aboutsummaryrefslogtreecommitdiffstats
path: root/app/test/test_timer.c
diff options
context:
space:
mode:
Diffstat (limited to 'app/test/test_timer.c')
-rw-r--r--app/test/test_timer.c633
1 files changed, 633 insertions, 0 deletions
diff --git a/app/test/test_timer.c b/app/test/test_timer.c
new file mode 100644
index 00000000..944e2adc
--- /dev/null
+++ b/app/test/test_timer.c
@@ -0,0 +1,633 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "test.h"
+
+/*
+ * Timer
+ * =====
+ *
+ * #. Stress test 1.
+ *
+ * The objective of the timer stress tests is to check that there are no
+ * race conditions in list and status management. This test launches,
+ * resets and stops the timer very often on many cores at the same
+ * time.
+ *
+ * - Only one timer is used for this test.
+ * - On each core, the rte_timer_manage() function is called from the main
+ * loop every 3 microseconds.
+ * - In the main loop, the timer may be reset (randomly, with a
+ * probability of 0.5 %) 100 microseconds later on a random core, or
+ * stopped (with a probability of 0.5 % also).
+ * - In callback, the timer is can be reset (randomly, with a
+ * probability of 0.5 %) 100 microseconds later on the same core or
+ * on another core (same probability), or stopped (same
+ * probability).
+ *
+ * # Stress test 2.
+ *
+ * The objective of this test is similar to the first in that it attempts
+ * to find if there are any race conditions in the timer library. However,
+ * it is less complex in terms of operations performed and duration, as it
+ * is designed to have a predictable outcome that can be tested.
+ *
+ * - A set of timers is initialized for use by the test
+ * - All cores then simultaneously are set to schedule all the timers at
+ * the same time, so conflicts should occur.
+ * - Then there is a delay while we wait for the timers to expire
+ * - Then the master lcore calls timer_manage() and we check that all
+ * timers have had their callbacks called exactly once - no more no less.
+ * - Then we repeat the process, except after setting up the timers, we have
+ * all cores randomly reschedule them.
+ * - Again we check that the expected number of callbacks has occurred when
+ * we call timer-manage.
+ *
+ * #. Basic test.
+ *
+ * This test performs basic functional checks of the timers. The test
+ * uses four different timers that are loaded and stopped under
+ * specific conditions in specific contexts.
+ *
+ * - Four timers are used for this test.
+ * - On each core, the rte_timer_manage() function is called from main loop
+ * every 3 microseconds.
+ *
+ * The autotest python script checks that the behavior is correct:
+ *
+ * - timer0
+ *
+ * - At initialization, timer0 is loaded by the master core, on master core
+ * in "single" mode (time = 1 second).
+ * - In the first 19 callbacks, timer0 is reloaded on the same core,
+ * then, it is explicitly stopped at the 20th call.
+ * - At t=25s, timer0 is reloaded once by timer2.
+ *
+ * - timer1
+ *
+ * - At initialization, timer1 is loaded by the master core, on the
+ * master core in "single" mode (time = 2 seconds).
+ * - In the first 9 callbacks, timer1 is reloaded on another
+ * core. After the 10th callback, timer1 is not reloaded anymore.
+ *
+ * - timer2
+ *
+ * - At initialization, timer2 is loaded by the master core, on the
+ * master core in "periodical" mode (time = 1 second).
+ * - In the callback, when t=25s, it stops timer3 and reloads timer0
+ * on the current core.
+ *
+ * - timer3
+ *
+ * - At initialization, timer3 is loaded by the master core, on
+ * another core in "periodical" mode (time = 1 second).
+ * - It is stopped at t=25s by timer2.
+ */
+
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <sys/queue.h>
+#include <math.h>
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_cycles.h>
+#include <rte_eal.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_atomic.h>
+#include <rte_timer.h>
+#include <rte_random.h>
+#include <rte_malloc.h>
+
+#define TEST_DURATION_S 20 /* in seconds */
+#define NB_TIMER 4
+
+#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
+
+static volatile uint64_t end_time;
+static volatile int test_failed;
+
+struct mytimerinfo {
+ struct rte_timer tim;
+ unsigned id;
+ unsigned count;
+};
+
+static struct mytimerinfo mytiminfo[NB_TIMER];
+
+static void timer_basic_cb(struct rte_timer *tim, void *arg);
+
+static void
+mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
+ enum rte_timer_type type, unsigned tim_lcore,
+ rte_timer_cb_t fct)
+{
+ rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
+ fct, timinfo);
+}
+
+/* timer callback for stress tests */
+static void
+timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
+ __attribute__((unused)) void *arg)
+{
+ long r;
+ unsigned lcore_id = rte_lcore_id();
+ uint64_t hz = rte_get_timer_hz();
+
+ if (rte_timer_pending(tim))
+ return;
+
+ r = rte_rand();
+ if ((r & 0xff) == 0) {
+ mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+ timer_stress_cb);
+ }
+ else if ((r & 0xff) == 1) {
+ mytimer_reset(&mytiminfo[0], hz, SINGLE,
+ rte_get_next_lcore(lcore_id, 0, 1),
+ timer_stress_cb);
+ }
+ else if ((r & 0xff) == 2) {
+ rte_timer_stop(&mytiminfo[0].tim);
+ }
+}
+
+static int
+timer_stress_main_loop(__attribute__((unused)) void *arg)
+{
+ uint64_t hz = rte_get_timer_hz();
+ unsigned lcore_id = rte_lcore_id();
+ uint64_t cur_time;
+ int64_t diff = 0;
+ long r;
+
+ while (diff >= 0) {
+
+ /* call the timer handler on each core */
+ rte_timer_manage();
+
+ /* simulate the processing of a packet
+ * (1 us = 2000 cycles at 2 Ghz) */
+ rte_delay_us(1);
+
+ /* randomly stop or reset timer */
+ r = rte_rand();
+ lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
+ if ((r & 0xff) == 0) {
+ /* 100 us */
+ mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
+ timer_stress_cb);
+ }
+ else if ((r & 0xff) == 1) {
+ rte_timer_stop_sync(&mytiminfo[0].tim);
+ }
+ cur_time = rte_get_timer_cycles();
+ diff = end_time - cur_time;
+ }
+
+ lcore_id = rte_lcore_id();
+ RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
+
+ return 0;
+}
+
+/* Need to synchronize slave lcores through multiple steps. */
+enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
+static rte_atomic16_t slave_state[RTE_MAX_LCORE];
+
+static void
+master_init_slaves(void)
+{
+ unsigned i;
+
+ RTE_LCORE_FOREACH_SLAVE(i) {
+ rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
+ }
+}
+
+static void
+master_start_slaves(void)
+{
+ unsigned i;
+
+ RTE_LCORE_FOREACH_SLAVE(i) {
+ rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
+ }
+ RTE_LCORE_FOREACH_SLAVE(i) {
+ while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
+ rte_pause();
+ }
+}
+
+static void
+master_wait_for_slaves(void)
+{
+ unsigned i;
+
+ RTE_LCORE_FOREACH_SLAVE(i) {
+ while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
+ rte_pause();
+ }
+}
+
+static void
+slave_wait_to_start(void)
+{
+ unsigned lcore_id = rte_lcore_id();
+
+ while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
+ rte_pause();
+ rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
+}
+
+static void
+slave_finish(void)
+{
+ unsigned lcore_id = rte_lcore_id();
+
+ rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
+}
+
+
+static volatile int cb_count = 0;
+
+/* callback for second stress test. will only be called
+ * on master lcore */
+static void
+timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
+{
+ cb_count++;
+}
+
+#define NB_STRESS2_TIMERS 8192
+
+static int
+timer_stress2_main_loop(__attribute__((unused)) void *arg)
+{
+ static struct rte_timer *timers;
+ int i, ret;
+ uint64_t delay = rte_get_timer_hz() / 4;
+ unsigned lcore_id = rte_lcore_id();
+ unsigned master = rte_get_master_lcore();
+ int32_t my_collisions = 0;
+ static rte_atomic32_t collisions;
+
+ if (lcore_id == master) {
+ cb_count = 0;
+ test_failed = 0;
+ rte_atomic32_set(&collisions, 0);
+ master_init_slaves();
+ timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
+ if (timers == NULL) {
+ printf("Test Failed\n");
+ printf("- Cannot allocate memory for timers\n" );
+ test_failed = 1;
+ master_start_slaves();
+ goto cleanup;
+ }
+ for (i = 0; i < NB_STRESS2_TIMERS; i++)
+ rte_timer_init(&timers[i]);
+ master_start_slaves();
+ } else {
+ slave_wait_to_start();
+ if (test_failed)
+ goto cleanup;
+ }
+
+ /* have all cores schedule all timers on master lcore */
+ for (i = 0; i < NB_STRESS2_TIMERS; i++) {
+ ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
+ timer_stress2_cb, NULL);
+ /* there will be collisions when multiple cores simultaneously
+ * configure the same timers */
+ if (ret != 0)
+ my_collisions++;
+ }
+ if (my_collisions != 0)
+ rte_atomic32_add(&collisions, my_collisions);
+
+ /* wait long enough for timers to expire */
+ rte_delay_ms(500);
+
+ /* all cores rendezvous */
+ if (lcore_id == master) {
+ master_wait_for_slaves();
+ } else {
+ slave_finish();
+ }
+
+ /* now check that we get the right number of callbacks */
+ if (lcore_id == master) {
+ my_collisions = rte_atomic32_read(&collisions);
+ if (my_collisions != 0)
+ printf("- %d timer reset collisions (OK)\n", my_collisions);
+ rte_timer_manage();
+ if (cb_count != NB_STRESS2_TIMERS) {
+ printf("Test Failed\n");
+ printf("- Stress test 2, part 1 failed\n");
+ printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
+ cb_count);
+ test_failed = 1;
+ master_start_slaves();
+ goto cleanup;
+ }
+ cb_count = 0;
+
+ /* proceed */
+ master_start_slaves();
+ } else {
+ /* proceed */
+ slave_wait_to_start();
+ if (test_failed)
+ goto cleanup;
+ }
+
+ /* now test again, just stop and restart timers at random after init*/
+ for (i = 0; i < NB_STRESS2_TIMERS; i++)
+ rte_timer_reset(&timers[i], delay, SINGLE, master,
+ timer_stress2_cb, NULL);
+
+ /* pick random timer to reset, stopping them first half the time */
+ for (i = 0; i < 100000; i++) {
+ int r = rand() % NB_STRESS2_TIMERS;
+ if (i % 2)
+ rte_timer_stop(&timers[r]);
+ rte_timer_reset(&timers[r], delay, SINGLE, master,
+ timer_stress2_cb, NULL);
+ }
+
+ /* wait long enough for timers to expire */
+ rte_delay_ms(500);
+
+ /* now check that we get the right number of callbacks */
+ if (lcore_id == master) {
+ master_wait_for_slaves();
+
+ rte_timer_manage();
+ if (cb_count != NB_STRESS2_TIMERS) {
+ printf("Test Failed\n");
+ printf("- Stress test 2, part 2 failed\n");
+ printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
+ cb_count);
+ test_failed = 1;
+ } else {
+ printf("Test OK\n");
+ }
+ }
+
+cleanup:
+ if (lcore_id == master) {
+ master_wait_for_slaves();
+ if (timers != NULL) {
+ rte_free(timers);
+ timers = NULL;
+ }
+ } else {
+ slave_finish();
+ }
+
+ return 0;
+}
+
+/* timer callback for basic tests */
+static void
+timer_basic_cb(struct rte_timer *tim, void *arg)
+{
+ struct mytimerinfo *timinfo = arg;
+ uint64_t hz = rte_get_timer_hz();
+ unsigned lcore_id = rte_lcore_id();
+ uint64_t cur_time = rte_get_timer_cycles();
+
+ if (rte_timer_pending(tim))
+ return;
+
+ timinfo->count ++;
+
+ RTE_LOG(INFO, TESTTIMER,
+ "%"PRIu64": callback id=%u count=%u on core %u\n",
+ cur_time, timinfo->id, timinfo->count, lcore_id);
+
+ /* reload timer 0 on same core */
+ if (timinfo->id == 0 && timinfo->count < 20) {
+ mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
+ return;
+ }
+
+ /* reload timer 1 on next core */
+ if (timinfo->id == 1 && timinfo->count < 10) {
+ mytimer_reset(timinfo, hz*2, SINGLE,
+ rte_get_next_lcore(lcore_id, 0, 1),
+ timer_basic_cb);
+ return;
+ }
+
+ /* Explicitelly stop timer 0. Once stop() called, we can even
+ * erase the content of the structure: it is not referenced
+ * anymore by any code (in case of dynamic structure, it can
+ * be freed) */
+ if (timinfo->id == 0 && timinfo->count == 20) {
+
+ /* stop_sync() is not needed, because we know that the
+ * status of timer is only modified by this core */
+ rte_timer_stop(tim);
+ memset(tim, 0xAA, sizeof(struct rte_timer));
+ return;
+ }
+
+ /* stop timer3, and restart a new timer0 (it was removed 5
+ * seconds ago) for a single shot */
+ if (timinfo->id == 2 && timinfo->count == 25) {
+ rte_timer_stop_sync(&mytiminfo[3].tim);
+
+ /* need to reinit because structure was erased with 0xAA */
+ rte_timer_init(&mytiminfo[0].tim);
+ mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+ timer_basic_cb);
+ }
+}
+
+static int
+timer_basic_main_loop(__attribute__((unused)) void *arg)
+{
+ uint64_t hz = rte_get_timer_hz();
+ unsigned lcore_id = rte_lcore_id();
+ uint64_t cur_time;
+ int64_t diff = 0;
+
+ /* launch all timers on core 0 */
+ if (lcore_id == rte_get_master_lcore()) {
+ mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
+ timer_basic_cb);
+ mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
+ timer_basic_cb);
+ mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
+ timer_basic_cb);
+ mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
+ rte_get_next_lcore(lcore_id, 0, 1),
+ timer_basic_cb);
+ }
+
+ while (diff >= 0) {
+
+ /* call the timer handler on each core */
+ rte_timer_manage();
+
+ /* simulate the processing of a packet
+ * (3 us = 6000 cycles at 2 Ghz) */
+ rte_delay_us(3);
+
+ cur_time = rte_get_timer_cycles();
+ diff = end_time - cur_time;
+ }
+ RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
+
+ return 0;
+}
+
+static int
+timer_sanity_check(void)
+{
+#ifdef RTE_LIBEAL_USE_HPET
+ if (eal_timer_source != EAL_TIMER_HPET) {
+ printf("Not using HPET, can't sanity check timer sources\n");
+ return 0;
+ }
+
+ const uint64_t t_hz = rte_get_tsc_hz();
+ const uint64_t h_hz = rte_get_hpet_hz();
+ printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
+
+ const uint64_t tsc_start = rte_get_tsc_cycles();
+ const uint64_t hpet_start = rte_get_hpet_cycles();
+ rte_delay_ms(100); /* delay 1/10 second */
+ const uint64_t tsc_end = rte_get_tsc_cycles();
+ const uint64_t hpet_end = rte_get_hpet_cycles();
+ printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
+ tsc_end-tsc_start, hpet_end-hpet_start);
+
+ const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
+ const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
+ /* get the percentage that the times differ by */
+ const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
+ printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
+
+ printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
+ time_diff);
+ if (time_diff > 0.1) {
+ printf("Error times differ by >0.1%%");
+ return -1;
+ }
+#endif
+ return 0;
+}
+
+static int
+test_timer(void)
+{
+ unsigned i;
+ uint64_t cur_time;
+ uint64_t hz;
+
+ /* sanity check our timer sources and timer config values */
+ if (timer_sanity_check() < 0) {
+ printf("Timer sanity checks failed\n");
+ return TEST_FAILED;
+ }
+
+ if (rte_lcore_count() < 2) {
+ printf("not enough lcores for this test\n");
+ return TEST_FAILED;
+ }
+
+ /* init timer */
+ for (i=0; i<NB_TIMER; i++) {
+ memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
+ mytiminfo[i].id = i;
+ rte_timer_init(&mytiminfo[i].tim);
+ }
+
+ /* calculate the "end of test" time */
+ cur_time = rte_get_timer_cycles();
+ hz = rte_get_timer_hz();
+ end_time = cur_time + (hz * TEST_DURATION_S);
+
+ /* start other cores */
+ printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
+ rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
+ rte_eal_mp_wait_lcore();
+
+ /* stop timer 0 used for stress test */
+ rte_timer_stop_sync(&mytiminfo[0].tim);
+
+ /* run a second, slightly different set of stress tests */
+ printf("\nStart timer stress tests 2\n");
+ test_failed = 0;
+ rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
+ rte_eal_mp_wait_lcore();
+ if (test_failed)
+ return TEST_FAILED;
+
+ /* calculate the "end of test" time */
+ cur_time = rte_get_timer_cycles();
+ hz = rte_get_timer_hz();
+ end_time = cur_time + (hz * TEST_DURATION_S);
+
+ /* start other cores */
+ printf("\nStart timer basic tests (%d seconds)\n", TEST_DURATION_S);
+ rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
+ rte_eal_mp_wait_lcore();
+
+ /* stop all timers */
+ for (i=0; i<NB_TIMER; i++) {
+ rte_timer_stop_sync(&mytiminfo[i].tim);
+ }
+
+ rte_timer_dump_stats(stdout);
+
+ return TEST_SUCCESS;
+}
+
+static struct test_command timer_cmd = {
+ .command = "timer_autotest",
+ .callback = test_timer,
+};
+REGISTER_TEST_COMMAND(timer_cmd);