diff options
Diffstat (limited to 'drivers/bbdev/turbo_sw')
-rw-r--r-- | drivers/bbdev/turbo_sw/Makefile | 42 | ||||
-rw-r--r-- | drivers/bbdev/turbo_sw/bbdev_turbo_software.c | 1217 | ||||
-rw-r--r-- | drivers/bbdev/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map | 3 |
3 files changed, 1262 insertions, 0 deletions
diff --git a/drivers/bbdev/turbo_sw/Makefile b/drivers/bbdev/turbo_sw/Makefile new file mode 100644 index 00000000..79eb5547 --- /dev/null +++ b/drivers/bbdev/turbo_sw/Makefile @@ -0,0 +1,42 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2017 Intel Corporation + +include $(RTE_SDK)/mk/rte.vars.mk + +ifeq ($(FLEXRAN_SDK),) +$(error "Please define FLEXRAN_SDK environment variable") +endif + +# library name +LIB = librte_pmd_bbdev_turbo_sw.a + +# build flags +CFLAGS += -DALLOW_EXPERIMENTAL_API +CFLAGS += -O3 +CFLAGS += $(WERROR_FLAGS) +LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring -lrte_kvargs +LDLIBS += -lrte_bbdev +LDLIBS += -lrte_bus_vdev + +# versioning export map +EXPORT_MAP := rte_pmd_bbdev_turbo_sw_version.map + +# external library dependencies +CFLAGS += -I$(FLEXRAN_SDK)/lib_common +CFLAGS += -I$(FLEXRAN_SDK)/lib_turbo +CFLAGS += -I$(FLEXRAN_SDK)/lib_crc +CFLAGS += -I$(FLEXRAN_SDK)/lib_rate_matching + +LDLIBS += -L$(FLEXRAN_SDK)/lib_crc -lcrc +LDLIBS += -L$(FLEXRAN_SDK)/lib_turbo -lturbo +LDLIBS += -L$(FLEXRAN_SDK)/lib_rate_matching -lrate_matching +LDLIBS += -L$(FLEXRAN_SDK)/lib_common -lcommon +LDLIBS += -lstdc++ -lirc -limf -lipps + +# library version +LIBABIVER := 1 + +# library source files +SRCS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += bbdev_turbo_software.c + +include $(RTE_SDK)/mk/rte.lib.mk diff --git a/drivers/bbdev/turbo_sw/bbdev_turbo_software.c b/drivers/bbdev/turbo_sw/bbdev_turbo_software.c new file mode 100644 index 00000000..302abf5c --- /dev/null +++ b/drivers/bbdev/turbo_sw/bbdev_turbo_software.c @@ -0,0 +1,1217 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2017 Intel Corporation + */ + +#include <string.h> + +#include <rte_common.h> +#include <rte_bus_vdev.h> +#include <rte_malloc.h> +#include <rte_ring.h> +#include <rte_kvargs.h> + +#include <rte_bbdev.h> +#include <rte_bbdev_pmd.h> + +#include <phy_turbo.h> +#include <phy_crc.h> +#include <phy_rate_match.h> +#include <divide.h> + +#define DRIVER_NAME turbo_sw + +/* Turbo SW PMD logging ID */ +static int bbdev_turbo_sw_logtype; + +/* Helper macro for logging */ +#define rte_bbdev_log(level, fmt, ...) \ + rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \ + ##__VA_ARGS__) + +#define rte_bbdev_log_debug(fmt, ...) \ + rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ + ##__VA_ARGS__) + +/* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */ +#define C_SUBBLOCK (32) +#define MAX_TB_SIZE (391656) +#define MAX_CB_SIZE (6144) +#define MAX_KW (18528) + +/* private data structure */ +struct bbdev_private { + unsigned int max_nb_queues; /**< Max number of queues */ +}; + +/* Initialisation params structure that can be used by Turbo SW driver */ +struct turbo_sw_params { + int socket_id; /*< Turbo SW device socket */ + uint16_t queues_num; /*< Turbo SW device queues number */ +}; + +/* Accecptable params for Turbo SW devices */ +#define TURBO_SW_MAX_NB_QUEUES_ARG "max_nb_queues" +#define TURBO_SW_SOCKET_ID_ARG "socket_id" + +static const char * const turbo_sw_valid_params[] = { + TURBO_SW_MAX_NB_QUEUES_ARG, + TURBO_SW_SOCKET_ID_ARG +}; + +/* queue */ +struct turbo_sw_queue { + /* Ring for processed (encoded/decoded) operations which are ready to + * be dequeued. + */ + struct rte_ring *processed_pkts; + /* Stores input for turbo encoder (used when CRC attachment is + * performed + */ + uint8_t *enc_in; + /* Stores output from turbo encoder */ + uint8_t *enc_out; + /* Alpha gamma buf for bblib_turbo_decoder() function */ + int8_t *ag; + /* Temp buf for bblib_turbo_decoder() function */ + uint16_t *code_block; + /* Input buf for bblib_rate_dematching_lte() function */ + uint8_t *deint_input; + /* Output buf for bblib_rate_dematching_lte() function */ + uint8_t *deint_output; + /* Output buf for bblib_turbodec_adapter_lte() function */ + uint8_t *adapter_output; + /* Operation type of this queue */ + enum rte_bbdev_op_type type; +} __rte_cache_aligned; + +/* Calculate index based on Table 5.1.3-3 from TS34.212 */ +static inline int32_t +compute_idx(uint16_t k) +{ + int32_t result = 0; + + if (k < 40 || k > MAX_CB_SIZE) + return -1; + + if (k > 2048) { + if ((k - 2048) % 64 != 0) + result = -1; + + result = 124 + (k - 2048) / 64; + } else if (k <= 512) { + if ((k - 40) % 8 != 0) + result = -1; + + result = (k - 40) / 8 + 1; + } else if (k <= 1024) { + if ((k - 512) % 16 != 0) + result = -1; + + result = 60 + (k - 512) / 16; + } else { /* 1024 < k <= 2048 */ + if ((k - 1024) % 32 != 0) + result = -1; + + result = 92 + (k - 1024) / 32; + } + + return result; +} + +/* Read flag value 0/1 from bitmap */ +static inline bool +check_bit(uint32_t bitmap, uint32_t bitmask) +{ + return bitmap & bitmask; +} + +/* Get device info */ +static void +info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info) +{ + struct bbdev_private *internals = dev->data->dev_private; + + static const struct rte_bbdev_op_cap bbdev_capabilities[] = { + { + .type = RTE_BBDEV_OP_TURBO_DEC, + .cap.turbo_dec = { + .capability_flags = + RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | + RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN | + RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | + RTE_BBDEV_TURBO_CRC_TYPE_24B | + RTE_BBDEV_TURBO_EARLY_TERMINATION, + .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_hard_out = + RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_soft_out = 0, + } + }, + { + .type = RTE_BBDEV_OP_TURBO_ENC, + .cap.turbo_enc = { + .capability_flags = + RTE_BBDEV_TURBO_CRC_24B_ATTACH | + RTE_BBDEV_TURBO_CRC_24A_ATTACH | + RTE_BBDEV_TURBO_RATE_MATCH | + RTE_BBDEV_TURBO_RV_INDEX_BYPASS, + .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS, + } + }, + RTE_BBDEV_END_OF_CAPABILITIES_LIST() + }; + + static struct rte_bbdev_queue_conf default_queue_conf = { + .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT, + }; + + static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2; + + default_queue_conf.socket = dev->data->socket_id; + + dev_info->driver_name = RTE_STR(DRIVER_NAME); + dev_info->max_num_queues = internals->max_nb_queues; + dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT; + dev_info->hardware_accelerated = false; + dev_info->max_queue_priority = 0; + dev_info->default_queue_conf = default_queue_conf; + dev_info->capabilities = bbdev_capabilities; + dev_info->cpu_flag_reqs = &cpu_flag; + dev_info->min_alignment = 64; + + rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id); +} + +/* Release queue */ +static int +q_release(struct rte_bbdev *dev, uint16_t q_id) +{ + struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private; + + if (q != NULL) { + rte_ring_free(q->processed_pkts); + rte_free(q->enc_out); + rte_free(q->enc_in); + rte_free(q->ag); + rte_free(q->code_block); + rte_free(q->deint_input); + rte_free(q->deint_output); + rte_free(q->adapter_output); + rte_free(q); + dev->data->queues[q_id].queue_private = NULL; + } + + rte_bbdev_log_debug("released device queue %u:%u", + dev->data->dev_id, q_id); + return 0; +} + +/* Setup a queue */ +static int +q_setup(struct rte_bbdev *dev, uint16_t q_id, + const struct rte_bbdev_queue_conf *queue_conf) +{ + int ret; + struct turbo_sw_queue *q; + char name[RTE_RING_NAMESIZE]; + + /* Allocate the queue data structure. */ + q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q == NULL) { + rte_bbdev_log(ERR, "Failed to allocate queue memory"); + return -ENOMEM; + } + + /* Allocate memory for encoder output. */ + ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->enc_out = rte_zmalloc_socket(name, + ((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3, + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->enc_out == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for rate matching output. */ + ret = snprintf(name, RTE_RING_NAMESIZE, + RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id, + q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->enc_in = rte_zmalloc_socket(name, + (MAX_CB_SIZE >> 3) * sizeof(*q->enc_in), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->enc_in == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for Aplha Gamma temp buffer. */ + ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->ag = rte_zmalloc_socket(name, + MAX_CB_SIZE * 10 * sizeof(*q->ag), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->ag == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for code block temp buffer. */ + ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->code_block = rte_zmalloc_socket(name, + (6144 >> 3) * sizeof(*q->code_block), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->code_block == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for Deinterleaver input. */ + ret = snprintf(name, RTE_RING_NAMESIZE, + RTE_STR(DRIVER_NAME)"_deint_input%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->deint_input = rte_zmalloc_socket(name, + MAX_KW * sizeof(*q->deint_input), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->deint_input == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for Deinterleaver output. */ + ret = snprintf(name, RTE_RING_NAMESIZE, + RTE_STR(DRIVER_NAME)"_deint_output%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->deint_output = rte_zmalloc_socket(NULL, + MAX_KW * sizeof(*q->deint_output), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->deint_output == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Allocate memory for Adapter output. */ + ret = snprintf(name, RTE_RING_NAMESIZE, + RTE_STR(DRIVER_NAME)"_adapter_output%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->adapter_output = rte_zmalloc_socket(NULL, + MAX_CB_SIZE * 6 * sizeof(*q->adapter_output), + RTE_CACHE_LINE_SIZE, queue_conf->socket); + if (q->adapter_output == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate queue memory for %s", name); + goto free_q; + } + + /* Create ring for packets awaiting to be dequeued. */ + ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u", + dev->data->dev_id, q_id); + if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) { + rte_bbdev_log(ERR, + "Creating queue name for device %u queue %u failed", + dev->data->dev_id, q_id); + return -ENAMETOOLONG; + } + q->processed_pkts = rte_ring_create(name, queue_conf->queue_size, + queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ); + if (q->processed_pkts == NULL) { + rte_bbdev_log(ERR, "Failed to create ring for %s", name); + goto free_q; + } + + q->type = queue_conf->op_type; + + dev->data->queues[q_id].queue_private = q; + rte_bbdev_log_debug("setup device queue %s", name); + return 0; + +free_q: + rte_ring_free(q->processed_pkts); + rte_free(q->enc_out); + rte_free(q->enc_in); + rte_free(q->ag); + rte_free(q->code_block); + rte_free(q->deint_input); + rte_free(q->deint_output); + rte_free(q->adapter_output); + rte_free(q); + return -EFAULT; +} + +static const struct rte_bbdev_ops pmd_ops = { + .info_get = info_get, + .queue_setup = q_setup, + .queue_release = q_release +}; + +/* Checks if the encoder input buffer is correct. + * Returns 0 if it's valid, -1 otherwise. + */ +static inline int +is_enc_input_valid(const uint16_t k, const int32_t k_idx, + const uint16_t in_length) +{ + if (k_idx < 0) { + rte_bbdev_log(ERR, "K Index is invalid"); + return -1; + } + + if (in_length - (k >> 3) < 0) { + rte_bbdev_log(ERR, + "Mismatch between input length (%u bytes) and K (%u bits)", + in_length, k); + return -1; + } + + if (k > MAX_CB_SIZE) { + rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", + k, MAX_CB_SIZE); + return -1; + } + + return 0; +} + +/* Checks if the decoder input buffer is correct. + * Returns 0 if it's valid, -1 otherwise. + */ +static inline int +is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length) +{ + if (k_idx < 0) { + rte_bbdev_log(ERR, "K index is invalid"); + return -1; + } + + if (in_length - kw < 0) { + rte_bbdev_log(ERR, + "Mismatch between input length (%u) and kw (%u)", + in_length, kw); + return -1; + } + + if (kw > MAX_KW) { + rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d", + kw, MAX_KW); + return -1; + } + + return 0; +} + +static inline void +process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op, + uint8_t cb_idx, uint8_t c, uint16_t k, uint16_t ncb, + uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out, + uint16_t in_offset, uint16_t out_offset, uint16_t total_left) +{ + int ret; + int16_t k_idx; + uint16_t m; + uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out; + struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; + struct bblib_crc_request crc_req; + struct bblib_turbo_encoder_request turbo_req; + struct bblib_turbo_encoder_response turbo_resp; + struct bblib_rate_match_dl_request rm_req; + struct bblib_rate_match_dl_response rm_resp; + + k_idx = compute_idx(k); + in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); + + /* CRC24A (for TB) */ + if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) && + (enc->code_block_mode == 1)) { + ret = is_enc_input_valid(k - 24, k_idx, total_left); + if (ret != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + return; + } + /* copy the input to the temporary buffer to be able to extend + * it by 3 CRC bytes + */ + rte_memcpy(q->enc_in, in, (k - 24) >> 3); + crc_req.data = q->enc_in; + crc_req.len = (k - 24) >> 3; + if (bblib_lte_crc24a_gen(&crc_req) == -1) { + op->status |= 1 << RTE_BBDEV_CRC_ERROR; + rte_bbdev_log(ERR, "CRC24a generation failed"); + return; + } + in = q->enc_in; + } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) { + /* CRC24B */ + ret = is_enc_input_valid(k - 24, k_idx, total_left); + if (ret != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + return; + } + /* copy the input to the temporary buffer to be able to extend + * it by 3 CRC bytes + */ + rte_memcpy(q->enc_in, in, (k - 24) >> 3); + crc_req.data = q->enc_in; + crc_req.len = (k - 24) >> 3; + if (bblib_lte_crc24b_gen(&crc_req) == -1) { + op->status |= 1 << RTE_BBDEV_CRC_ERROR; + rte_bbdev_log(ERR, "CRC24b generation failed"); + return; + } + in = q->enc_in; + } else { + ret = is_enc_input_valid(k, k_idx, total_left); + if (ret != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + return; + } + } + + /* Turbo encoder */ + + /* Each bit layer output from turbo encoder is (k+4) bits long, i.e. + * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up. + * So dst_data's length should be 3*(k/8) + 3 bytes. + */ + out0 = q->enc_out; + out1 = RTE_PTR_ADD(out0, (k >> 3) + 1); + out2 = RTE_PTR_ADD(out1, (k >> 3) + 1); + + turbo_req.case_id = k_idx; + turbo_req.input_win = in; + turbo_req.length = k >> 3; + turbo_resp.output_win_0 = out0; + turbo_resp.output_win_1 = out1; + turbo_resp.output_win_2 = out2; + if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) { + op->status |= 1 << RTE_BBDEV_DRV_ERROR; + rte_bbdev_log(ERR, "Turbo Encoder failed"); + return; + } + + /* Rate-matching */ + if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) { + /* get output data starting address */ + rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3)); + if (rm_out == NULL) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, + "Too little space in output mbuf"); + return; + } + /* rte_bbdev_op_data.offset can be different than the offset + * of the appended bytes + */ + rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); + + /* index of current code block */ + rm_req.r = cb_idx; + /* total number of code block */ + rm_req.C = c; + /* For DL - 1, UL - 0 */ + rm_req.direction = 1; + /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO + * and MDL_HARQ are used for Ncb calculation. As Ncb is already + * known we can adjust those parameters + */ + rm_req.Nsoft = ncb * rm_req.C; + rm_req.KMIMO = 1; + rm_req.MDL_HARQ = 1; + /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G + * are used for E calculation. As E is already known we can + * adjust those parameters + */ + rm_req.NL = e; + rm_req.Qm = 1; + rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C; + + rm_req.rvidx = enc->rv_index; + rm_req.Kidx = k_idx - 1; + rm_req.nLen = k + 4; + rm_req.tin0 = out0; + rm_req.tin1 = out1; + rm_req.tin2 = out2; + rm_resp.output = rm_out; + rm_resp.OutputLen = (e >> 3); + if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS) + rm_req.bypass_rvidx = 1; + else + rm_req.bypass_rvidx = 0; + + if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) { + op->status |= 1 << RTE_BBDEV_DRV_ERROR; + rte_bbdev_log(ERR, "Rate matching failed"); + return; + } + enc->output.length += rm_resp.OutputLen; + } else { + /* Rate matching is bypassed */ + + /* Completing last byte of out0 (where 4 tail bits are stored) + * by moving first 4 bits from out1 + */ + tmp_out = (uint8_t *) --out1; + *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4); + tmp_out++; + /* Shifting out1 data by 4 bits to the left */ + for (m = 0; m < k >> 3; ++m) { + uint8_t *first = tmp_out; + uint8_t second = *(tmp_out + 1); + *first = (*first << 4) | ((second & 0xF0) >> 4); + tmp_out++; + } + /* Shifting out2 data by 8 bits to the left */ + for (m = 0; m < (k >> 3) + 1; ++m) { + *tmp_out = *(tmp_out + 1); + tmp_out++; + } + *tmp_out = 0; + + /* copy shifted output to turbo_enc entity */ + out0 = (uint8_t *)rte_pktmbuf_append(m_out, + (k >> 3) * 3 + 2); + if (out0 == NULL) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, + "Too little space in output mbuf"); + return; + } + enc->output.length += (k >> 3) * 3 + 2; + /* rte_bbdev_op_data.offset can be different than the + * offset of the appended bytes + */ + out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, + out_offset); + rte_memcpy(out0, q->enc_out, (k >> 3) * 3 + 2); + } +} + +static inline void +enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op) +{ + uint8_t c, r, crc24_bits = 0; + uint16_t k, ncb; + uint32_t e; + struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc; + uint16_t in_offset = enc->input.offset; + uint16_t out_offset = enc->output.offset; + struct rte_mbuf *m_in = enc->input.data; + struct rte_mbuf *m_out = enc->output.data; + uint16_t total_left = enc->input.length; + + /* Clear op status */ + op->status = 0; + + if (total_left > MAX_TB_SIZE >> 3) { + rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", + total_left, MAX_TB_SIZE); + op->status = 1 << RTE_BBDEV_DATA_ERROR; + return; + } + + if (m_in == NULL || m_out == NULL) { + rte_bbdev_log(ERR, "Invalid mbuf pointer"); + op->status = 1 << RTE_BBDEV_DATA_ERROR; + return; + } + + if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) || + (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH)) + crc24_bits = 24; + + if (enc->code_block_mode == 0) { /* For Transport Block mode */ + c = enc->tb_params.c; + r = enc->tb_params.r; + } else {/* For Code Block mode */ + c = 1; + r = 0; + } + + while (total_left > 0 && r < c) { + if (enc->code_block_mode == 0) { + k = (r < enc->tb_params.c_neg) ? + enc->tb_params.k_neg : enc->tb_params.k_pos; + ncb = (r < enc->tb_params.c_neg) ? + enc->tb_params.ncb_neg : enc->tb_params.ncb_pos; + e = (r < enc->tb_params.cab) ? + enc->tb_params.ea : enc->tb_params.eb; + } else { + k = enc->cb_params.k; + ncb = enc->cb_params.ncb; + e = enc->cb_params.e; + } + + process_enc_cb(q, op, r, c, k, ncb, e, m_in, + m_out, in_offset, out_offset, total_left); + /* Update total_left */ + total_left -= (k - crc24_bits) >> 3; + /* Update offsets for next CBs (if exist) */ + in_offset += (k - crc24_bits) >> 3; + if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) + out_offset += e >> 3; + else + out_offset += (k >> 3) * 3 + 2; + r++; + } + + /* check if all input data was processed */ + if (total_left != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CBs sizes"); + } +} + +static inline uint16_t +enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops, + uint16_t nb_ops) +{ + uint16_t i; + + for (i = 0; i < nb_ops; ++i) + enqueue_enc_one_op(q, ops[i]); + + return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, + NULL); +} + +/* Remove the padding bytes from a cyclic buffer. + * The input buffer is a data stream wk as described in 3GPP TS 36.212 section + * 5.1.4.1.2 starting from w0 and with length Ncb bytes. + * The output buffer is a data stream wk with pruned padding bytes. It's length + * is 3*D bytes and the order of non-padding bytes is preserved. + */ +static inline void +remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k, + uint16_t ncb) +{ + uint32_t in_idx, out_idx, c_idx; + const uint32_t d = k + 4; + const uint32_t kw = (ncb / 3); + const uint32_t nd = kw - d; + const uint32_t r_subblock = kw / C_SUBBLOCK; + /* Inter-column permutation pattern */ + const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, + 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, + 11, 27, 7, 23, 15, 31}; + in_idx = 0; + out_idx = 0; + + /* The padding bytes are at the first Nd positions in the first row. */ + for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) { + if (P[c_idx] < nd) { + rte_memcpy(&out[out_idx], &in[in_idx + 1], + r_subblock - 1); + out_idx += r_subblock - 1; + } else { + rte_memcpy(&out[out_idx], &in[in_idx], r_subblock); + out_idx += r_subblock; + } + } + + /* First and second parity bits sub-blocks are interlaced. */ + for (c_idx = 0; in_idx < ncb - 2 * r_subblock; + in_idx += 2 * r_subblock, ++c_idx) { + uint32_t second_block_c_idx = P[c_idx]; + uint32_t third_block_c_idx = P[c_idx] + 1; + + if (second_block_c_idx < nd && third_block_c_idx < nd) { + rte_memcpy(&out[out_idx], &in[in_idx + 2], + 2 * r_subblock - 2); + out_idx += 2 * r_subblock - 2; + } else if (second_block_c_idx >= nd && + third_block_c_idx >= nd) { + rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock); + out_idx += 2 * r_subblock; + } else if (second_block_c_idx < nd) { + out[out_idx++] = in[in_idx]; + rte_memcpy(&out[out_idx], &in[in_idx + 2], + 2 * r_subblock - 2); + out_idx += 2 * r_subblock - 2; + } else { + rte_memcpy(&out[out_idx], &in[in_idx + 1], + 2 * r_subblock - 1); + out_idx += 2 * r_subblock - 1; + } + } + + /* Last interlaced row is different - its last byte is the only padding + * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block. + * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1 + * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes + * (moving to another column). 2nd parity sub-block uses the same + * inter-column permutation pattern as the systematic and 1st parity + * sub-blocks but it adds '1' to the resulting index and calculates the + * modulus of the result and Kw. Last column is mapped to itself (id 31) + * so the first byte taken from the 2nd parity sub-block will be the + * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the + * last byte will be the first byte from the sub-block: + * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't be smaller + * than 2 so we know that bytes with ids 0 and 1 must be the padding + * bytes. The bytes from the 1st parity sub-block are the bytes from the + * 31st column - Nd can't be greater than 26 so we are sure that there + * are no padding bytes in 31st column. + */ + rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1); +} + +static inline void +move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k, + uint16_t ncb) +{ + uint16_t d = k + 4; + uint16_t kpi = ncb / 3; + uint16_t nd = kpi - d; + + rte_memcpy(&out[nd], in, d); + rte_memcpy(&out[nd + kpi + 64], &in[kpi], d); + rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d); +} + +static inline void +process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op, + uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in, + struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset, + bool check_crc_24b, uint16_t total_left) +{ + int ret; + int32_t k_idx; + int32_t iter_cnt; + uint8_t *in, *out, *adapter_input; + int32_t ncb, ncb_without_null; + struct bblib_turbo_adapter_ul_response adapter_resp; + struct bblib_turbo_adapter_ul_request adapter_req; + struct bblib_turbo_decoder_request turbo_req; + struct bblib_turbo_decoder_response turbo_resp; + struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; + + k_idx = compute_idx(k); + + ret = is_dec_input_valid(k_idx, kw, total_left); + if (ret != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + return; + } + + in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset); + ncb = kw; + ncb_without_null = (k + 4) * 3; + + if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) { + struct bblib_deinterleave_ul_request deint_req; + struct bblib_deinterleave_ul_response deint_resp; + + /* SW decoder accepts only a circular buffer without NULL bytes + * so the input needs to be converted. + */ + remove_nulls_from_circular_buf(in, q->deint_input, k, ncb); + + deint_req.pharqbuffer = q->deint_input; + deint_req.ncb = ncb_without_null; + deint_resp.pinteleavebuffer = q->deint_output; + bblib_deinterleave_ul(&deint_req, &deint_resp); + } else + move_padding_bytes(in, q->deint_output, k, ncb); + + adapter_input = q->deint_output; + + if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN) + adapter_req.isinverted = 1; + else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN) + adapter_req.isinverted = 0; + else { + op->status |= 1 << RTE_BBDEV_DRV_ERROR; + rte_bbdev_log(ERR, "LLR format wasn't specified"); + return; + } + + adapter_req.ncb = ncb_without_null; + adapter_req.pinteleavebuffer = adapter_input; + adapter_resp.pharqout = q->adapter_output; + bblib_turbo_adapter_ul(&adapter_req, &adapter_resp); + + out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3)); + if (out == NULL) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, "Too little space in output mbuf"); + return; + } + /* rte_bbdev_op_data.offset can be different than the offset of the + * appended bytes + */ + out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset); + if (check_crc_24b) + turbo_req.c = c + 1; + else + turbo_req.c = c; + turbo_req.input = (int8_t *)q->adapter_output; + turbo_req.k = k; + turbo_req.k_idx = k_idx; + turbo_req.max_iter_num = dec->iter_max; + turbo_resp.ag_buf = q->ag; + turbo_resp.cb_buf = q->code_block; + turbo_resp.output = out; + iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp); + dec->hard_output.length += (k >> 3); + + if (iter_cnt > 0) { + /* Temporary solution for returned iter_count from SDK */ + iter_cnt = (iter_cnt - 1) / 2; + dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count); + } else { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, "Turbo Decoder failed"); + return; + } +} + +static inline void +enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op) +{ + uint8_t c, r = 0; + uint16_t kw, k = 0; + struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec; + struct rte_mbuf *m_in = dec->input.data; + struct rte_mbuf *m_out = dec->hard_output.data; + uint16_t in_offset = dec->input.offset; + uint16_t total_left = dec->input.length; + uint16_t out_offset = dec->hard_output.offset; + + /* Clear op status */ + op->status = 0; + + if (m_in == NULL || m_out == NULL) { + rte_bbdev_log(ERR, "Invalid mbuf pointer"); + op->status = 1 << RTE_BBDEV_DATA_ERROR; + return; + } + + if (dec->code_block_mode == 0) { /* For Transport Block mode */ + c = dec->tb_params.c; + } else { /* For Code Block mode */ + k = dec->cb_params.k; + c = 1; + } + + while (total_left > 0) { + if (dec->code_block_mode == 0) + k = (r < dec->tb_params.c_neg) ? + dec->tb_params.k_neg : dec->tb_params.k_pos; + + /* Calculates circular buffer size (Kw). + * According to 3gpp 36.212 section 5.1.4.2 + * Kw = 3 * Kpi, + * where: + * Kpi = nCol * nRow + * where nCol is 32 and nRow can be calculated from: + * D =< nCol * nRow + * where D is the size of each output from turbo encoder block + * (k + 4). + */ + kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3; + + process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset, + out_offset, check_bit(dec->op_flags, + RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left); + /* As a result of decoding we get Code Block with included + * decoded CRC24 at the end of Code Block. Type of CRC24 is + * specified by flag. + */ + + /* Update total_left */ + total_left -= kw; + /* Update offsets for next CBs (if exist) */ + in_offset += kw; + out_offset += (k >> 3); + r++; + } + if (total_left != 0) { + op->status |= 1 << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included Circular buffer sizes"); + } +} + +static inline uint16_t +enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops, + uint16_t nb_ops) +{ + uint16_t i; + + for (i = 0; i < nb_ops; ++i) + enqueue_dec_one_op(q, ops[i]); + + return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops, + NULL); +} + +/* Enqueue burst */ +static uint16_t +enqueue_enc_ops(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t nb_ops) +{ + void *queue = q_data->queue_private; + struct turbo_sw_queue *q = queue; + uint16_t nb_enqueued = 0; + + nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops); + + q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; + q_data->queue_stats.enqueued_count += nb_enqueued; + + return nb_enqueued; +} + +/* Enqueue burst */ +static uint16_t +enqueue_dec_ops(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t nb_ops) +{ + void *queue = q_data->queue_private; + struct turbo_sw_queue *q = queue; + uint16_t nb_enqueued = 0; + + nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops); + + q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued; + q_data->queue_stats.enqueued_count += nb_enqueued; + + return nb_enqueued; +} + +/* Dequeue decode burst */ +static uint16_t +dequeue_dec_ops(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t nb_ops) +{ + struct turbo_sw_queue *q = q_data->queue_private; + uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, + (void **)ops, nb_ops, NULL); + q_data->queue_stats.dequeued_count += nb_dequeued; + + return nb_dequeued; +} + +/* Dequeue encode burst */ +static uint16_t +dequeue_enc_ops(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t nb_ops) +{ + struct turbo_sw_queue *q = q_data->queue_private; + uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts, + (void **)ops, nb_ops, NULL); + q_data->queue_stats.dequeued_count += nb_dequeued; + + return nb_dequeued; +} + +/* Parse 16bit integer from string argument */ +static inline int +parse_u16_arg(const char *key, const char *value, void *extra_args) +{ + uint16_t *u16 = extra_args; + unsigned int long result; + + if ((value == NULL) || (extra_args == NULL)) + return -EINVAL; + errno = 0; + result = strtoul(value, NULL, 0); + if ((result >= (1 << 16)) || (errno != 0)) { + rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key); + return -ERANGE; + } + *u16 = (uint16_t)result; + return 0; +} + +/* Parse parameters used to create device */ +static int +parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args) +{ + struct rte_kvargs *kvlist = NULL; + int ret = 0; + + if (params == NULL) + return -EINVAL; + if (input_args) { + kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params); + if (kvlist == NULL) + return -EFAULT; + + ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0], + &parse_u16_arg, ¶ms->queues_num); + if (ret < 0) + goto exit; + + ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1], + &parse_u16_arg, ¶ms->socket_id); + if (ret < 0) + goto exit; + + if (params->socket_id >= RTE_MAX_NUMA_NODES) { + rte_bbdev_log(ERR, "Invalid socket, must be < %u", + RTE_MAX_NUMA_NODES); + goto exit; + } + } + +exit: + if (kvlist) + rte_kvargs_free(kvlist); + return ret; +} + +/* Create device */ +static int +turbo_sw_bbdev_create(struct rte_vdev_device *vdev, + struct turbo_sw_params *init_params) +{ + struct rte_bbdev *bbdev; + const char *name = rte_vdev_device_name(vdev); + + bbdev = rte_bbdev_allocate(name); + if (bbdev == NULL) + return -ENODEV; + + bbdev->data->dev_private = rte_zmalloc_socket(name, + sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE, + init_params->socket_id); + if (bbdev->data->dev_private == NULL) { + rte_bbdev_release(bbdev); + return -ENOMEM; + } + + bbdev->dev_ops = &pmd_ops; + bbdev->device = &vdev->device; + bbdev->data->socket_id = init_params->socket_id; + bbdev->intr_handle = NULL; + + /* register rx/tx burst functions for data path */ + bbdev->dequeue_enc_ops = dequeue_enc_ops; + bbdev->dequeue_dec_ops = dequeue_dec_ops; + bbdev->enqueue_enc_ops = enqueue_enc_ops; + bbdev->enqueue_dec_ops = enqueue_dec_ops; + ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues = + init_params->queues_num; + + return 0; +} + +/* Initialise device */ +static int +turbo_sw_bbdev_probe(struct rte_vdev_device *vdev) +{ + struct turbo_sw_params init_params = { + rte_socket_id(), + RTE_BBDEV_DEFAULT_MAX_NB_QUEUES + }; + const char *name; + const char *input_args; + + if (vdev == NULL) + return -EINVAL; + + name = rte_vdev_device_name(vdev); + if (name == NULL) + return -EINVAL; + input_args = rte_vdev_device_args(vdev); + parse_turbo_sw_params(&init_params, input_args); + + rte_bbdev_log_debug( + "Initialising %s on NUMA node %d with max queues: %d\n", + name, init_params.socket_id, init_params.queues_num); + + return turbo_sw_bbdev_create(vdev, &init_params); +} + +/* Uninitialise device */ +static int +turbo_sw_bbdev_remove(struct rte_vdev_device *vdev) +{ + struct rte_bbdev *bbdev; + const char *name; + + if (vdev == NULL) + return -EINVAL; + + name = rte_vdev_device_name(vdev); + if (name == NULL) + return -EINVAL; + + bbdev = rte_bbdev_get_named_dev(name); + if (bbdev == NULL) + return -EINVAL; + + rte_free(bbdev->data->dev_private); + + return rte_bbdev_release(bbdev); +} + +static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = { + .probe = turbo_sw_bbdev_probe, + .remove = turbo_sw_bbdev_remove +}; + +RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv); +RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME, + TURBO_SW_MAX_NB_QUEUES_ARG"=<int> " + TURBO_SW_SOCKET_ID_ARG"=<int>"); + +RTE_INIT(null_bbdev_init_log); +static void +null_bbdev_init_log(void) +{ + bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw"); + if (bbdev_turbo_sw_logtype >= 0) + rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE); +} diff --git a/drivers/bbdev/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map b/drivers/bbdev/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map new file mode 100644 index 00000000..58b94270 --- /dev/null +++ b/drivers/bbdev/turbo_sw/rte_pmd_bbdev_turbo_sw_version.map @@ -0,0 +1,3 @@ +DPDK_18.02 { + local: *; +}; |