diff options
Diffstat (limited to 'drivers/net/e1000/em_rxtx.c')
-rw-r--r-- | drivers/net/e1000/em_rxtx.c | 1861 |
1 files changed, 1861 insertions, 0 deletions
diff --git a/drivers/net/e1000/em_rxtx.c b/drivers/net/e1000/em_rxtx.c new file mode 100644 index 00000000..441ccad8 --- /dev/null +++ b/drivers/net/e1000/em_rxtx.c @@ -0,0 +1,1861 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/queue.h> + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> +#include <stdint.h> +#include <stdarg.h> +#include <inttypes.h> + +#include <rte_interrupts.h> +#include <rte_byteorder.h> +#include <rte_common.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_memory.h> +#include <rte_memcpy.h> +#include <rte_memzone.h> +#include <rte_launch.h> +#include <rte_eal.h> +#include <rte_per_lcore.h> +#include <rte_lcore.h> +#include <rte_atomic.h> +#include <rte_branch_prediction.h> +#include <rte_ring.h> +#include <rte_mempool.h> +#include <rte_malloc.h> +#include <rte_mbuf.h> +#include <rte_ether.h> +#include <rte_ethdev.h> +#include <rte_prefetch.h> +#include <rte_ip.h> +#include <rte_udp.h> +#include <rte_tcp.h> +#include <rte_sctp.h> +#include <rte_string_fns.h> + +#include "e1000_logs.h" +#include "base/e1000_api.h" +#include "e1000_ethdev.h" +#include "base/e1000_osdep.h" + +#define E1000_TXD_VLAN_SHIFT 16 + +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ + +static inline struct rte_mbuf * +rte_rxmbuf_alloc(struct rte_mempool *mp) +{ + struct rte_mbuf *m; + + m = __rte_mbuf_raw_alloc(mp); + __rte_mbuf_sanity_check_raw(m, 0); + return m; +} + +/** + * Structure associated with each descriptor of the RX ring of a RX queue. + */ +struct em_rx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ +}; + +/** + * Structure associated with each descriptor of the TX ring of a TX queue. + */ +struct em_tx_entry { + struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ + uint16_t next_id; /**< Index of next descriptor in ring. */ + uint16_t last_id; /**< Index of last scattered descriptor. */ +}; + +/** + * Structure associated with each RX queue. + */ +struct em_rx_queue { + struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ + volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */ + uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ + volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ + volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ + struct em_rx_entry *sw_ring; /**< address of RX software ring. */ + struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ + struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ + uint16_t nb_rx_desc; /**< number of RX descriptors. */ + uint16_t rx_tail; /**< current value of RDT register. */ + uint16_t nb_rx_hold; /**< number of held free RX desc. */ + uint16_t rx_free_thresh; /**< max free RX desc to hold. */ + uint16_t queue_id; /**< RX queue index. */ + uint8_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ +}; + +/** + * Hardware context number + */ +enum { + EM_CTX_0 = 0, /**< CTX0 */ + EM_CTX_NUM = 1, /**< CTX NUM */ +}; + +/** Offload features */ +union em_vlan_macip { + uint32_t data; + struct { + uint16_t l3_len:9; /**< L3 (IP) Header Length. */ + uint16_t l2_len:7; /**< L2 (MAC) Header Length. */ + uint16_t vlan_tci; + /**< VLAN Tag Control Identifier (CPU order). */ + } f; +}; + +/* + * Compare mask for vlan_macip_len.data, + * should be in sync with em_vlan_macip.f layout. + * */ +#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */ +#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */ +#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */ +/** MAC+IP length. */ +#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK) + +/** + * Structure to check if new context need be built + */ +struct em_ctx_info { + uint64_t flags; /**< ol_flags related to context build. */ + uint32_t cmp_mask; /**< compare mask */ + union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */ +}; + +/** + * Structure associated with each TX queue. + */ +struct em_tx_queue { + volatile struct e1000_data_desc *tx_ring; /**< TX ring address */ + uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ + struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */ + volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ + uint16_t nb_tx_desc; /**< number of TX descriptors. */ + uint16_t tx_tail; /**< Current value of TDT register. */ + /**< Start freeing TX buffers if there are less free descriptors than + this value. */ + uint16_t tx_free_thresh; + /**< Number of TX descriptors to use before RS bit is set. */ + uint16_t tx_rs_thresh; + /** Number of TX descriptors used since RS bit was set. */ + uint16_t nb_tx_used; + /** Index to last TX descriptor to have been cleaned. */ + uint16_t last_desc_cleaned; + /** Total number of TX descriptors ready to be allocated. */ + uint16_t nb_tx_free; + uint16_t queue_id; /**< TX queue index. */ + uint8_t port_id; /**< Device port identifier. */ + uint8_t pthresh; /**< Prefetch threshold register. */ + uint8_t hthresh; /**< Host threshold register. */ + uint8_t wthresh; /**< Write-back threshold register. */ + struct em_ctx_info ctx_cache; + /**< Hardware context history.*/ +}; + +#if 1 +#define RTE_PMD_USE_PREFETCH +#endif + +#ifdef RTE_PMD_USE_PREFETCH +#define rte_em_prefetch(p) rte_prefetch0(p) +#else +#define rte_em_prefetch(p) do {} while(0) +#endif + +#ifdef RTE_PMD_PACKET_PREFETCH +#define rte_packet_prefetch(p) rte_prefetch1(p) +#else +#define rte_packet_prefetch(p) do {} while(0) +#endif + +#ifndef DEFAULT_TX_FREE_THRESH +#define DEFAULT_TX_FREE_THRESH 32 +#endif /* DEFAULT_TX_FREE_THRESH */ + +#ifndef DEFAULT_TX_RS_THRESH +#define DEFAULT_TX_RS_THRESH 32 +#endif /* DEFAULT_TX_RS_THRESH */ + + +/********************************************************************* + * + * TX function + * + **********************************************************************/ + +/* + * Populates TX context descriptor. + */ +static inline void +em_set_xmit_ctx(struct em_tx_queue* txq, + volatile struct e1000_context_desc *ctx_txd, + uint64_t flags, + union em_vlan_macip hdrlen) +{ + uint32_t cmp_mask, cmd_len; + uint16_t ipcse, l2len; + struct e1000_context_desc ctx; + + cmp_mask = 0; + cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C; + + l2len = hdrlen.f.l2_len; + ipcse = (uint16_t)(l2len + hdrlen.f.l3_len); + + /* setup IPCS* fields */ + ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len; + ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len + + offsetof(struct ipv4_hdr, hdr_checksum)); + + /* + * When doing checksum or TCP segmentation with IPv6 headers, + * IPCSE field should be set t0 0. + */ + if (flags & PKT_TX_IP_CKSUM) { + ctx.lower_setup.ip_fields.ipcse = + (uint16_t)rte_cpu_to_le_16(ipcse - 1); + cmd_len |= E1000_TXD_CMD_IP; + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + } else { + ctx.lower_setup.ip_fields.ipcse = 0; + } + + /* setup TUCS* fields */ + ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse; + ctx.upper_setup.tcp_fields.tucse = 0; + + switch (flags & PKT_TX_L4_MASK) { + case PKT_TX_UDP_CKSUM: + ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + + offsetof(struct udp_hdr, dgram_cksum)); + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + break; + case PKT_TX_TCP_CKSUM: + ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + + offsetof(struct tcp_hdr, cksum)); + cmd_len |= E1000_TXD_CMD_TCP; + cmp_mask |= TX_MACIP_LEN_CMP_MASK; + break; + default: + ctx.upper_setup.tcp_fields.tucso = 0; + } + + ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len); + ctx.tcp_seg_setup.data = 0; + + *ctx_txd = ctx; + + txq->ctx_cache.flags = flags; + txq->ctx_cache.cmp_mask = cmp_mask; + txq->ctx_cache.hdrlen = hdrlen; +} + +/* + * Check which hardware context can be used. Use the existing match + * or create a new context descriptor. + */ +static inline uint32_t +what_ctx_update(struct em_tx_queue *txq, uint64_t flags, + union em_vlan_macip hdrlen) +{ + /* If match with the current context */ + if (likely (txq->ctx_cache.flags == flags && + ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) & + txq->ctx_cache.cmp_mask) == 0)) + return EM_CTX_0; + + /* Mismatch */ + return EM_CTX_NUM; +} + +/* Reset transmit descriptors after they have been used */ +static inline int +em_xmit_cleanup(struct em_tx_queue *txq) +{ + struct em_tx_entry *sw_ring = txq->sw_ring; + volatile struct e1000_data_desc *txr = txq->tx_ring; + uint16_t last_desc_cleaned = txq->last_desc_cleaned; + uint16_t nb_tx_desc = txq->nb_tx_desc; + uint16_t desc_to_clean_to; + uint16_t nb_tx_to_clean; + + /* Determine the last descriptor needing to be cleaned */ + desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh); + if (desc_to_clean_to >= nb_tx_desc) + desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); + + /* Check to make sure the last descriptor to clean is done */ + desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; + if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD)) + { + PMD_TX_FREE_LOG(DEBUG, + "TX descriptor %4u is not done" + "(port=%d queue=%d)", desc_to_clean_to, + txq->port_id, txq->queue_id); + /* Failed to clean any descriptors, better luck next time */ + return -(1); + } + + /* Figure out how many descriptors will be cleaned */ + if (last_desc_cleaned > desc_to_clean_to) + nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + + desc_to_clean_to); + else + nb_tx_to_clean = (uint16_t)(desc_to_clean_to - + last_desc_cleaned); + + PMD_TX_FREE_LOG(DEBUG, + "Cleaning %4u TX descriptors: %4u to %4u " + "(port=%d queue=%d)", nb_tx_to_clean, + last_desc_cleaned, desc_to_clean_to, txq->port_id, + txq->queue_id); + + /* + * The last descriptor to clean is done, so that means all the + * descriptors from the last descriptor that was cleaned + * up to the last descriptor with the RS bit set + * are done. Only reset the threshold descriptor. + */ + txr[desc_to_clean_to].upper.fields.status = 0; + + /* Update the txq to reflect the last descriptor that was cleaned */ + txq->last_desc_cleaned = desc_to_clean_to; + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); + + /* No Error */ + return 0; +} + +static inline uint32_t +tx_desc_cksum_flags_to_upper(uint64_t ol_flags) +{ + static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8}; + static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8}; + uint32_t tmp; + + tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; + tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; + return tmp; +} + +uint16_t +eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct em_tx_queue *txq; + struct em_tx_entry *sw_ring; + struct em_tx_entry *txe, *txn; + volatile struct e1000_data_desc *txr; + volatile struct e1000_data_desc *txd; + struct rte_mbuf *tx_pkt; + struct rte_mbuf *m_seg; + uint64_t buf_dma_addr; + uint32_t popts_spec; + uint32_t cmd_type_len; + uint16_t slen; + uint64_t ol_flags; + uint16_t tx_id; + uint16_t tx_last; + uint16_t nb_tx; + uint16_t nb_used; + uint64_t tx_ol_req; + uint32_t ctx; + uint32_t new_ctx; + union em_vlan_macip hdrlen; + + txq = tx_queue; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + tx_id = txq->tx_tail; + txe = &sw_ring[tx_id]; + + /* Determine if the descriptor ring needs to be cleaned. */ + if (txq->nb_tx_free < txq->tx_free_thresh) + em_xmit_cleanup(txq); + + /* TX loop */ + for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { + new_ctx = 0; + tx_pkt = *tx_pkts++; + + RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); + + /* + * Determine how many (if any) context descriptors + * are needed for offload functionality. + */ + ol_flags = tx_pkt->ol_flags; + + /* If hardware offload required */ + tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)); + if (tx_ol_req) { + hdrlen.f.vlan_tci = tx_pkt->vlan_tci; + hdrlen.f.l2_len = tx_pkt->l2_len; + hdrlen.f.l3_len = tx_pkt->l3_len; + /* If new context to be built or reuse the exist ctx. */ + ctx = what_ctx_update(txq, tx_ol_req, hdrlen); + + /* Only allocate context descriptor if required*/ + new_ctx = (ctx == EM_CTX_NUM); + } + + /* + * Keep track of how many descriptors are used this loop + * This will always be the number of segments + the number of + * Context descriptors required to transmit the packet + */ + nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx); + + /* + * The number of descriptors that must be allocated for a + * packet is the number of segments of that packet, plus 1 + * Context Descriptor for the hardware offload, if any. + * Determine the last TX descriptor to allocate in the TX ring + * for the packet, starting from the current position (tx_id) + * in the ring. + */ + tx_last = (uint16_t) (tx_id + nb_used - 1); + + /* Circular ring */ + if (tx_last >= txq->nb_tx_desc) + tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" + " tx_first=%u tx_last=%u", + (unsigned) txq->port_id, + (unsigned) txq->queue_id, + (unsigned) tx_pkt->pkt_len, + (unsigned) tx_id, + (unsigned) tx_last); + + /* + * Make sure there are enough TX descriptors available to + * transmit the entire packet. + * nb_used better be less than or equal to txq->tx_rs_thresh + */ + while (unlikely (nb_used > txq->nb_tx_free)) { + PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors " + "nb_used=%4u nb_free=%4u " + "(port=%d queue=%d)", + nb_used, txq->nb_tx_free, + txq->port_id, txq->queue_id); + + if (em_xmit_cleanup(txq) != 0) { + /* Could not clean any descriptors */ + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + } + + /* + * By now there are enough free TX descriptors to transmit + * the packet. + */ + + /* + * Set common flags of all TX Data Descriptors. + * + * The following bits must be set in all Data Descriptors: + * - E1000_TXD_DTYP_DATA + * - E1000_TXD_DTYP_DEXT + * + * The following bits must be set in the first Data Descriptor + * and are ignored in the other ones: + * - E1000_TXD_POPTS_IXSM + * - E1000_TXD_POPTS_TXSM + * + * The following bits must be set in the last Data Descriptor + * and are ignored in the other ones: + * - E1000_TXD_CMD_VLE + * - E1000_TXD_CMD_IFCS + * + * The following bits must only be set in the last Data + * Descriptor: + * - E1000_TXD_CMD_EOP + * + * The following bits can be set in any Data Descriptor, but + * are only set in the last Data Descriptor: + * - E1000_TXD_CMD_RS + */ + cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | + E1000_TXD_CMD_IFCS; + popts_spec = 0; + + /* Set VLAN Tag offload fields. */ + if (ol_flags & PKT_TX_VLAN_PKT) { + cmd_type_len |= E1000_TXD_CMD_VLE; + popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT; + } + + if (tx_ol_req) { + /* + * Setup the TX Context Descriptor if required + */ + if (new_ctx) { + volatile struct e1000_context_desc *ctx_txd; + + ctx_txd = (volatile struct e1000_context_desc *) + &txr[tx_id]; + + txn = &sw_ring[txe->next_id]; + RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); + + if (txe->mbuf != NULL) { + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = NULL; + } + + em_set_xmit_ctx(txq, ctx_txd, tx_ol_req, + hdrlen); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + } + + /* + * Setup the TX Data Descriptor, + * This path will go through + * whatever new/reuse the context descriptor + */ + popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags); + } + + m_seg = tx_pkt; + do { + txd = &txr[tx_id]; + txn = &sw_ring[txe->next_id]; + + if (txe->mbuf != NULL) + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = m_seg; + + /* + * Set up Transmit Data Descriptor. + */ + slen = m_seg->data_len; + buf_dma_addr = rte_mbuf_data_dma_addr(m_seg); + + txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); + txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen); + txd->upper.data = rte_cpu_to_le_32(popts_spec); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + m_seg = m_seg->next; + } while (m_seg != NULL); + + /* + * The last packet data descriptor needs End Of Packet (EOP) + */ + cmd_type_len |= E1000_TXD_CMD_EOP; + txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); + + /* Set RS bit only on threshold packets' last descriptor */ + if (txq->nb_tx_used >= txq->tx_rs_thresh) { + PMD_TX_FREE_LOG(DEBUG, + "Setting RS bit on TXD id=%4u " + "(port=%d queue=%d)", + tx_last, txq->port_id, txq->queue_id); + + cmd_type_len |= E1000_TXD_CMD_RS; + + /* Update txq RS bit counters */ + txq->nb_tx_used = 0; + } + txd->lower.data |= rte_cpu_to_le_32(cmd_type_len); + } +end_of_tx: + rte_wmb(); + + /* + * Set the Transmit Descriptor Tail (TDT) + */ + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (unsigned) txq->port_id, (unsigned) txq->queue_id, + (unsigned) tx_id, (unsigned) nb_tx); + E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id); + txq->tx_tail = tx_id; + + return nb_tx; +} + +/********************************************************************* + * + * RX functions + * + **********************************************************************/ + +static inline uint64_t +rx_desc_status_to_pkt_flags(uint32_t rx_status) +{ + uint64_t pkt_flags; + + /* Check if VLAN present */ + pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0); + + return pkt_flags; +} + +static inline uint64_t +rx_desc_error_to_pkt_flags(uint32_t rx_error) +{ + uint64_t pkt_flags = 0; + + if (rx_error & E1000_RXD_ERR_IPE) + pkt_flags |= PKT_RX_IP_CKSUM_BAD; + if (rx_error & E1000_RXD_ERR_TCPE) + pkt_flags |= PKT_RX_L4_CKSUM_BAD; + return pkt_flags; +} + +uint16_t +eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + volatile struct e1000_rx_desc *rx_ring; + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq; + struct em_rx_entry *sw_ring; + struct em_rx_entry *rxe; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + struct e1000_rx_desc rxd; + uint64_t dma_addr; + uint16_t pkt_len; + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint8_t status; + + rxq = rx_queue; + + nb_rx = 0; + nb_hold = 0; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + while (nb_rx < nb_pkts) { + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + status = rxdp->status; + if (! (status & E1000_RXD_STAT_DD)) + break; + rxd = *rxdp; + + /* + * End of packet. + * + * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is + * likely to be invalid and to be dropped by the various + * validation checks performed by the network stack. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy do not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "status=0x%x pkt_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) status, + (unsigned) rte_le_to_cpu_16(rxd.length)); + + nmb = rte_rxmbuf_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", + (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_em_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_em_prefetch(&rx_ring[rx_id]); + rte_em_prefetch(&sw_ring[rx_id]); + } + + /* Rearm RXD: attach new mbuf and reset status to zero. */ + + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb)); + rxdp->buffer_addr = dma_addr; + rxdp->status = 0; + + /* + * Initialize the returned mbuf. + * 1) setup generic mbuf fields: + * - number of segments, + * - next segment, + * - packet length, + * - RX port identifier. + * 2) integrate hardware offload data, if any: + * - RSS flag & hash, + * - IP checksum flag, + * - VLAN TCI, if any, + * - error flags. + */ + pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) - + rxq->crc_len); + rxm->data_off = RTE_PKTMBUF_HEADROOM; + rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); + rxm->nb_segs = 1; + rxm->next = NULL; + rxm->pkt_len = pkt_len; + rxm->data_len = pkt_len; + rxm->port = rxq->port_id; + + rxm->ol_flags = rx_desc_status_to_pkt_flags(status); + rxm->ol_flags = rxm->ol_flags | + rx_desc_error_to_pkt_flags(rxd.errors); + + /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ + rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = rxm; + } + rxq->rx_tail = rx_id; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +uint16_t +eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct em_rx_queue *rxq; + volatile struct e1000_rx_desc *rx_ring; + volatile struct e1000_rx_desc *rxdp; + struct em_rx_entry *sw_ring; + struct em_rx_entry *rxe; + struct rte_mbuf *first_seg; + struct rte_mbuf *last_seg; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + struct e1000_rx_desc rxd; + uint64_t dma; /* Physical address of mbuf data buffer */ + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint16_t data_len; + uint8_t status; + + rxq = rx_queue; + + nb_rx = 0; + nb_hold = 0; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + + /* + * Retrieve RX context of current packet, if any. + */ + first_seg = rxq->pkt_first_seg; + last_seg = rxq->pkt_last_seg; + + while (nb_rx < nb_pkts) { + next_desc: + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + status = rxdp->status; + if (! (status & E1000_RXD_STAT_DD)) + break; + rxd = *rxdp; + + /* + * Descriptor done. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that RX descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the RX ring and return immediately. + * + * This policy does not drop the packet received in the RX + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding RX descriptors instead of + * systematically giving them back to the NIC may lead to + * RX ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "status=0x%x data_len=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) status, + (unsigned) rte_le_to_cpu_16(rxd.length)); + + nmb = rte_rxmbuf_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", (unsigned) rxq->port_id, + (unsigned) rxq->queue_id); + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_em_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next RX descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_em_prefetch(&rx_ring[rx_id]); + rte_em_prefetch(&sw_ring[rx_id]); + } + + /* + * Update RX descriptor with the physical address of the new + * data buffer of the new allocated mbuf. + */ + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma = rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb)); + rxdp->buffer_addr = dma; + rxdp->status = 0; + + /* + * Set data length & data buffer address of mbuf. + */ + data_len = rte_le_to_cpu_16(rxd.length); + rxm->data_len = data_len; + rxm->data_off = RTE_PKTMBUF_HEADROOM; + + /* + * If this is the first buffer of the received packet, + * set the pointer to the first mbuf of the packet and + * initialize its context. + * Otherwise, update the total length and the number of segments + * of the current scattered packet, and update the pointer to + * the last mbuf of the current packet. + */ + if (first_seg == NULL) { + first_seg = rxm; + first_seg->pkt_len = data_len; + first_seg->nb_segs = 1; + } else { + first_seg->pkt_len += data_len; + first_seg->nb_segs++; + last_seg->next = rxm; + } + + /* + * If this is not the last buffer of the received packet, + * update the pointer to the last mbuf of the current scattered + * packet and continue to parse the RX ring. + */ + if (! (status & E1000_RXD_STAT_EOP)) { + last_seg = rxm; + goto next_desc; + } + + /* + * This is the last buffer of the received packet. + * If the CRC is not stripped by the hardware: + * - Subtract the CRC length from the total packet length. + * - If the last buffer only contains the whole CRC or a part + * of it, free the mbuf associated to the last buffer. + * If part of the CRC is also contained in the previous + * mbuf, subtract the length of that CRC part from the + * data length of the previous mbuf. + */ + rxm->next = NULL; + if (unlikely(rxq->crc_len > 0)) { + first_seg->pkt_len -= ETHER_CRC_LEN; + if (data_len <= ETHER_CRC_LEN) { + rte_pktmbuf_free_seg(rxm); + first_seg->nb_segs--; + last_seg->data_len = (uint16_t) + (last_seg->data_len - + (ETHER_CRC_LEN - data_len)); + last_seg->next = NULL; + } else + rxm->data_len = + (uint16_t) (data_len - ETHER_CRC_LEN); + } + + /* + * Initialize the first mbuf of the returned packet: + * - RX port identifier, + * - hardware offload data, if any: + * - IP checksum flag, + * - error flags. + */ + first_seg->port = rxq->port_id; + + first_seg->ol_flags = rx_desc_status_to_pkt_flags(status); + first_seg->ol_flags = first_seg->ol_flags | + rx_desc_error_to_pkt_flags(rxd.errors); + + /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ + rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); + + /* Prefetch data of first segment, if configured to do so. */ + rte_packet_prefetch((char *)first_seg->buf_addr + + first_seg->data_off); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = first_seg; + + /* + * Setup receipt context for a new packet. + */ + first_seg = NULL; + } + + /* + * Record index of the next RX descriptor to probe. + */ + rxq->rx_tail = rx_id; + + /* + * Save receive context. + */ + rxq->pkt_first_seg = first_seg; + rxq->pkt_last_seg = last_seg; + + /* + * If the number of free RX descriptors is greater than the RX free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed RX descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situtation from the + * hardware point of view... + */ + nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + (unsigned) rxq->port_id, (unsigned) rxq->queue_id, + (unsigned) rx_id, (unsigned) nb_hold, + (unsigned) nb_rx); + rx_id = (uint16_t) ((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +#define EM_MAX_BUF_SIZE 16384 +#define EM_RCTL_FLXBUF_STEP 1024 + +static void +em_tx_queue_release_mbufs(struct em_tx_queue *txq) +{ + unsigned i; + + if (txq->sw_ring != NULL) { + for (i = 0; i != txq->nb_tx_desc; i++) { + if (txq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); + txq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +em_tx_queue_release(struct em_tx_queue *txq) +{ + if (txq != NULL) { + em_tx_queue_release_mbufs(txq); + rte_free(txq->sw_ring); + rte_free(txq); + } +} + +void +eth_em_tx_queue_release(void *txq) +{ + em_tx_queue_release(txq); +} + +/* (Re)set dynamic em_tx_queue fields to defaults */ +static void +em_reset_tx_queue(struct em_tx_queue *txq) +{ + uint16_t i, nb_desc, prev; + static const struct e1000_data_desc txd_init = { + .upper.fields = {.status = E1000_TXD_STAT_DD}, + }; + + nb_desc = txq->nb_tx_desc; + + /* Initialize ring entries */ + + prev = (uint16_t) (nb_desc - 1); + + for (i = 0; i < nb_desc; i++) { + txq->tx_ring[i] = txd_init; + txq->sw_ring[i].mbuf = NULL; + txq->sw_ring[i].last_id = i; + txq->sw_ring[prev].next_id = i; + prev = i; + } + + /* + * Always allow 1 descriptor to be un-allocated to avoid + * a H/W race condition + */ + txq->nb_tx_free = (uint16_t)(nb_desc - 1); + txq->last_desc_cleaned = (uint16_t)(nb_desc - 1); + txq->nb_tx_used = 0; + txq->tx_tail = 0; + + memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache)); +} + +int +eth_em_tx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_txconf *tx_conf) +{ + const struct rte_memzone *tz; + struct em_tx_queue *txq; + struct e1000_hw *hw; + uint32_t tsize; + uint16_t tx_rs_thresh, tx_free_thresh; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Validate number of transmit descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % EM_TXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -(EINVAL); + } + + tx_free_thresh = tx_conf->tx_free_thresh; + if (tx_free_thresh == 0) + tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4, + DEFAULT_TX_FREE_THRESH); + + tx_rs_thresh = tx_conf->tx_rs_thresh; + if (tx_rs_thresh == 0) + tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh, + DEFAULT_TX_RS_THRESH); + + if (tx_free_thresh >= (nb_desc - 3)) { + PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the " + "number of TX descriptors minus 3. " + "(tx_free_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + if (tx_rs_thresh > tx_free_thresh) { + PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to " + "tx_free_thresh. (tx_free_thresh=%u " + "tx_rs_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, + (int)queue_idx); + return -(EINVAL); + } + + /* + * If rs_bit_thresh is greater than 1, then TX WTHRESH should be + * set to 0. If WTHRESH is greater than zero, the RS bit is ignored + * by the NIC and all descriptors are written back after the NIC + * accumulates WTHRESH descriptors. + */ + if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) { + PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if " + "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u " + "port=%d queue=%d)", (unsigned int)tx_rs_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + + /* Free memory prior to re-allocation if needed... */ + if (dev->data->tx_queues[queue_idx] != NULL) { + em_tx_queue_release(dev->data->tx_queues[queue_idx]); + dev->data->tx_queues[queue_idx] = NULL; + } + + /* + * Allocate TX ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC; + tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize, + RTE_CACHE_LINE_SIZE, socket_id); + if (tz == NULL) + return -ENOMEM; + + /* Allocate the tx queue data structure. */ + if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq), + RTE_CACHE_LINE_SIZE)) == NULL) + return -ENOMEM; + + /* Allocate software ring */ + if ((txq->sw_ring = rte_zmalloc("txq->sw_ring", + sizeof(txq->sw_ring[0]) * nb_desc, + RTE_CACHE_LINE_SIZE)) == NULL) { + em_tx_queue_release(txq); + return -ENOMEM; + } + + txq->nb_tx_desc = nb_desc; + txq->tx_free_thresh = tx_free_thresh; + txq->tx_rs_thresh = tx_rs_thresh; + txq->pthresh = tx_conf->tx_thresh.pthresh; + txq->hthresh = tx_conf->tx_thresh.hthresh; + txq->wthresh = tx_conf->tx_thresh.wthresh; + txq->queue_id = queue_idx; + txq->port_id = dev->data->port_id; + + txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx)); + txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); + txq->tx_ring = (struct e1000_data_desc *) tz->addr; + + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); + + em_reset_tx_queue(txq); + + dev->data->tx_queues[queue_idx] = txq; + return 0; +} + +static void +em_rx_queue_release_mbufs(struct em_rx_queue *rxq) +{ + unsigned i; + + if (rxq->sw_ring != NULL) { + for (i = 0; i != rxq->nb_rx_desc; i++) { + if (rxq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); + rxq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static void +em_rx_queue_release(struct em_rx_queue *rxq) +{ + if (rxq != NULL) { + em_rx_queue_release_mbufs(rxq); + rte_free(rxq->sw_ring); + rte_free(rxq); + } +} + +void +eth_em_rx_queue_release(void *rxq) +{ + em_rx_queue_release(rxq); +} + +/* Reset dynamic em_rx_queue fields back to defaults */ +static void +em_reset_rx_queue(struct em_rx_queue *rxq) +{ + rxq->rx_tail = 0; + rxq->nb_rx_hold = 0; + rxq->pkt_first_seg = NULL; + rxq->pkt_last_seg = NULL; +} + +int +eth_em_rx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mp) +{ + const struct rte_memzone *rz; + struct em_rx_queue *rxq; + struct e1000_hw *hw; + uint32_t rsize; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Validate number of receive descriptors. + * It must not exceed hardware maximum, and must be multiple + * of E1000_ALIGN. + */ + if (nb_desc % EM_RXD_ALIGN != 0 || + (nb_desc > E1000_MAX_RING_DESC) || + (nb_desc < E1000_MIN_RING_DESC)) { + return -EINVAL; + } + + /* + * EM devices don't support drop_en functionality + */ + if (rx_conf->rx_drop_en) { + PMD_INIT_LOG(ERR, "drop_en functionality not supported by " + "device"); + return -EINVAL; + } + + /* Free memory prior to re-allocation if needed. */ + if (dev->data->rx_queues[queue_idx] != NULL) { + em_rx_queue_release(dev->data->rx_queues[queue_idx]); + dev->data->rx_queues[queue_idx] = NULL; + } + + /* Allocate RX ring for max possible mumber of hardware descriptors. */ + rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC; + rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize, + RTE_CACHE_LINE_SIZE, socket_id); + if (rz == NULL) + return -ENOMEM; + + /* Allocate the RX queue data structure. */ + if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq), + RTE_CACHE_LINE_SIZE)) == NULL) + return -ENOMEM; + + /* Allocate software ring. */ + if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring", + sizeof (rxq->sw_ring[0]) * nb_desc, + RTE_CACHE_LINE_SIZE)) == NULL) { + em_rx_queue_release(rxq); + return -ENOMEM; + } + + rxq->mb_pool = mp; + rxq->nb_rx_desc = nb_desc; + rxq->pthresh = rx_conf->rx_thresh.pthresh; + rxq->hthresh = rx_conf->rx_thresh.hthresh; + rxq->wthresh = rx_conf->rx_thresh.wthresh; + rxq->rx_free_thresh = rx_conf->rx_free_thresh; + rxq->queue_id = queue_idx; + rxq->port_id = dev->data->port_id; + rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? + 0 : ETHER_CRC_LEN); + + rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx)); + rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx)); + rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); + rxq->rx_ring = (struct e1000_rx_desc *) rz->addr; + + PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, + rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); + + dev->data->rx_queues[queue_idx] = rxq; + em_reset_rx_queue(rxq); + + return 0; +} + +uint32_t +eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ +#define EM_RXQ_SCAN_INTERVAL 4 + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq; + uint32_t desc = 0; + + if (rx_queue_id >= dev->data->nb_rx_queues) { + PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id); + return 0; + } + + rxq = dev->data->rx_queues[rx_queue_id]; + rxdp = &(rxq->rx_ring[rxq->rx_tail]); + + while ((desc < rxq->nb_rx_desc) && + (rxdp->status & E1000_RXD_STAT_DD)) { + desc += EM_RXQ_SCAN_INTERVAL; + rxdp += EM_RXQ_SCAN_INTERVAL; + if (rxq->rx_tail + desc >= rxq->nb_rx_desc) + rxdp = &(rxq->rx_ring[rxq->rx_tail + + desc - rxq->nb_rx_desc]); + } + + return desc; +} + +int +eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset) +{ + volatile struct e1000_rx_desc *rxdp; + struct em_rx_queue *rxq = rx_queue; + uint32_t desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return 0; + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + rxdp = &rxq->rx_ring[desc]; + return !!(rxdp->status & E1000_RXD_STAT_DD); +} + +void +em_dev_clear_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + struct em_tx_queue *txq; + struct em_rx_queue *rxq; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + if (txq != NULL) { + em_tx_queue_release_mbufs(txq); + em_reset_tx_queue(txq); + } + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + if (rxq != NULL) { + em_rx_queue_release_mbufs(rxq); + em_reset_rx_queue(rxq); + } + } +} + +void +em_dev_free_queues(struct rte_eth_dev *dev) +{ + uint16_t i; + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + eth_em_rx_queue_release(dev->data->rx_queues[i]); + dev->data->rx_queues[i] = NULL; + } + dev->data->nb_rx_queues = 0; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + eth_em_tx_queue_release(dev->data->tx_queues[i]); + dev->data->tx_queues[i] = NULL; + } + dev->data->nb_tx_queues = 0; +} + +/* + * Takes as input/output parameter RX buffer size. + * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register. + */ +static uint32_t +em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz) +{ + /* + * For BSIZE & BSEX all configurable sizes are: + * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); + * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); + * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); + * 2048: rctl |= E1000_RCTL_SZ_2048; + * 1024: rctl |= E1000_RCTL_SZ_1024; + * 512: rctl |= E1000_RCTL_SZ_512; + * 256: rctl |= E1000_RCTL_SZ_256; + */ + static const struct { + uint32_t bufsz; + uint32_t rctl; + } bufsz_to_rctl[] = { + {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)}, + {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)}, + {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)}, + {2048, E1000_RCTL_SZ_2048}, + {1024, E1000_RCTL_SZ_1024}, + {512, E1000_RCTL_SZ_512}, + {256, E1000_RCTL_SZ_256}, + }; + + int i; + uint32_t rctl_bsize; + + rctl_bsize = *bufsz; + + /* + * Starting from 82571 it is possible to specify RX buffer size + * by RCTL.FLXBUF. When this field is different from zero, the + * RX buffer size = RCTL.FLXBUF * 1K + * (e.g. t is possible to specify RX buffer size 1,2,...,15KB). + * It is working ok on real HW, but by some reason doesn't work + * on VMware emulated 82574L. + * So for now, always use BSIZE/BSEX to setup RX buffer size. + * If you don't plan to use it on VMware emulated 82574L and + * would like to specify RX buffer size in 1K granularity, + * uncomment the following lines: + * *************************************************************** + * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 && + * rctl_bsize >= EM_RCTL_FLXBUF_STEP) { + * rctl_bsize /= EM_RCTL_FLXBUF_STEP; + * *bufsz = rctl_bsize; + * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT & + * E1000_RCTL_FLXBUF_MASK); + * } + * *************************************************************** + */ + + for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]); + i++) { + if (rctl_bsize >= bufsz_to_rctl[i].bufsz) { + *bufsz = bufsz_to_rctl[i].bufsz; + return bufsz_to_rctl[i].rctl; + } + } + + /* Should never happen. */ + return -EINVAL; +} + +static int +em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq) +{ + struct em_rx_entry *rxe = rxq->sw_ring; + uint64_t dma_addr; + unsigned i; + static const struct e1000_rx_desc rxd_init = { + .buffer_addr = 0, + }; + + /* Initialize software ring entries */ + for (i = 0; i < rxq->nb_rx_desc; i++) { + volatile struct e1000_rx_desc *rxd; + struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool); + + if (mbuf == NULL) { + PMD_INIT_LOG(ERR, "RX mbuf alloc failed " + "queue_id=%hu", rxq->queue_id); + return -ENOMEM; + } + + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf)); + + /* Clear HW ring memory */ + rxq->rx_ring[i] = rxd_init; + + rxd = &rxq->rx_ring[i]; + rxd->buffer_addr = dma_addr; + rxe[i].mbuf = mbuf; + } + + return 0; +} + +/********************************************************************* + * + * Enable receive unit. + * + **********************************************************************/ +int +eth_em_rx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct em_rx_queue *rxq; + uint32_t rctl; + uint32_t rfctl; + uint32_t rxcsum; + uint32_t rctl_bsize; + uint16_t i; + int ret; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* + * Make sure receives are disabled while setting + * up the descriptor ring. + */ + rctl = E1000_READ_REG(hw, E1000_RCTL); + E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); + + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + + /* Disable extended descriptor type. */ + rfctl &= ~E1000_RFCTL_EXTEN; + /* Disable accelerated acknowledge */ + if (hw->mac.type == e1000_82574) + rfctl |= E1000_RFCTL_ACK_DIS; + + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* + * XXX TEMPORARY WORKAROUND: on some systems with 82573 + * long latencies are observed, like Lenovo X60. This + * change eliminates the problem, but since having positive + * values in RDTR is a known source of problems on other + * platforms another solution is being sought. + */ + if (hw->mac.type == e1000_82573) + E1000_WRITE_REG(hw, E1000_RDTR, 0x20); + + dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts; + + /* Determine RX bufsize. */ + rctl_bsize = EM_MAX_BUF_SIZE; + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint32_t buf_size; + + rxq = dev->data->rx_queues[i]; + buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) - + RTE_PKTMBUF_HEADROOM; + rctl_bsize = RTE_MIN(rctl_bsize, buf_size); + } + + rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize); + + /* Configure and enable each RX queue. */ + for (i = 0; i < dev->data->nb_rx_queues; i++) { + uint64_t bus_addr; + uint32_t rxdctl; + + rxq = dev->data->rx_queues[i]; + + /* Allocate buffers for descriptor rings and setup queue */ + ret = em_alloc_rx_queue_mbufs(rxq); + if (ret) + return ret; + + /* + * Reset crc_len in case it was changed after queue setup by a + * call to configure + */ + rxq->crc_len = + (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ? + 0 : ETHER_CRC_LEN); + + bus_addr = rxq->rx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_RDLEN(i), + rxq->nb_rx_desc * + sizeof(*rxq->rx_ring)); + E1000_WRITE_REG(hw, E1000_RDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); + + E1000_WRITE_REG(hw, E1000_RDH(i), 0); + E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); + + rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); + rxdctl &= 0xFE000000; + rxdctl |= rxq->pthresh & 0x3F; + rxdctl |= (rxq->hthresh & 0x3F) << 8; + rxdctl |= (rxq->wthresh & 0x3F) << 16; + rxdctl |= E1000_RXDCTL_GRAN; + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); + + /* + * Due to EM devices not having any sort of hardware + * limit for packet length, jumbo frame of any size + * can be accepted, thus we have to enable scattered + * rx if jumbo frames are enabled (or if buffer size + * is too small to accommodate non-jumbo packets) + * to avoid splitting packets that don't fit into + * one buffer. + */ + if (dev->data->dev_conf.rxmode.jumbo_frame || + rctl_bsize < ETHER_MAX_LEN) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = + (eth_rx_burst_t)eth_em_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + } + + if (dev->data->dev_conf.rxmode.enable_scatter) { + if (!dev->data->scattered_rx) + PMD_INIT_LOG(DEBUG, "forcing scatter mode"); + dev->rx_pkt_burst = eth_em_recv_scattered_pkts; + dev->data->scattered_rx = 1; + } + + /* + * Setup the Checksum Register. + * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. + */ + rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); + + if (dev->data->dev_conf.rxmode.hw_ip_checksum) + rxcsum |= E1000_RXCSUM_IPOFL; + else + rxcsum &= ~E1000_RXCSUM_IPOFL; + E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); + + /* No MRQ or RSS support for now */ + + /* Set early receive threshold on appropriate hw */ + if ((hw->mac.type == e1000_ich9lan || + hw->mac.type == e1000_pch2lan || + hw->mac.type == e1000_ich10lan) && + dev->data->dev_conf.rxmode.jumbo_frame == 1) { + u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); + E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); + E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13)); + } + + if (hw->mac.type == e1000_pch2lan) { + if (dev->data->dev_conf.rxmode.jumbo_frame == 1) + e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); + else + e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); + } + + /* Setup the Receive Control Register. */ + if (dev->data->dev_conf.rxmode.hw_strip_crc) + rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ + else + rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ + + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | + E1000_RCTL_RDMTS_HALF | + (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Make sure VLAN Filters are off. */ + rctl &= ~E1000_RCTL_VFE; + /* Don't store bad packets. */ + rctl &= ~E1000_RCTL_SBP; + /* Legacy descriptor type. */ + rctl &= ~E1000_RCTL_DTYP_MASK; + + /* + * Configure support of jumbo frames, if any. + */ + if (dev->data->dev_conf.rxmode.jumbo_frame == 1) + rctl |= E1000_RCTL_LPE; + else + rctl &= ~E1000_RCTL_LPE; + + /* Enable Receives. */ + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + + return 0; +} + +/********************************************************************* + * + * Enable transmit unit. + * + **********************************************************************/ +void +eth_em_tx_init(struct rte_eth_dev *dev) +{ + struct e1000_hw *hw; + struct em_tx_queue *txq; + uint32_t tctl; + uint32_t txdctl; + uint16_t i; + + hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); + + /* Setup the Base and Length of the Tx Descriptor Rings. */ + for (i = 0; i < dev->data->nb_tx_queues; i++) { + uint64_t bus_addr; + + txq = dev->data->tx_queues[i]; + bus_addr = txq->tx_ring_phys_addr; + E1000_WRITE_REG(hw, E1000_TDLEN(i), + txq->nb_tx_desc * + sizeof(*txq->tx_ring)); + E1000_WRITE_REG(hw, E1000_TDBAH(i), + (uint32_t)(bus_addr >> 32)); + E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); + + /* Setup the HW Tx Head and Tail descriptor pointers. */ + E1000_WRITE_REG(hw, E1000_TDT(i), 0); + E1000_WRITE_REG(hw, E1000_TDH(i), 0); + + /* Setup Transmit threshold registers. */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); + /* + * bit 22 is reserved, on some models should always be 0, + * on others - always 1. + */ + txdctl &= E1000_TXDCTL_COUNT_DESC; + txdctl |= txq->pthresh & 0x3F; + txdctl |= (txq->hthresh & 0x3F) << 8; + txdctl |= (txq->wthresh & 0x3F) << 16; + txdctl |= E1000_TXDCTL_GRAN; + E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); + } + + /* Program the Transmit Control Register. */ + tctl = E1000_READ_REG(hw, E1000_TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); + + /* This write will effectively turn on the transmit unit. */ + E1000_WRITE_REG(hw, E1000_TCTL, tctl); +} + +void +em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo) +{ + struct em_rx_queue *rxq; + + rxq = dev->data->rx_queues[queue_id]; + + qinfo->mp = rxq->mb_pool; + qinfo->scattered_rx = dev->data->scattered_rx; + qinfo->nb_desc = rxq->nb_rx_desc; + qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; +} + +void +em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo) +{ + struct em_tx_queue *txq; + + txq = dev->data->tx_queues[queue_id]; + + qinfo->nb_desc = txq->nb_tx_desc; + + qinfo->conf.tx_thresh.pthresh = txq->pthresh; + qinfo->conf.tx_thresh.hthresh = txq->hthresh; + qinfo->conf.tx_thresh.wthresh = txq->wthresh; + qinfo->conf.tx_free_thresh = txq->tx_free_thresh; + qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; +} |