aboutsummaryrefslogtreecommitdiffstats
path: root/app/test/test_timer.c
diff options
context:
space:
mode:
Diffstat (limited to 'app/test/test_timer.c')
-rw-r--r--app/test/test_timer.c629
1 files changed, 0 insertions, 629 deletions
diff --git a/app/test/test_timer.c b/app/test/test_timer.c
deleted file mode 100644
index 2f6525a5..00000000
--- a/app/test/test_timer.c
+++ /dev/null
@@ -1,629 +0,0 @@
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include "test.h"
-
-/*
- * Timer
- * =====
- *
- * #. Stress test 1.
- *
- * The objective of the timer stress tests is to check that there are no
- * race conditions in list and status management. This test launches,
- * resets and stops the timer very often on many cores at the same
- * time.
- *
- * - Only one timer is used for this test.
- * - On each core, the rte_timer_manage() function is called from the main
- * loop every 3 microseconds.
- * - In the main loop, the timer may be reset (randomly, with a
- * probability of 0.5 %) 100 microseconds later on a random core, or
- * stopped (with a probability of 0.5 % also).
- * - In callback, the timer is can be reset (randomly, with a
- * probability of 0.5 %) 100 microseconds later on the same core or
- * on another core (same probability), or stopped (same
- * probability).
- *
- * # Stress test 2.
- *
- * The objective of this test is similar to the first in that it attempts
- * to find if there are any race conditions in the timer library. However,
- * it is less complex in terms of operations performed and duration, as it
- * is designed to have a predictable outcome that can be tested.
- *
- * - A set of timers is initialized for use by the test
- * - All cores then simultaneously are set to schedule all the timers at
- * the same time, so conflicts should occur.
- * - Then there is a delay while we wait for the timers to expire
- * - Then the master lcore calls timer_manage() and we check that all
- * timers have had their callbacks called exactly once - no more no less.
- * - Then we repeat the process, except after setting up the timers, we have
- * all cores randomly reschedule them.
- * - Again we check that the expected number of callbacks has occurred when
- * we call timer-manage.
- *
- * #. Basic test.
- *
- * This test performs basic functional checks of the timers. The test
- * uses four different timers that are loaded and stopped under
- * specific conditions in specific contexts.
- *
- * - Four timers are used for this test.
- * - On each core, the rte_timer_manage() function is called from main loop
- * every 3 microseconds.
- *
- * The autotest python script checks that the behavior is correct:
- *
- * - timer0
- *
- * - At initialization, timer0 is loaded by the master core, on master core
- * in "single" mode (time = 1 second).
- * - In the first 19 callbacks, timer0 is reloaded on the same core,
- * then, it is explicitly stopped at the 20th call.
- * - At t=25s, timer0 is reloaded once by timer2.
- *
- * - timer1
- *
- * - At initialization, timer1 is loaded by the master core, on the
- * master core in "single" mode (time = 2 seconds).
- * - In the first 9 callbacks, timer1 is reloaded on another
- * core. After the 10th callback, timer1 is not reloaded anymore.
- *
- * - timer2
- *
- * - At initialization, timer2 is loaded by the master core, on the
- * master core in "periodical" mode (time = 1 second).
- * - In the callback, when t=25s, it stops timer3 and reloads timer0
- * on the current core.
- *
- * - timer3
- *
- * - At initialization, timer3 is loaded by the master core, on
- * another core in "periodical" mode (time = 1 second).
- * - It is stopped at t=25s by timer2.
- */
-
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdint.h>
-#include <inttypes.h>
-#include <sys/queue.h>
-#include <math.h>
-
-#include <rte_common.h>
-#include <rte_log.h>
-#include <rte_memory.h>
-#include <rte_memzone.h>
-#include <rte_launch.h>
-#include <rte_cycles.h>
-#include <rte_eal.h>
-#include <rte_per_lcore.h>
-#include <rte_lcore.h>
-#include <rte_atomic.h>
-#include <rte_timer.h>
-#include <rte_random.h>
-#include <rte_malloc.h>
-
-#define TEST_DURATION_S 1 /* in seconds */
-#define NB_TIMER 4
-
-#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
-
-static volatile uint64_t end_time;
-static volatile int test_failed;
-
-struct mytimerinfo {
- struct rte_timer tim;
- unsigned id;
- unsigned count;
-};
-
-static struct mytimerinfo mytiminfo[NB_TIMER];
-
-static void timer_basic_cb(struct rte_timer *tim, void *arg);
-
-static void
-mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
- enum rte_timer_type type, unsigned tim_lcore,
- rte_timer_cb_t fct)
-{
- rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
- fct, timinfo);
-}
-
-/* timer callback for stress tests */
-static void
-timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
- __attribute__((unused)) void *arg)
-{
- long r;
- unsigned lcore_id = rte_lcore_id();
- uint64_t hz = rte_get_timer_hz();
-
- if (rte_timer_pending(tim))
- return;
-
- r = rte_rand();
- if ((r & 0xff) == 0) {
- mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
- timer_stress_cb);
- }
- else if ((r & 0xff) == 1) {
- mytimer_reset(&mytiminfo[0], hz, SINGLE,
- rte_get_next_lcore(lcore_id, 0, 1),
- timer_stress_cb);
- }
- else if ((r & 0xff) == 2) {
- rte_timer_stop(&mytiminfo[0].tim);
- }
-}
-
-static int
-timer_stress_main_loop(__attribute__((unused)) void *arg)
-{
- uint64_t hz = rte_get_timer_hz();
- unsigned lcore_id = rte_lcore_id();
- uint64_t cur_time;
- int64_t diff = 0;
- long r;
-
- while (diff >= 0) {
-
- /* call the timer handler on each core */
- rte_timer_manage();
-
- /* simulate the processing of a packet
- * (1 us = 2000 cycles at 2 Ghz) */
- rte_delay_us(1);
-
- /* randomly stop or reset timer */
- r = rte_rand();
- lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
- if ((r & 0xff) == 0) {
- /* 100 us */
- mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
- timer_stress_cb);
- }
- else if ((r & 0xff) == 1) {
- rte_timer_stop_sync(&mytiminfo[0].tim);
- }
- cur_time = rte_get_timer_cycles();
- diff = end_time - cur_time;
- }
-
- lcore_id = rte_lcore_id();
- RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
-
- return 0;
-}
-
-/* Need to synchronize slave lcores through multiple steps. */
-enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
-static rte_atomic16_t slave_state[RTE_MAX_LCORE];
-
-static void
-master_init_slaves(void)
-{
- unsigned i;
-
- RTE_LCORE_FOREACH_SLAVE(i) {
- rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
- }
-}
-
-static void
-master_start_slaves(void)
-{
- unsigned i;
-
- RTE_LCORE_FOREACH_SLAVE(i) {
- rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
- }
- RTE_LCORE_FOREACH_SLAVE(i) {
- while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
- rte_pause();
- }
-}
-
-static void
-master_wait_for_slaves(void)
-{
- unsigned i;
-
- RTE_LCORE_FOREACH_SLAVE(i) {
- while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
- rte_pause();
- }
-}
-
-static void
-slave_wait_to_start(void)
-{
- unsigned lcore_id = rte_lcore_id();
-
- while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
- rte_pause();
- rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
-}
-
-static void
-slave_finish(void)
-{
- unsigned lcore_id = rte_lcore_id();
-
- rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
-}
-
-
-static volatile int cb_count = 0;
-
-/* callback for second stress test. will only be called
- * on master lcore */
-static void
-timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
-{
- cb_count++;
-}
-
-#define NB_STRESS2_TIMERS 8192
-
-static int
-timer_stress2_main_loop(__attribute__((unused)) void *arg)
-{
- static struct rte_timer *timers;
- int i, ret;
- uint64_t delay = rte_get_timer_hz() / 20;
- unsigned lcore_id = rte_lcore_id();
- unsigned master = rte_get_master_lcore();
- int32_t my_collisions = 0;
- static rte_atomic32_t collisions;
-
- if (lcore_id == master) {
- cb_count = 0;
- test_failed = 0;
- rte_atomic32_set(&collisions, 0);
- master_init_slaves();
- timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
- if (timers == NULL) {
- printf("Test Failed\n");
- printf("- Cannot allocate memory for timers\n" );
- test_failed = 1;
- master_start_slaves();
- goto cleanup;
- }
- for (i = 0; i < NB_STRESS2_TIMERS; i++)
- rte_timer_init(&timers[i]);
- master_start_slaves();
- } else {
- slave_wait_to_start();
- if (test_failed)
- goto cleanup;
- }
-
- /* have all cores schedule all timers on master lcore */
- for (i = 0; i < NB_STRESS2_TIMERS; i++) {
- ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
- timer_stress2_cb, NULL);
- /* there will be collisions when multiple cores simultaneously
- * configure the same timers */
- if (ret != 0)
- my_collisions++;
- }
- if (my_collisions != 0)
- rte_atomic32_add(&collisions, my_collisions);
-
- /* wait long enough for timers to expire */
- rte_delay_ms(100);
-
- /* all cores rendezvous */
- if (lcore_id == master) {
- master_wait_for_slaves();
- } else {
- slave_finish();
- }
-
- /* now check that we get the right number of callbacks */
- if (lcore_id == master) {
- my_collisions = rte_atomic32_read(&collisions);
- if (my_collisions != 0)
- printf("- %d timer reset collisions (OK)\n", my_collisions);
- rte_timer_manage();
- if (cb_count != NB_STRESS2_TIMERS) {
- printf("Test Failed\n");
- printf("- Stress test 2, part 1 failed\n");
- printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
- cb_count);
- test_failed = 1;
- master_start_slaves();
- goto cleanup;
- }
- cb_count = 0;
-
- /* proceed */
- master_start_slaves();
- } else {
- /* proceed */
- slave_wait_to_start();
- if (test_failed)
- goto cleanup;
- }
-
- /* now test again, just stop and restart timers at random after init*/
- for (i = 0; i < NB_STRESS2_TIMERS; i++)
- rte_timer_reset(&timers[i], delay, SINGLE, master,
- timer_stress2_cb, NULL);
-
- /* pick random timer to reset, stopping them first half the time */
- for (i = 0; i < 100000; i++) {
- int r = rand() % NB_STRESS2_TIMERS;
- if (i % 2)
- rte_timer_stop(&timers[r]);
- rte_timer_reset(&timers[r], delay, SINGLE, master,
- timer_stress2_cb, NULL);
- }
-
- /* wait long enough for timers to expire */
- rte_delay_ms(100);
-
- /* now check that we get the right number of callbacks */
- if (lcore_id == master) {
- master_wait_for_slaves();
-
- rte_timer_manage();
- if (cb_count != NB_STRESS2_TIMERS) {
- printf("Test Failed\n");
- printf("- Stress test 2, part 2 failed\n");
- printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
- cb_count);
- test_failed = 1;
- } else {
- printf("Test OK\n");
- }
- }
-
-cleanup:
- if (lcore_id == master) {
- master_wait_for_slaves();
- if (timers != NULL) {
- rte_free(timers);
- timers = NULL;
- }
- } else {
- slave_finish();
- }
-
- return 0;
-}
-
-/* timer callback for basic tests */
-static void
-timer_basic_cb(struct rte_timer *tim, void *arg)
-{
- struct mytimerinfo *timinfo = arg;
- uint64_t hz = rte_get_timer_hz();
- unsigned lcore_id = rte_lcore_id();
- uint64_t cur_time = rte_get_timer_cycles();
-
- if (rte_timer_pending(tim))
- return;
-
- timinfo->count ++;
-
- RTE_LOG(INFO, TESTTIMER,
- "%"PRIu64": callback id=%u count=%u on core %u\n",
- cur_time, timinfo->id, timinfo->count, lcore_id);
-
- /* reload timer 0 on same core */
- if (timinfo->id == 0 && timinfo->count < 20) {
- mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
- return;
- }
-
- /* reload timer 1 on next core */
- if (timinfo->id == 1 && timinfo->count < 10) {
- mytimer_reset(timinfo, hz*2, SINGLE,
- rte_get_next_lcore(lcore_id, 0, 1),
- timer_basic_cb);
- return;
- }
-
- /* Explicitelly stop timer 0. Once stop() called, we can even
- * erase the content of the structure: it is not referenced
- * anymore by any code (in case of dynamic structure, it can
- * be freed) */
- if (timinfo->id == 0 && timinfo->count == 20) {
-
- /* stop_sync() is not needed, because we know that the
- * status of timer is only modified by this core */
- rte_timer_stop(tim);
- memset(tim, 0xAA, sizeof(struct rte_timer));
- return;
- }
-
- /* stop timer3, and restart a new timer0 (it was removed 5
- * seconds ago) for a single shot */
- if (timinfo->id == 2 && timinfo->count == 25) {
- rte_timer_stop_sync(&mytiminfo[3].tim);
-
- /* need to reinit because structure was erased with 0xAA */
- rte_timer_init(&mytiminfo[0].tim);
- mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
- timer_basic_cb);
- }
-}
-
-static int
-timer_basic_main_loop(__attribute__((unused)) void *arg)
-{
- uint64_t hz = rte_get_timer_hz();
- unsigned lcore_id = rte_lcore_id();
- uint64_t cur_time;
- int64_t diff = 0;
-
- /* launch all timers on core 0 */
- if (lcore_id == rte_get_master_lcore()) {
- mytimer_reset(&mytiminfo[0], hz/4, SINGLE, lcore_id,
- timer_basic_cb);
- mytimer_reset(&mytiminfo[1], hz/2, SINGLE, lcore_id,
- timer_basic_cb);
- mytimer_reset(&mytiminfo[2], hz/4, PERIODICAL, lcore_id,
- timer_basic_cb);
- mytimer_reset(&mytiminfo[3], hz/4, PERIODICAL,
- rte_get_next_lcore(lcore_id, 0, 1),
- timer_basic_cb);
- }
-
- while (diff >= 0) {
-
- /* call the timer handler on each core */
- rte_timer_manage();
-
- /* simulate the processing of a packet
- * (3 us = 6000 cycles at 2 Ghz) */
- rte_delay_us(3);
-
- cur_time = rte_get_timer_cycles();
- diff = end_time - cur_time;
- }
- RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
-
- return 0;
-}
-
-static int
-timer_sanity_check(void)
-{
-#ifdef RTE_LIBEAL_USE_HPET
- if (eal_timer_source != EAL_TIMER_HPET) {
- printf("Not using HPET, can't sanity check timer sources\n");
- return 0;
- }
-
- const uint64_t t_hz = rte_get_tsc_hz();
- const uint64_t h_hz = rte_get_hpet_hz();
- printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
-
- const uint64_t tsc_start = rte_get_tsc_cycles();
- const uint64_t hpet_start = rte_get_hpet_cycles();
- rte_delay_ms(100); /* delay 1/10 second */
- const uint64_t tsc_end = rte_get_tsc_cycles();
- const uint64_t hpet_end = rte_get_hpet_cycles();
- printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
- tsc_end-tsc_start, hpet_end-hpet_start);
-
- const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
- const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
- /* get the percentage that the times differ by */
- const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
- printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
-
- printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
- time_diff);
- if (time_diff > 0.1) {
- printf("Error times differ by >0.1%%");
- return -1;
- }
-#endif
- return 0;
-}
-
-static int
-test_timer(void)
-{
- unsigned i;
- uint64_t cur_time;
- uint64_t hz;
-
- /* sanity check our timer sources and timer config values */
- if (timer_sanity_check() < 0) {
- printf("Timer sanity checks failed\n");
- return TEST_FAILED;
- }
-
- if (rte_lcore_count() < 2) {
- printf("not enough lcores for this test\n");
- return TEST_FAILED;
- }
-
- /* init timer */
- for (i=0; i<NB_TIMER; i++) {
- memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
- mytiminfo[i].id = i;
- rte_timer_init(&mytiminfo[i].tim);
- }
-
- /* calculate the "end of test" time */
- cur_time = rte_get_timer_cycles();
- hz = rte_get_timer_hz();
- end_time = cur_time + (hz * TEST_DURATION_S);
-
- /* start other cores */
- printf("Start timer stress tests\n");
- rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
- rte_eal_mp_wait_lcore();
-
- /* stop timer 0 used for stress test */
- rte_timer_stop_sync(&mytiminfo[0].tim);
-
- /* run a second, slightly different set of stress tests */
- printf("\nStart timer stress tests 2\n");
- test_failed = 0;
- rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
- rte_eal_mp_wait_lcore();
- if (test_failed)
- return TEST_FAILED;
-
- /* calculate the "end of test" time */
- cur_time = rte_get_timer_cycles();
- hz = rte_get_timer_hz();
- end_time = cur_time + (hz * TEST_DURATION_S);
-
- /* start other cores */
- printf("\nStart timer basic tests\n");
- rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
- rte_eal_mp_wait_lcore();
-
- /* stop all timers */
- for (i=0; i<NB_TIMER; i++) {
- rte_timer_stop_sync(&mytiminfo[i].tim);
- }
-
- rte_timer_dump_stats(stdout);
-
- return TEST_SUCCESS;
-}
-
-REGISTER_TEST_COMMAND(timer_autotest, test_timer);