initialise data buffers. */
+static int
+init_buffers(void)
+{
+ unsigned i;
+
+ large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
+ if (large_buf_read == NULL)
+ goto error_large_buf_read;
+
+ large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
+ if (large_buf_write == NULL)
+ goto error_large_buf_write;
+
+ small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
+ if (small_buf_read == NULL)
+ goto error_small_buf_read;
+
+ small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
+ if (small_buf_write == NULL)
+ goto error_small_buf_write;
+
+ for (i = 0; i < LARGE_BUFFER_SIZE; i++)
+ large_buf_read[i] = rte_rand();
+ for (i = 0; i < SMALL_BUFFER_SIZE; i++)
+ small_buf_read[i] = rte_rand();
+
+ return 0;
+
+error_small_buf_write:
+ rte_free(small_buf_read);
+error_small_buf_read:
+ rte_free(large_buf_write);
+error_large_buf_write:
+ rte_free(large_buf_read);
+error_large_buf_read:
+ printf("ERROR: not enough memory\n");
+ return -1;
+}
+
+/* Cleanup data buffers */
+static void
+free_buffers(void)
+{
+ rte_free(large_buf_read);
+ rte_free(large_buf_write);
+ rte_free(small_buf_read);
+ rte_free(small_buf_write);
+}
+
+/*
+ * Get a random offset into large array, with enough space needed to perform
+ * max copy size. Offset is aligned, uoffset is used for unalignment setting.
+ */
+static inline size_t
+get_rand_offset(size_t uoffset)
+{
+ return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
+ ~(ALIGNMENT_UNIT - 1)) + uoffset;
+}
+
+/* Fill in source and destination addresses. */
+static inline void
+fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
+ size_t *src_addr, int is_src_cached, size_t src_uoffset)
+{
+ unsigned int i;
+
+ for (i = 0; i < TEST_BATCH_SIZE; i++) {
+ dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
+ src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
+ }
+}
+
+/*
+ * WORKAROUND: For some reason the first test doing an uncached write
+ * takes a very long time (~25 times longer than is expected). So we do
+ * it once without timing.
+ */
+static void
+do_uncached_write(uint8_t *dst, int is_dst_cached,
+ const uint8_t *src, int is_src_cached, size_t size)
+{
+ unsigned i, j;
+ size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
+
+ for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
+ fill_addr_arrays(dst_addrs, is_dst_cached, 0,
+ src_addrs, is_src_cached, 0);
+ for (j = 0; j < TEST_BATCH_SIZE; j++) {
+ rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
+ }
+ }
+}
+
+/*
+ * Run a single memcpy performance test. This is a macro to ensure that if
+ * the "size" parameter is a constant it won't be converted to a variable.
+ */
+#define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \
+ src, is_src_cached, src_uoffset, size) \
+do { \
+ unsigned int iter, t; \
+ size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
+ uint64_t start_time, total_time = 0; \
+ uint64_t total_time2 = 0; \
+ for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
+ fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
+ src_addrs, is_src_cached, src_uoffset); \
+ start_time = rte_rdtsc(); \
+ for (t = 0; t < TEST_BATCH_SIZE; t++) \
+ rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
+ total_time += rte_rdtsc() - start_time; \
+ } \
+ for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
+ fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
+ src_addrs, is_src_cached, src_uoffset); \
+ start_time = rte_rdtsc(); \
+ for (t = 0; t < TEST_BATCH_SIZE; t++) \
+ memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
+ total_time2 += rte_rdtsc() - start_time; \
+ } \
+ printf("%8.0f -", (double)total_time /TEST_ITERATIONS); \
+ printf("%5.0f", (double)total_time2 / TEST_ITERATIONS); \
+} while (0)
+
+/* Run aligned memcpy tests for each cached/uncached permutation */
+#define ALL_PERF_TESTS_FOR_SIZE(n) \
+do { \
+ if (__builtin_constant_p(n)) \
+ printf("\nC%6u", (unsigned)n); \
+ else \
+ printf("\n%7u", (unsigned)n); \
+ SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \
+ SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \
+ SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \
+ SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \
+} while (0)
+
+/* Run unaligned memcpy tests for each cached/uncached permutation */
+#define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \
+do { \
+ if (__builtin_constant_p(n)) \
+ printf("\nC%6u", (unsigned)n); \
+ else \
+ printf("\n%7u", (unsigned)n); \
+ SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \
+ SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \
+ SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \
+ SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \
+} while (0)
+
+/* Run memcpy tests for constant length */
+#define ALL_PERF_TEST_FOR_CONSTANT \
+do { \
+ TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \
+ TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \
+ TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \
+} while (0)
+
+/* Run all memcpy tests for aligned constant cases */
+static inline void
+perf_test_constant_aligned(void)
+{
+#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
+ ALL_PERF_TEST_FOR_CONSTANT;
+#undef TEST_CONSTANT
+}
+
+/* Run all memcpy tests for unaligned constant cases */
+static inline void
+perf_test_constant_unaligned(void)
+{
+#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
+ ALL_PERF_TEST_FOR_CONSTANT;
+#undef TEST_CONSTANT
+}
+
+/* Run all memcpy tests for aligned variable cases */
+static inline void
+perf_test_variable_aligned(void)
+{
+ unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
+ unsigned i;
+ for (i = 0; i < n; i++) {
+ ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
+ }
+}
+
+/* Run all memcpy tests for unaligned variable cases */
+static inline void
+perf_test_variable_unaligned(void)
+{
+ unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
+ unsigned i;
+ for (i = 0; i < n; i++) {
+ ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
+ }
+}
+
+/* Run all memcpy tests */
+static int
+perf_test(void)
+{
+ int ret;
+
+ ret = init_buffers();
+ if (ret != 0)
+ return ret;
+
+#if TEST_VALUE_RANGE != 0
+ /* Set up buf_sizes array, if required */
+ unsigned i;
+ for (i = 0; i < TEST_VALUE_RANGE; i++)
+ buf_sizes[i] = i;
+#endif
+
+ /* See function comment */
+ do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
+
+ printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
+ "======= ============== ============== ============== ==============\n"
+ " Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
+ "(bytes) (ticks) (ticks) (ticks) (ticks)\n"
+ "------- -------------- -------------- -------------- --------------");
+
+ printf("\n========================== %2dB aligned ============================", ALIGNMENT_UNIT);
+ /* Do aligned tests where size is a variable */
+ perf_test_variable_aligned();
+ printf("\n------- -------------- -------------- -------------- --------------");
+ /* Do aligned tests where size is a compile-time constant */
+ perf_test_constant_aligned();
+ printf("\n=========================== Unaligned =============================");
+ /* Do unaligned tests where size is a variable */
+ perf_test_variable_unaligned();
+ printf("\n------- -------------- -------------- -------------- --------------");
+ /* Do unaligned tests where size is a compile-time constant */
+ perf_test_constant_unaligned();
+ printf("\n======= ============== ============== ============== ==============\n\n");
+
+ free_buffers();
+
+ return 0;
+}
+
+static int
+test_memcpy_perf(void)
+{
+ int ret;
+
+ ret = perf_test();
+ if (ret != 0)
+ return -1;
+ return 0;
+}
+
+static struct test_command memcpy_perf_cmd = {
+ .command = "memcpy_perf_autotest",
+ .callback = test_memcpy_perf,
+};
+REGISTER_TEST_COMMAND(memcpy_perf_cmd);