summaryrefslogtreecommitdiffstats
path: root/drivers/baseband/turbo_sw
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/baseband/turbo_sw')
-rw-r--r--drivers/baseband/turbo_sw/Makefile42
-rw-r--r--drivers/baseband/turbo_sw/bbdev_turbo_software.c1307
-rw-r--r--drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map3
3 files changed, 1352 insertions, 0 deletions
diff --git a/drivers/baseband/turbo_sw/Makefile b/drivers/baseband/turbo_sw/Makefile
new file mode 100644
index 00000000..79eb5547
--- /dev/null
+++ b/drivers/baseband/turbo_sw/Makefile
@@ -0,0 +1,42 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2017 Intel Corporation
+
+include $(RTE_SDK)/mk/rte.vars.mk
+
+ifeq ($(FLEXRAN_SDK),)
+$(error "Please define FLEXRAN_SDK environment variable")
+endif
+
+# library name
+LIB = librte_pmd_bbdev_turbo_sw.a
+
+# build flags
+CFLAGS += -DALLOW_EXPERIMENTAL_API
+CFLAGS += -O3
+CFLAGS += $(WERROR_FLAGS)
+LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring -lrte_kvargs
+LDLIBS += -lrte_bbdev
+LDLIBS += -lrte_bus_vdev
+
+# versioning export map
+EXPORT_MAP := rte_pmd_bbdev_turbo_sw_version.map
+
+# external library dependencies
+CFLAGS += -I$(FLEXRAN_SDK)/lib_common
+CFLAGS += -I$(FLEXRAN_SDK)/lib_turbo
+CFLAGS += -I$(FLEXRAN_SDK)/lib_crc
+CFLAGS += -I$(FLEXRAN_SDK)/lib_rate_matching
+
+LDLIBS += -L$(FLEXRAN_SDK)/lib_crc -lcrc
+LDLIBS += -L$(FLEXRAN_SDK)/lib_turbo -lturbo
+LDLIBS += -L$(FLEXRAN_SDK)/lib_rate_matching -lrate_matching
+LDLIBS += -L$(FLEXRAN_SDK)/lib_common -lcommon
+LDLIBS += -lstdc++ -lirc -limf -lipps
+
+# library version
+LIBABIVER := 1
+
+# library source files
+SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += bbdev_turbo_software.c
+
+include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/baseband/turbo_sw/bbdev_turbo_software.c b/drivers/baseband/turbo_sw/bbdev_turbo_software.c
new file mode 100644
index 00000000..8ceb2769
--- /dev/null
+++ b/drivers/baseband/turbo_sw/bbdev_turbo_software.c
@@ -0,0 +1,1307 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017 Intel Corporation
+ */
+
+#include <string.h>
+
+#include <rte_common.h>
+#include <rte_bus_vdev.h>
+#include <rte_malloc.h>
+#include <rte_ring.h>
+#include <rte_kvargs.h>
+#include <rte_cycles.h>
+
+#include <rte_bbdev.h>
+#include <rte_bbdev_pmd.h>
+
+#include <phy_turbo.h>
+#include <phy_crc.h>
+#include <phy_rate_match.h>
+#include <divide.h>
+
+#define DRIVER_NAME baseband_turbo_sw
+
+/* Turbo SW PMD logging ID */
+static int bbdev_turbo_sw_logtype;
+
+/* Helper macro for logging */
+#define rte_bbdev_log(level, fmt, ...) \
+ rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
+ ##__VA_ARGS__)
+
+#define rte_bbdev_log_debug(fmt, ...) \
+ rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
+ ##__VA_ARGS__)
+
+#define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
+#define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
+#define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
+
+/* private data structure */
+struct bbdev_private {
+ unsigned int max_nb_queues; /**< Max number of queues */
+};
+
+/* Initialisation params structure that can be used by Turbo SW driver */
+struct turbo_sw_params {
+ int socket_id; /*< Turbo SW device socket */
+ uint16_t queues_num; /*< Turbo SW device queues number */
+};
+
+/* Accecptable params for Turbo SW devices */
+#define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues"
+#define TURBO_SW_SOCKET_ID_ARG "socket_id"
+
+static const char * const turbo_sw_valid_params[] = {
+ TURBO_SW_MAX_NB_QUEUES_ARG,
+ TURBO_SW_SOCKET_ID_ARG
+};
+
+/* queue */
+struct turbo_sw_queue {
+ /* Ring for processed (encoded/decoded) operations which are ready to
+ * be dequeued.
+ */
+ struct rte_ring *processed_pkts;
+ /* Stores input for turbo encoder (used when CRC attachment is
+ * performed
+ */
+ uint8_t *enc_in;
+ /* Stores output from turbo encoder */
+ uint8_t *enc_out;
+ /* Alpha gamma buf for bblib_turbo_decoder() function */
+ int8_t *ag;
+ /* Temp buf for bblib_turbo_decoder() function */
+ uint16_t *code_block;
+ /* Input buf for bblib_rate_dematching_lte() function */
+ uint8_t *deint_input;
+ /* Output buf for bblib_rate_dematching_lte() function */
+ uint8_t *deint_output;
+ /* Output buf for bblib_turbodec_adapter_lte() function */
+ uint8_t *adapter_output;
+ /* Operation type of this queue */
+ enum rte_bbdev_op_type type;
+} __rte_cache_aligned;
+
+/* Calculate index based on Table 5.1.3-3 from TS34.212 */
+static inline int32_t
+compute_idx(uint16_t k)
+{
+ int32_t result = 0;
+
+ if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
+ return -1;
+
+ if (k > 2048) {
+ if ((k - 2048) % 64 != 0)
+ result = -1;
+
+ result = 124 + (k - 2048) / 64;
+ } else if (k <= 512) {
+ if ((k - 40) % 8 != 0)
+ result = -1;
+
+ result = (k - 40) / 8 + 1;
+ } else if (k <= 1024) {
+ if ((k - 512) % 16 != 0)
+ result = -1;
+
+ result = 60 + (k - 512) / 16;
+ } else { /* 1024 < k <= 2048 */
+ if ((k - 1024) % 32 != 0)
+ result = -1;
+
+ result = 92 + (k - 1024) / 32;
+ }
+
+ return result;
+}
+
+/* Read flag value 0/1 from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+/* Get device info */
+static void
+info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
+{
+ struct bbdev_private *internals = dev->data->dev_private;
+
+ static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ {
+ .type = RTE_BBDEV_OP_TURBO_DEC,
+ .cap.turbo_dec = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
+ RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
+ RTE_BBDEV_TURBO_CRC_TYPE_24B |
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
+ RTE_BBDEV_TURBO_EARLY_TERMINATION,
+ .max_llr_modulus = 16,
+ .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0,
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_TURBO_ENC,
+ .cap.turbo_enc = {
+ .capability_flags =
+ RTE_BBDEV_TURBO_CRC_24B_ATTACH |
+ RTE_BBDEV_TURBO_CRC_24A_ATTACH |
+ RTE_BBDEV_TURBO_RATE_MATCH |
+ RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
+ .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
+ .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
+ }
+ },
+ RTE_BBDEV_END_OF_CAPABILITIES_LIST()
+ };
+
+ static struct rte_bbdev_queue_conf default_queue_conf = {
+ .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
+ };
+
+ static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
+
+ default_queue_conf.socket = dev->data->socket_id;
+
+ dev_info->driver_name = RTE_STR(DRIVER_NAME);
+ dev_info->max_num_queues = internals->max_nb_queues;
+ dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
+ dev_info->hardware_accelerated = false;
+ dev_info->max_dl_queue_priority = 0;
+ dev_info->max_ul_queue_priority = 0;
+ dev_info->default_queue_conf = default_queue_conf;
+ dev_info->capabilities = bbdev_capabilities;
+ dev_info->cpu_flag_reqs = &cpu_flag;
+ dev_info->min_alignment = 64;
+
+ rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
+}
+
+/* Release queue */
+static int
+q_release(struct rte_bbdev *dev, uint16_t q_id)
+{
+ struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
+
+ if (q != NULL) {
+ rte_ring_free(q->processed_pkts);
+ rte_free(q->enc_out);
+ rte_free(q->enc_in);
+ rte_free(q->ag);
+ rte_free(q->code_block);
+ rte_free(q->deint_input);
+ rte_free(q->deint_output);
+ rte_free(q->adapter_output);
+ rte_free(q);
+ dev->data->queues[q_id].queue_private = NULL;
+ }
+
+ rte_bbdev_log_debug("released device queue %u:%u",
+ dev->data->dev_id, q_id);
+ return 0;
+}
+
+/* Setup a queue */
+static int
+q_setup(struct rte_bbdev *dev, uint16_t q_id,
+ const struct rte_bbdev_queue_conf *queue_conf)
+{
+ int ret;
+ struct turbo_sw_queue *q;
+ char name[RTE_RING_NAMESIZE];
+
+ /* Allocate the queue data structure. */
+ q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q == NULL) {
+ rte_bbdev_log(ERR, "Failed to allocate queue memory");
+ return -ENOMEM;
+ }
+
+ /* Allocate memory for encoder output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->enc_out = rte_zmalloc_socket(name,
+ ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
+ sizeof(*q->enc_out) * 3,
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->enc_out == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for rate matching output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
+ q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->enc_in = rte_zmalloc_socket(name,
+ (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->enc_in == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Aplha Gamma temp buffer. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->ag = rte_zmalloc_socket(name,
+ RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->ag == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for code block temp buffer. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->code_block = rte_zmalloc_socket(name,
+ RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->code_block == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Deinterleaver input. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_de_i%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->deint_input = rte_zmalloc_socket(name,
+ DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->deint_input == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Deinterleaver output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_de_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->deint_output = rte_zmalloc_socket(NULL,
+ DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->deint_output == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Allocate memory for Adapter output. */
+ ret = snprintf(name, RTE_RING_NAMESIZE,
+ RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->adapter_output = rte_zmalloc_socket(NULL,
+ ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
+ RTE_CACHE_LINE_SIZE, queue_conf->socket);
+ if (q->adapter_output == NULL) {
+ rte_bbdev_log(ERR,
+ "Failed to allocate queue memory for %s", name);
+ goto free_q;
+ }
+
+ /* Create ring for packets awaiting to be dequeued. */
+ ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
+ dev->data->dev_id, q_id);
+ if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
+ rte_bbdev_log(ERR,
+ "Creating queue name for device %u queue %u failed",
+ dev->data->dev_id, q_id);
+ return -ENAMETOOLONG;
+ }
+ q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
+ queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
+ if (q->processed_pkts == NULL) {
+ rte_bbdev_log(ERR, "Failed to create ring for %s", name);
+ goto free_q;
+ }
+
+ q->type = queue_conf->op_type;
+
+ dev->data->queues[q_id].queue_private = q;
+ rte_bbdev_log_debug("setup device queue %s", name);
+ return 0;
+
+free_q:
+ rte_ring_free(q->processed_pkts);
+ rte_free(q->enc_out);
+ rte_free(q->enc_in);
+ rte_free(q->ag);
+ rte_free(q->code_block);
+ rte_free(q->deint_input);
+ rte_free(q->deint_output);
+ rte_free(q->adapter_output);
+ rte_free(q);
+ return -EFAULT;
+}
+
+static const struct rte_bbdev_ops pmd_ops = {
+ .info_get = info_get,
+ .queue_setup = q_setup,
+ .queue_release = q_release
+};
+
+/* Checks if the encoder input buffer is correct.
+ * Returns 0 if it's valid, -1 otherwise.
+ */
+static inline int
+is_enc_input_valid(const uint16_t k, const int32_t k_idx,
+ const uint16_t in_length)
+{
+ if (k_idx < 0) {
+ rte_bbdev_log(ERR, "K Index is invalid");
+ return -1;
+ }
+
+ if (in_length - (k >> 3) < 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between input length (%u bytes) and K (%u bits)",
+ in_length, k);
+ return -1;
+ }
+
+ if (k > RTE_BBDEV_MAX_CB_SIZE) {
+ rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
+ k, RTE_BBDEV_MAX_CB_SIZE);
+ return -1;
+ }
+
+ return 0;
+}
+
+/* Checks if the decoder input buffer is correct.
+ * Returns 0 if it's valid, -1 otherwise.
+ */
+static inline int
+is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
+{
+ if (k_idx < 0) {
+ rte_bbdev_log(ERR, "K index is invalid");
+ return -1;
+ }
+
+ if (in_length - kw < 0) {
+ rte_bbdev_log(ERR,
+ "Mismatch between input length (%u) and kw (%u)",
+ in_length, kw);
+ return -1;
+ }
+
+ if (kw > RTE_BBDEV_MAX_KW) {
+ rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
+ kw, RTE_BBDEV_MAX_KW);
+ return -1;
+ }
+
+ return 0;
+}
+
+static inline void
+process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
+ uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
+ uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
+ struct rte_bbdev_stats *q_stats)
+{
+ int ret;
+ int16_t k_idx;
+ uint16_t m;
+ uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
+ uint64_t first_3_bytes = 0;
+ struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
+ struct bblib_crc_request crc_req;
+ struct bblib_crc_response crc_resp;
+ struct bblib_turbo_encoder_request turbo_req;
+ struct bblib_turbo_encoder_response turbo_resp;
+ struct bblib_rate_match_dl_request rm_req;
+ struct bblib_rate_match_dl_response rm_resp;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time;
+#else
+ RTE_SET_USED(q_stats);
+#endif
+
+ k_idx = compute_idx(k);
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+
+ /* CRC24A (for TB) */
+ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
+ (enc->code_block_mode == 1)) {
+ ret = is_enc_input_valid(k - 24, k_idx, total_left);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+ crc_req.data = in;
+ crc_req.len = k - 24;
+ /* Check if there is a room for CRC bits if not use
+ * the temporary buffer.
+ */
+ if (rte_pktmbuf_append(m_in, 3) == NULL) {
+ rte_memcpy(q->enc_in, in, (k - 24) >> 3);
+ in = q->enc_in;
+ } else {
+ /* Store 3 first bytes of next CB as they will be
+ * overwritten by CRC bytes. If it is the last CB then
+ * there is no point to store 3 next bytes and this
+ * if..else branch will be omitted.
+ */
+ first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
+ }
+
+ crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ bblib_lte_crc24a_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->offload_time += rte_rdtsc_precise() - start_time;
+#endif
+ } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
+ /* CRC24B */
+ ret = is_enc_input_valid(k - 24, k_idx, total_left);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+ crc_req.data = in;
+ crc_req.len = k - 24;
+ /* Check if there is a room for CRC bits if this is the last
+ * CB in TB. If not use temporary buffer.
+ */
+ if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
+ rte_memcpy(q->enc_in, in, (k - 24) >> 3);
+ in = q->enc_in;
+ } else if (c - r > 1) {
+ /* Store 3 first bytes of next CB as they will be
+ * overwritten by CRC bytes. If it is the last CB then
+ * there is no point to store 3 next bytes and this
+ * if..else branch will be omitted.
+ */
+ first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
+ }
+
+ crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+ bblib_lte_crc24b_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->offload_time += rte_rdtsc_precise() - start_time;
+#endif
+ } else {
+ ret = is_enc_input_valid(k, k_idx, total_left);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+ }
+
+ /* Turbo encoder */
+
+ /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
+ * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
+ * So dst_data's length should be 3*(k/8) + 3 bytes.
+ * In Rate-matching bypass case outputs pointers passed to encoder
+ * (out0, out1 and out2) can directly point to addresses of output from
+ * turbo_enc entity.
+ */
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
+ out0 = q->enc_out;
+ out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
+ out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
+ } else {
+ out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
+ if (out0 == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in output mbuf");
+ return;
+ }
+ enc->output.length += (k >> 3) * 3 + 2;
+ /* rte_bbdev_op_data.offset can be different than the
+ * offset of the appended bytes
+ */
+ out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+ out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
+ out_offset + (k >> 3) + 1);
+ out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
+ out_offset + 2 * ((k >> 3) + 1));
+ }
+
+ turbo_req.case_id = k_idx;
+ turbo_req.input_win = in;
+ turbo_req.length = k >> 3;
+ turbo_resp.output_win_0 = out0;
+ turbo_resp.output_win_1 = out1;
+ turbo_resp.output_win_2 = out2;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+
+ if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "Turbo Encoder failed");
+ return;
+ }
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->offload_time += rte_rdtsc_precise() - start_time;
+#endif
+
+ /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
+ if (first_3_bytes != 0)
+ *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
+
+ /* Rate-matching */
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
+ uint8_t mask_id;
+ /* Integer round up division by 8 */
+ uint16_t out_len = (e + 7) >> 3;
+ /* The mask array is indexed using E%8. E is an even number so
+ * there are only 4 possible values.
+ */
+ const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
+
+ /* get output data starting address */
+ rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
+ if (rm_out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Too little space in output mbuf");
+ return;
+ }
+ /* rte_bbdev_op_data.offset can be different than the offset
+ * of the appended bytes
+ */
+ rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+
+ /* index of current code block */
+ rm_req.r = r;
+ /* total number of code block */
+ rm_req.C = c;
+ /* For DL - 1, UL - 0 */
+ rm_req.direction = 1;
+ /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
+ * and MDL_HARQ are used for Ncb calculation. As Ncb is already
+ * known we can adjust those parameters
+ */
+ rm_req.Nsoft = ncb * rm_req.C;
+ rm_req.KMIMO = 1;
+ rm_req.MDL_HARQ = 1;
+ /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
+ * are used for E calculation. As E is already known we can
+ * adjust those parameters
+ */
+ rm_req.NL = e;
+ rm_req.Qm = 1;
+ rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
+
+ rm_req.rvidx = enc->rv_index;
+ rm_req.Kidx = k_idx - 1;
+ rm_req.nLen = k + 4;
+ rm_req.tin0 = out0;
+ rm_req.tin1 = out1;
+ rm_req.tin2 = out2;
+ rm_resp.output = rm_out;
+ rm_resp.OutputLen = out_len;
+ if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
+ rm_req.bypass_rvidx = 1;
+ else
+ rm_req.bypass_rvidx = 0;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ start_time = rte_rdtsc_precise();
+#endif
+
+ if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "Rate matching failed");
+ return;
+ }
+
+ /* SW fills an entire last byte even if E%8 != 0. Clear the
+ * superfluous data bits for consistency with HW device.
+ */
+ mask_id = (e & 7) >> 1;
+ rm_out[out_len - 1] &= mask_out[mask_id];
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ q_stats->offload_time += rte_rdtsc_precise() - start_time;
+#endif
+
+ enc->output.length += rm_resp.OutputLen;
+ } else {
+ /* Rate matching is bypassed */
+
+ /* Completing last byte of out0 (where 4 tail bits are stored)
+ * by moving first 4 bits from out1
+ */
+ tmp_out = (uint8_t *) --out1;
+ *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
+ tmp_out++;
+ /* Shifting out1 data by 4 bits to the left */
+ for (m = 0; m < k >> 3; ++m) {
+ uint8_t *first = tmp_out;
+ uint8_t second = *(tmp_out + 1);
+ *first = (*first << 4) | ((second & 0xF0) >> 4);
+ tmp_out++;
+ }
+ /* Shifting out2 data by 8 bits to the left */
+ for (m = 0; m < (k >> 3) + 1; ++m) {
+ *tmp_out = *(tmp_out + 1);
+ tmp_out++;
+ }
+ *tmp_out = 0;
+ }
+}
+
+static inline void
+enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+ struct rte_bbdev_stats *queue_stats)
+{
+ uint8_t c, r, crc24_bits = 0;
+ uint16_t k, ncb;
+ uint32_t e;
+ struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
+ uint16_t in_offset = enc->input.offset;
+ uint16_t out_offset = enc->output.offset;
+ struct rte_mbuf *m_in = enc->input.data;
+ struct rte_mbuf *m_out = enc->output.data;
+ uint16_t total_left = enc->input.length;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
+ rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
+ total_left, RTE_BBDEV_MAX_TB_SIZE);
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
+ (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
+ crc24_bits = 24;
+
+ if (enc->code_block_mode == 0) { /* For Transport Block mode */
+ c = enc->tb_params.c;
+ r = enc->tb_params.r;
+ } else {/* For Code Block mode */
+ c = 1;
+ r = 0;
+ }
+
+ while (total_left > 0 && r < c) {
+ if (enc->code_block_mode == 0) {
+ k = (r < enc->tb_params.c_neg) ?
+ enc->tb_params.k_neg : enc->tb_params.k_pos;
+ ncb = (r < enc->tb_params.c_neg) ?
+ enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
+ e = (r < enc->tb_params.cab) ?
+ enc->tb_params.ea : enc->tb_params.eb;
+ } else {
+ k = enc->cb_params.k;
+ ncb = enc->cb_params.ncb;
+ e = enc->cb_params.e;
+ }
+
+ process_enc_cb(q, op, r, c, k, ncb, e, m_in,
+ m_out, in_offset, out_offset, total_left,
+ queue_stats);
+ /* Update total_left */
+ total_left -= (k - crc24_bits) >> 3;
+ /* Update offsets for next CBs (if exist) */
+ in_offset += (k - crc24_bits) >> 3;
+ if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
+ out_offset += e >> 3;
+ else
+ out_offset += (k >> 3) * 3 + 2;
+ r++;
+ }
+
+ /* check if all input data was processed */
+ if (total_left != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CBs sizes");
+ }
+}
+
+static inline uint16_t
+enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
+ uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
+{
+ uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->offload_time = 0;
+#endif
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_enc_one_op(q, ops[i], queue_stats);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+/* Remove the padding bytes from a cyclic buffer.
+ * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
+ * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
+ * The output buffer is a data stream wk with pruned padding bytes. It's length
+ * is 3*D bytes and the order of non-padding bytes is preserved.
+ */
+static inline void
+remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
+ uint16_t ncb)
+{
+ uint32_t in_idx, out_idx, c_idx;
+ const uint32_t d = k + 4;
+ const uint32_t kw = (ncb / 3);
+ const uint32_t nd = kw - d;
+ const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
+ /* Inter-column permutation pattern */
+ const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
+ 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
+ 29, 3, 19, 11, 27, 7, 23, 15, 31};
+ in_idx = 0;
+ out_idx = 0;
+
+ /* The padding bytes are at the first Nd positions in the first row. */
+ for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
+ if (P[c_idx] < nd) {
+ rte_memcpy(&out[out_idx], &in[in_idx + 1],
+ r_subblock - 1);
+ out_idx += r_subblock - 1;
+ } else {
+ rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
+ out_idx += r_subblock;
+ }
+ }
+
+ /* First and second parity bits sub-blocks are interlaced. */
+ for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
+ in_idx += 2 * r_subblock, ++c_idx) {
+ uint32_t second_block_c_idx = P[c_idx];
+ uint32_t third_block_c_idx = P[c_idx] + 1;
+
+ if (second_block_c_idx < nd && third_block_c_idx < nd) {
+ rte_memcpy(&out[out_idx], &in[in_idx + 2],
+ 2 * r_subblock - 2);
+ out_idx += 2 * r_subblock - 2;
+ } else if (second_block_c_idx >= nd &&
+ third_block_c_idx >= nd) {
+ rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
+ out_idx += 2 * r_subblock;
+ } else if (second_block_c_idx < nd) {
+ out[out_idx++] = in[in_idx];
+ rte_memcpy(&out[out_idx], &in[in_idx + 2],
+ 2 * r_subblock - 2);
+ out_idx += 2 * r_subblock - 2;
+ } else {
+ rte_memcpy(&out[out_idx], &in[in_idx + 1],
+ 2 * r_subblock - 1);
+ out_idx += 2 * r_subblock - 1;
+ }
+ }
+
+ /* Last interlaced row is different - its last byte is the only padding
+ * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
+ * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
+ * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
+ * (moving to another column). 2nd parity sub-block uses the same
+ * inter-column permutation pattern as the systematic and 1st parity
+ * sub-blocks but it adds '1' to the resulting index and calculates the
+ * modulus of the result and Kw. Last column is mapped to itself (id 31)
+ * so the first byte taken from the 2nd parity sub-block will be the
+ * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
+ * last byte will be the first byte from the sub-block:
+ * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller
+ * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
+ * padding bytes. The bytes from the 1st parity sub-block are the bytes
+ * from the 31st column - Nd can't be greater than 28 so we are sure
+ * that there are no padding bytes in 31st column.
+ */
+ rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
+}
+
+static inline void
+move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
+ uint16_t ncb)
+{
+ uint16_t d = k + 4;
+ uint16_t kpi = ncb / 3;
+ uint16_t nd = kpi - d;
+
+ rte_memcpy(&out[nd], in, d);
+ rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
+ rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
+}
+
+static inline void
+process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+ uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
+ struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
+ bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left)
+{
+ int ret;
+ int32_t k_idx;
+ int32_t iter_cnt;
+ uint8_t *in, *out, *adapter_input;
+ int32_t ncb, ncb_without_null;
+ struct bblib_turbo_adapter_ul_response adapter_resp;
+ struct bblib_turbo_adapter_ul_request adapter_req;
+ struct bblib_turbo_decoder_request turbo_req;
+ struct bblib_turbo_decoder_response turbo_resp;
+ struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
+
+ k_idx = compute_idx(k);
+
+ ret = is_dec_input_valid(k_idx, kw, total_left);
+ if (ret != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
+ ncb = kw;
+ ncb_without_null = (k + 4) * 3;
+
+ if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
+ struct bblib_deinterleave_ul_request deint_req;
+ struct bblib_deinterleave_ul_response deint_resp;
+
+ /* SW decoder accepts only a circular buffer without NULL bytes
+ * so the input needs to be converted.
+ */
+ remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
+
+ deint_req.pharqbuffer = q->deint_input;
+ deint_req.ncb = ncb_without_null;
+ deint_resp.pinteleavebuffer = q->deint_output;
+ bblib_deinterleave_ul(&deint_req, &deint_resp);
+ } else
+ move_padding_bytes(in, q->deint_output, k, ncb);
+
+ adapter_input = q->deint_output;
+
+ if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
+ adapter_req.isinverted = 1;
+ else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
+ adapter_req.isinverted = 0;
+ else {
+ op->status |= 1 << RTE_BBDEV_DRV_ERROR;
+ rte_bbdev_log(ERR, "LLR format wasn't specified");
+ return;
+ }
+
+ adapter_req.ncb = ncb_without_null;
+ adapter_req.pinteleavebuffer = adapter_input;
+ adapter_resp.pharqout = q->adapter_output;
+ bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
+
+ out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
+ if (out == NULL) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "Too little space in output mbuf");
+ return;
+ }
+ /* rte_bbdev_op_data.offset can be different than the offset of the
+ * appended bytes
+ */
+ out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
+ if (check_crc_24b)
+ turbo_req.c = c + 1;
+ else
+ turbo_req.c = c;
+ turbo_req.input = (int8_t *)q->adapter_output;
+ turbo_req.k = k;
+ turbo_req.k_idx = k_idx;
+ turbo_req.max_iter_num = dec->iter_max;
+ turbo_req.early_term_disable = !check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_EARLY_TERMINATION);
+ turbo_resp.ag_buf = q->ag;
+ turbo_resp.cb_buf = q->code_block;
+ turbo_resp.output = out;
+ iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
+ dec->hard_output.length += (k >> 3);
+
+ if (iter_cnt > 0) {
+ /* Temporary solution for returned iter_count from SDK */
+ iter_cnt = (iter_cnt - 1) / 2;
+ dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
+ } else {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR, "Turbo Decoder failed");
+ return;
+ }
+}
+
+static inline void
+enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
+{
+ uint8_t c, r = 0;
+ uint16_t kw, k = 0;
+ uint16_t crc24_overlap = 0;
+ struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
+ struct rte_mbuf *m_in = dec->input.data;
+ struct rte_mbuf *m_out = dec->hard_output.data;
+ uint16_t in_offset = dec->input.offset;
+ uint16_t total_left = dec->input.length;
+ uint16_t out_offset = dec->hard_output.offset;
+
+ /* Clear op status */
+ op->status = 0;
+
+ if (m_in == NULL || m_out == NULL) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ op->status = 1 << RTE_BBDEV_DATA_ERROR;
+ return;
+ }
+
+ if (dec->code_block_mode == 0) { /* For Transport Block mode */
+ c = dec->tb_params.c;
+ } else { /* For Code Block mode */
+ k = dec->cb_params.k;
+ c = 1;
+ }
+
+ if ((c > 1) && !check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+ crc24_overlap = 24;
+
+ while (total_left > 0) {
+ if (dec->code_block_mode == 0)
+ k = (r < dec->tb_params.c_neg) ?
+ dec->tb_params.k_neg : dec->tb_params.k_pos;
+
+ /* Calculates circular buffer size (Kw).
+ * According to 3gpp 36.212 section 5.1.4.2
+ * Kw = 3 * Kpi,
+ * where:
+ * Kpi = nCol * nRow
+ * where nCol is 32 and nRow can be calculated from:
+ * D =< nCol * nRow
+ * where D is the size of each output from turbo encoder block
+ * (k + 4).
+ */
+ kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
+
+ process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
+ out_offset, check_bit(dec->op_flags,
+ RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
+ total_left);
+ /* To keep CRC24 attached to end of Code block, use
+ * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
+ * removed by default once verified.
+ */
+
+ /* Update total_left */
+ total_left -= kw;
+ /* Update offsets for next CBs (if exist) */
+ in_offset += kw;
+ out_offset += ((k - crc24_overlap) >> 3);
+ r++;
+ }
+ if (total_left != 0) {
+ op->status |= 1 << RTE_BBDEV_DATA_ERROR;
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included Circular buffer sizes");
+ }
+}
+
+static inline uint16_t
+enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
+ uint16_t nb_ops)
+{
+ uint16_t i;
+
+ for (i = 0; i < nb_ops; ++i)
+ enqueue_dec_one_op(q, ops[i]);
+
+ return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
+ NULL);
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Enqueue burst */
+static uint16_t
+enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ void *queue = q_data->queue_private;
+ struct turbo_sw_queue *q = queue;
+ uint16_t nb_enqueued = 0;
+
+ nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
+
+ q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
+ q_data->queue_stats.enqueued_count += nb_enqueued;
+
+ return nb_enqueued;
+}
+
+/* Dequeue decode burst */
+static uint16_t
+dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
+{
+ struct turbo_sw_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Dequeue encode burst */
+static uint16_t
+dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
+{
+ struct turbo_sw_queue *q = q_data->queue_private;
+ uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
+ (void **)ops, nb_ops, NULL);
+ q_data->queue_stats.dequeued_count += nb_dequeued;
+
+ return nb_dequeued;
+}
+
+/* Parse 16bit integer from string argument */
+static inline int
+parse_u16_arg(const char *key, const char *value, void *extra_args)
+{
+ uint16_t *u16 = extra_args;
+ unsigned int long result;
+
+ if ((value == NULL) || (extra_args == NULL))
+ return -EINVAL;
+ errno = 0;
+ result = strtoul(value, NULL, 0);
+ if ((result >= (1 << 16)) || (errno != 0)) {
+ rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
+ return -ERANGE;
+ }
+ *u16 = (uint16_t)result;
+ return 0;
+}
+
+/* Parse parameters used to create device */
+static int
+parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
+{
+ struct rte_kvargs *kvlist = NULL;
+ int ret = 0;
+
+ if (params == NULL)
+ return -EINVAL;
+ if (input_args) {
+ kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
+ if (kvlist == NULL)
+ return -EFAULT;
+
+ ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
+ &parse_u16_arg, &params->queues_num);
+ if (ret < 0)
+ goto exit;
+
+ ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
+ &parse_u16_arg, &params->socket_id);
+ if (ret < 0)
+ goto exit;
+
+ if (params->socket_id >= RTE_MAX_NUMA_NODES) {
+ rte_bbdev_log(ERR, "Invalid socket, must be < %u",
+ RTE_MAX_NUMA_NODES);
+ goto exit;
+ }
+ }
+
+exit:
+ if (kvlist)
+ rte_kvargs_free(kvlist);
+ return ret;
+}
+
+/* Create device */
+static int
+turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
+ struct turbo_sw_params *init_params)
+{
+ struct rte_bbdev *bbdev;
+ const char *name = rte_vdev_device_name(vdev);
+
+ bbdev = rte_bbdev_allocate(name);
+ if (bbdev == NULL)
+ return -ENODEV;
+
+ bbdev->data->dev_private = rte_zmalloc_socket(name,
+ sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
+ init_params->socket_id);
+ if (bbdev->data->dev_private == NULL) {
+ rte_bbdev_release(bbdev);
+ return -ENOMEM;
+ }
+
+ bbdev->dev_ops = &pmd_ops;
+ bbdev->device = &vdev->device;
+ bbdev->data->socket_id = init_params->socket_id;
+ bbdev->intr_handle = NULL;
+
+ /* register rx/tx burst functions for data path */
+ bbdev->dequeue_enc_ops = dequeue_enc_ops;
+ bbdev->dequeue_dec_ops = dequeue_dec_ops;
+ bbdev->enqueue_enc_ops = enqueue_enc_ops;
+ bbdev->enqueue_dec_ops = enqueue_dec_ops;
+ ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
+ init_params->queues_num;
+
+ return 0;
+}
+
+/* Initialise device */
+static int
+turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
+{
+ struct turbo_sw_params init_params = {
+ rte_socket_id(),
+ RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
+ };
+ const char *name;
+ const char *input_args;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+ input_args = rte_vdev_device_args(vdev);
+ parse_turbo_sw_params(&init_params, input_args);
+
+ rte_bbdev_log_debug(
+ "Initialising %s on NUMA node %d with max queues: %d\n",
+ name, init_params.socket_id, init_params.queues_num);
+
+ return turbo_sw_bbdev_create(vdev, &init_params);
+}
+
+/* Uninitialise device */
+static int
+turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
+{
+ struct rte_bbdev *bbdev;
+ const char *name;
+
+ if (vdev == NULL)
+ return -EINVAL;
+
+ name = rte_vdev_device_name(vdev);
+ if (name == NULL)
+ return -EINVAL;
+
+ bbdev = rte_bbdev_get_named_dev(name);
+ if (bbdev == NULL)
+ return -EINVAL;
+
+ rte_free(bbdev->data->dev_private);
+
+ return rte_bbdev_release(bbdev);
+}
+
+static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
+ .probe = turbo_sw_bbdev_probe,
+ .remove = turbo_sw_bbdev_remove
+};
+
+RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
+RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
+ TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
+ TURBO_SW_SOCKET_ID_ARG"=<int>");
+RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
+
+RTE_INIT(turbo_sw_bbdev_init_log)
+{
+ bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
+ if (bbdev_turbo_sw_logtype >= 0)
+ rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
+}
diff --git a/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map b/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map
new file mode 100644
index 00000000..58b94270
--- /dev/null
+++ b/drivers/baseband/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map
@@ -0,0 +1,3 @@
+DPDK_18.02 {
+ local: *;
+};