summaryrefslogtreecommitdiffstats
path: root/drivers/net/mlx5/mlx5_rxtx_vec_sse.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/mlx5/mlx5_rxtx_vec_sse.c')
-rw-r--r--drivers/net/mlx5/mlx5_rxtx_vec_sse.c1417
1 files changed, 1417 insertions, 0 deletions
diff --git a/drivers/net/mlx5/mlx5_rxtx_vec_sse.c b/drivers/net/mlx5/mlx5_rxtx_vec_sse.c
new file mode 100644
index 00000000..8560f745
--- /dev/null
+++ b/drivers/net/mlx5/mlx5_rxtx_vec_sse.c
@@ -0,0 +1,1417 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright 2017 6WIND S.A.
+ * Copyright 2017 Mellanox.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of 6WIND S.A. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <assert.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdlib.h>
+#include <smmintrin.h>
+
+/* Verbs header. */
+/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
+#ifdef PEDANTIC
+#pragma GCC diagnostic ignored "-Wpedantic"
+#endif
+#include <infiniband/verbs.h>
+#include <infiniband/mlx5_hw.h>
+#include <infiniband/arch.h>
+#ifdef PEDANTIC
+#pragma GCC diagnostic error "-Wpedantic"
+#endif
+
+/* DPDK headers don't like -pedantic. */
+#ifdef PEDANTIC
+#pragma GCC diagnostic ignored "-Wpedantic"
+#endif
+#include <rte_mbuf.h>
+#include <rte_mempool.h>
+#include <rte_prefetch.h>
+#ifdef PEDANTIC
+#pragma GCC diagnostic error "-Wpedantic"
+#endif
+
+#include "mlx5.h"
+#include "mlx5_utils.h"
+#include "mlx5_rxtx.h"
+#include "mlx5_autoconf.h"
+#include "mlx5_defs.h"
+#include "mlx5_prm.h"
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+/**
+ * Fill in buffer descriptors in a multi-packet send descriptor.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param dseg
+ * Pointer to buffer descriptor to be writen.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param n
+ * Number of packets to be filled.
+ */
+static inline void
+txq_wr_dseg_v(struct txq *txq, __m128i *dseg,
+ struct rte_mbuf **pkts, unsigned int n)
+{
+ unsigned int pos;
+ uintptr_t addr;
+ const __m128i shuf_mask_dseg =
+ _mm_set_epi8(8, 9, 10, 11, /* addr, bswap64 */
+ 12, 13, 14, 15,
+ 7, 6, 5, 4, /* lkey */
+ 0, 1, 2, 3 /* length, bswap32 */);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t tx_byte = 0;
+#endif
+
+ for (pos = 0; pos < n; ++pos, ++dseg) {
+ __m128i desc;
+ struct rte_mbuf *pkt = pkts[pos];
+
+ addr = rte_pktmbuf_mtod(pkt, uintptr_t);
+ desc = _mm_set_epi32(addr >> 32,
+ addr,
+ mlx5_tx_mb2mr(txq, pkt),
+ DATA_LEN(pkt));
+ desc = _mm_shuffle_epi8(desc, shuf_mask_dseg);
+ _mm_store_si128(dseg, desc);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ tx_byte += DATA_LEN(pkt);
+#endif
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.obytes += tx_byte;
+#endif
+}
+
+/**
+ * Count the number of continuous single segment packets. The first packet must
+ * be a single segment packet.
+ *
+ * @param pkts
+ * Pointer to array of packets.
+ * @param pkts_n
+ * Number of packets.
+ *
+ * @return
+ * Number of continuous single segment packets.
+ */
+static inline unsigned int
+txq_check_multiseg(struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ unsigned int pos;
+
+ if (!pkts_n)
+ return 0;
+ assert(NB_SEGS(pkts[0]) == 1);
+ /* Count the number of continuous single segment packets. */
+ for (pos = 1; pos < pkts_n; ++pos)
+ if (NB_SEGS(pkts[pos]) > 1)
+ break;
+ return pos;
+}
+
+/**
+ * Count the number of packets having same ol_flags and calculate cs_flags.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param pkts
+ * Pointer to array of packets.
+ * @param pkts_n
+ * Number of packets.
+ * @param cs_flags
+ * Pointer of flags to be returned.
+ *
+ * @return
+ * Number of packets having same ol_flags.
+ */
+static inline unsigned int
+txq_calc_offload(struct txq *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
+ uint8_t *cs_flags)
+{
+ unsigned int pos;
+ const uint64_t ol_mask =
+ PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |
+ PKT_TX_UDP_CKSUM | PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN | PKT_TX_OUTER_IP_CKSUM;
+
+ if (!pkts_n)
+ return 0;
+ /* Count the number of packets having same ol_flags. */
+ for (pos = 1; pos < pkts_n; ++pos)
+ if ((pkts[pos]->ol_flags ^ pkts[0]->ol_flags) & ol_mask)
+ break;
+ /* Should open another MPW session for the rest. */
+ if (pkts[0]->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
+ const uint64_t is_tunneled =
+ pkts[0]->ol_flags &
+ (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN);
+
+ if (is_tunneled && txq->tunnel_en) {
+ *cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
+ MLX5_ETH_WQE_L4_INNER_CSUM;
+ if (pkts[0]->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ *cs_flags |= MLX5_ETH_WQE_L3_CSUM;
+ } else {
+ *cs_flags = MLX5_ETH_WQE_L3_CSUM |
+ MLX5_ETH_WQE_L4_CSUM;
+ }
+ }
+ return pos;
+}
+
+/**
+ * Send multi-segmented packets until it encounters a single segment packet in
+ * the pkts list.
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param pkts_n
+ * Number of packets to be sent.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+static uint16_t
+txq_scatter_v(struct txq *txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ uint16_t elts_head = txq->elts_head;
+ const uint16_t elts_n = 1 << txq->elts_n;
+ const uint16_t elts_m = elts_n - 1;
+ const uint16_t wq_n = 1 << txq->wqe_n;
+ const uint16_t wq_mask = wq_n - 1;
+ const unsigned int nb_dword_per_wqebb =
+ MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+ const unsigned int nb_dword_in_hdr =
+ sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+ unsigned int n;
+ volatile struct mlx5_wqe *wqe = NULL;
+
+ assert(elts_n > pkts_n);
+ mlx5_tx_complete(txq);
+ if (unlikely(!pkts_n))
+ return 0;
+ for (n = 0; n < pkts_n; ++n) {
+ struct rte_mbuf *buf = pkts[n];
+ unsigned int segs_n = buf->nb_segs;
+ unsigned int ds = nb_dword_in_hdr;
+ unsigned int len = PKT_LEN(buf);
+ uint16_t wqe_ci = txq->wqe_ci;
+ const __m128i shuf_mask_ctrl =
+ _mm_set_epi8(15, 14, 13, 12,
+ 8, 9, 10, 11, /* bswap32 */
+ 4, 5, 6, 7, /* bswap32 */
+ 0, 1, 2, 3 /* bswap32 */);
+ uint8_t cs_flags = 0;
+ uint16_t max_elts;
+ uint16_t max_wqe;
+ __m128i *t_wqe, *dseg;
+ __m128i ctrl;
+
+ assert(segs_n);
+ max_elts = elts_n - (elts_head - txq->elts_tail);
+ max_wqe = wq_n - (txq->wqe_ci - txq->wqe_pi);
+ /*
+ * A MPW session consumes 2 WQEs at most to
+ * include MLX5_MPW_DSEG_MAX pointers.
+ */
+ if (segs_n == 1 ||
+ max_elts < segs_n || max_wqe < 2)
+ break;
+ wqe = &((volatile struct mlx5_wqe64 *)
+ txq->wqes)[wqe_ci & wq_mask].hdr;
+ if (buf->ol_flags &
+ (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
+ const uint64_t is_tunneled = buf->ol_flags &
+ (PKT_TX_TUNNEL_GRE |
+ PKT_TX_TUNNEL_VXLAN);
+
+ if (is_tunneled && txq->tunnel_en) {
+ cs_flags = MLX5_ETH_WQE_L3_INNER_CSUM |
+ MLX5_ETH_WQE_L4_INNER_CSUM;
+ if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
+ cs_flags |= MLX5_ETH_WQE_L3_CSUM;
+ } else {
+ cs_flags = MLX5_ETH_WQE_L3_CSUM |
+ MLX5_ETH_WQE_L4_CSUM;
+ }
+ }
+ /* Title WQEBB pointer. */
+ t_wqe = (__m128i *)wqe;
+ dseg = (__m128i *)(wqe + 1);
+ do {
+ if (!(ds++ % nb_dword_per_wqebb)) {
+ dseg = (__m128i *)
+ &((volatile struct mlx5_wqe64 *)
+ txq->wqes)[++wqe_ci & wq_mask];
+ }
+ txq_wr_dseg_v(txq, dseg++, &buf, 1);
+ (*txq->elts)[elts_head++ & elts_m] = buf;
+ buf = buf->next;
+ } while (--segs_n);
+ ++wqe_ci;
+ /* Fill CTRL in the header. */
+ ctrl = _mm_set_epi32(0, 0, txq->qp_num_8s | ds,
+ MLX5_OPC_MOD_MPW << 24 |
+ txq->wqe_ci << 8 | MLX5_OPCODE_TSO);
+ ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+ _mm_store_si128(t_wqe, ctrl);
+ /* Fill ESEG in the header. */
+ _mm_store_si128(t_wqe + 1,
+ _mm_set_epi16(0, 0, 0, 0,
+ htons(len), cs_flags,
+ 0, 0));
+ txq->wqe_ci = wqe_ci;
+ }
+ if (!n)
+ return 0;
+ txq->elts_comp += (uint16_t)(elts_head - txq->elts_head);
+ txq->elts_head = elts_head;
+ if (txq->elts_comp >= MLX5_TX_COMP_THRESH) {
+ wqe->ctrl[2] = htonl(8);
+ wqe->ctrl[3] = txq->elts_head;
+ txq->elts_comp = 0;
+ ++txq->cq_pi;
+ }
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.opackets += n;
+#endif
+ mlx5_tx_dbrec(txq, wqe);
+ return n;
+}
+
+/**
+ * Send burst of packets with Enhanced MPW. If it encounters a multi-seg packet,
+ * it returns to make it processed by txq_scatter_v(). All the packets in
+ * the pkts list should be single segment packets having same offload flags.
+ * This must be checked by txq_check_multiseg() and txq_calc_offload().
+ *
+ * @param txq
+ * Pointer to TX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be sent.
+ * @param pkts_n
+ * Number of packets to be sent (<= MLX5_VPMD_TX_MAX_BURST).
+ * @param cs_flags
+ * Checksum offload flags to be written in the descriptor.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+static inline uint16_t
+txq_burst_v(struct txq *txq, struct rte_mbuf **pkts, uint16_t pkts_n,
+ uint8_t cs_flags)
+{
+ struct rte_mbuf **elts;
+ uint16_t elts_head = txq->elts_head;
+ const uint16_t elts_n = 1 << txq->elts_n;
+ const uint16_t elts_m = elts_n - 1;
+ const unsigned int nb_dword_per_wqebb =
+ MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE;
+ const unsigned int nb_dword_in_hdr =
+ sizeof(struct mlx5_wqe) / MLX5_WQE_DWORD_SIZE;
+ unsigned int n = 0;
+ unsigned int pos;
+ uint16_t max_elts;
+ uint16_t max_wqe;
+ uint32_t comp_req = 0;
+ const uint16_t wq_n = 1 << txq->wqe_n;
+ const uint16_t wq_mask = wq_n - 1;
+ uint16_t wq_idx = txq->wqe_ci & wq_mask;
+ volatile struct mlx5_wqe64 *wq =
+ &((volatile struct mlx5_wqe64 *)txq->wqes)[wq_idx];
+ volatile struct mlx5_wqe *wqe = (volatile struct mlx5_wqe *)wq;
+ const __m128i shuf_mask_ctrl =
+ _mm_set_epi8(15, 14, 13, 12,
+ 8, 9, 10, 11, /* bswap32 */
+ 4, 5, 6, 7, /* bswap32 */
+ 0, 1, 2, 3 /* bswap32 */);
+ __m128i *t_wqe, *dseg;
+ __m128i ctrl;
+
+ /* Make sure all packets can fit into a single WQE. */
+ assert(elts_n > pkts_n);
+ mlx5_tx_complete(txq);
+ max_elts = (elts_n - (elts_head - txq->elts_tail));
+ max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
+ pkts_n = RTE_MIN((unsigned int)RTE_MIN(pkts_n, max_wqe), max_elts);
+ if (unlikely(!pkts_n))
+ return 0;
+ elts = &(*txq->elts)[elts_head & elts_m];
+ /* Loop for available tailroom first. */
+ n = RTE_MIN(elts_n - (elts_head & elts_m), pkts_n);
+ for (pos = 0; pos < (n & -2); pos += 2)
+ _mm_storeu_si128((__m128i *)&elts[pos],
+ _mm_loadu_si128((__m128i *)&pkts[pos]));
+ if (n & 1)
+ elts[pos] = pkts[pos];
+ /* Check if it crosses the end of the queue. */
+ if (unlikely(n < pkts_n)) {
+ elts = &(*txq->elts)[0];
+ for (pos = 0; pos < pkts_n - n; ++pos)
+ elts[pos] = pkts[n + pos];
+ }
+ txq->elts_head += pkts_n;
+ /* Save title WQEBB pointer. */
+ t_wqe = (__m128i *)wqe;
+ dseg = (__m128i *)(wqe + 1);
+ /* Calculate the number of entries to the end. */
+ n = RTE_MIN(
+ (wq_n - wq_idx) * nb_dword_per_wqebb - nb_dword_in_hdr,
+ pkts_n);
+ /* Fill DSEGs. */
+ txq_wr_dseg_v(txq, dseg, pkts, n);
+ /* Check if it crosses the end of the queue. */
+ if (n < pkts_n) {
+ dseg = (__m128i *)txq->wqes;
+ txq_wr_dseg_v(txq, dseg, &pkts[n], pkts_n - n);
+ }
+ if (txq->elts_comp + pkts_n < MLX5_TX_COMP_THRESH) {
+ txq->elts_comp += pkts_n;
+ } else {
+ /* Request a completion. */
+ txq->elts_comp = 0;
+ ++txq->cq_pi;
+ comp_req = 8;
+ }
+ /* Fill CTRL in the header. */
+ ctrl = _mm_set_epi32(txq->elts_head, comp_req,
+ txq->qp_num_8s | (pkts_n + 2),
+ MLX5_OPC_MOD_ENHANCED_MPSW << 24 |
+ txq->wqe_ci << 8 | MLX5_OPCODE_ENHANCED_MPSW);
+ ctrl = _mm_shuffle_epi8(ctrl, shuf_mask_ctrl);
+ _mm_store_si128(t_wqe, ctrl);
+ /* Fill ESEG in the header. */
+ _mm_store_si128(t_wqe + 1,
+ _mm_set_epi8(0, 0, 0, 0,
+ 0, 0, 0, 0,
+ 0, 0, 0, cs_flags,
+ 0, 0, 0, 0));
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ txq->stats.opackets += pkts_n;
+#endif
+ txq->wqe_ci += (nb_dword_in_hdr + pkts_n + (nb_dword_per_wqebb - 1)) /
+ nb_dword_per_wqebb;
+ /* Ring QP doorbell. */
+ mlx5_tx_dbrec(txq, wqe);
+ return pkts_n;
+}
+
+/**
+ * DPDK callback for vectorized TX.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst_raw_vec(void *dpdk_txq, struct rte_mbuf **pkts,
+ uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t nb_tx = 0;
+
+ while (pkts_n > nb_tx) {
+ uint16_t n;
+ uint16_t ret;
+
+ n = RTE_MIN((uint16_t)(pkts_n - nb_tx), MLX5_VPMD_TX_MAX_BURST);
+ ret = txq_burst_v(txq, &pkts[nb_tx], n, 0);
+ nb_tx += ret;
+ if (!ret)
+ break;
+ }
+ return nb_tx;
+}
+
+/**
+ * DPDK callback for vectorized TX with multi-seg packets and offload.
+ *
+ * @param dpdk_txq
+ * Generic pointer to TX queue structure.
+ * @param[in] pkts
+ * Packets to transmit.
+ * @param pkts_n
+ * Number of packets in array.
+ *
+ * @return
+ * Number of packets successfully transmitted (<= pkts_n).
+ */
+uint16_t
+mlx5_tx_burst_vec(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct txq *txq = (struct txq *)dpdk_txq;
+ uint16_t nb_tx = 0;
+
+ while (pkts_n > nb_tx) {
+ uint8_t cs_flags = 0;
+ uint16_t n;
+ uint16_t ret;
+
+ /* Transmit multi-seg packets in the head of pkts list. */
+ if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS) &&
+ NB_SEGS(pkts[nb_tx]) > 1)
+ nb_tx += txq_scatter_v(txq,
+ &pkts[nb_tx],
+ pkts_n - nb_tx);
+ n = RTE_MIN((uint16_t)(pkts_n - nb_tx), MLX5_VPMD_TX_MAX_BURST);
+ if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS))
+ n = txq_check_multiseg(&pkts[nb_tx], n);
+ if (!(txq->flags & ETH_TXQ_FLAGS_NOOFFLOADS))
+ n = txq_calc_offload(txq, &pkts[nb_tx], n, &cs_flags);
+ ret = txq_burst_v(txq, &pkts[nb_tx], n, cs_flags);
+ nb_tx += ret;
+ if (!ret)
+ break;
+ }
+ return nb_tx;
+}
+
+/**
+ * Store free buffers to RX SW ring.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param pkts
+ * Pointer to array of packets to be stored.
+ * @param pkts_n
+ * Number of packets to be stored.
+ */
+static inline void
+rxq_copy_mbuf_v(struct rxq *rxq, struct rte_mbuf **pkts, uint16_t n)
+{
+ const uint16_t q_mask = (1 << rxq->elts_n) - 1;
+ struct rte_mbuf **elts = &(*rxq->elts)[rxq->rq_pi & q_mask];
+ unsigned int pos;
+ uint16_t p = n & -2;
+
+ for (pos = 0; pos < p; pos += 2) {
+ __m128i mbp;
+
+ mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
+ _mm_storeu_si128((__m128i *)&pkts[pos], mbp);
+ }
+ if (n & 1)
+ pkts[pos] = elts[pos];
+}
+
+/**
+ * Replenish buffers for RX in bulk.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param n
+ * Number of buffers to be replenished.
+ */
+static inline void
+rxq_replenish_bulk_mbuf(struct rxq *rxq, uint16_t n)
+{
+ const uint16_t q_n = 1 << rxq->elts_n;
+ const uint16_t q_mask = q_n - 1;
+ const uint16_t elts_idx = rxq->rq_ci & q_mask;
+ struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
+ volatile struct mlx5_wqe_data_seg *wq = &(*rxq->wqes)[elts_idx];
+ unsigned int i;
+
+ assert(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH);
+ assert(n <= (uint16_t)(q_n - (rxq->rq_ci - rxq->rq_pi)));
+ assert(MLX5_VPMD_RXQ_RPLNSH_THRESH > MLX5_VPMD_DESCS_PER_LOOP);
+ /* Not to cross queue end. */
+ n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
+ if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
+ rxq->stats.rx_nombuf += n;
+ return;
+ }
+ for (i = 0; i < n; ++i)
+ wq[i].addr = htonll((uintptr_t)elts[i]->buf_addr +
+ RTE_PKTMBUF_HEADROOM);
+ rxq->rq_ci += n;
+ rte_wmb();
+ *rxq->rq_db = htonl(rxq->rq_ci);
+}
+
+/**
+ * Decompress a compressed completion and fill in mbufs in RX SW ring with data
+ * extracted from the title completion descriptor.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param cq
+ * Pointer to completion array having a compressed completion at first.
+ * @param elts
+ * Pointer to SW ring to be filled. The first mbuf has to be pre-built from
+ * the title completion descriptor to be copied to the rest of mbufs.
+ */
+static inline void
+rxq_cq_decompress_v(struct rxq *rxq,
+ volatile struct mlx5_cqe *cq,
+ struct rte_mbuf **elts)
+{
+ volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
+ struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
+ unsigned int pos;
+ unsigned int i;
+ unsigned int inv = 0;
+ /* Mask to shuffle from extracted mini CQE to mbuf. */
+ const __m128i shuf_mask1 =
+ _mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
+ -1, -1, /* skip vlan_tci */
+ 6, 7, /* data_len, bswap16 */
+ -1, -1, 6, 7, /* pkt_len, bswap16 */
+ -1, -1, -1, -1 /* skip packet_type */);
+ const __m128i shuf_mask2 =
+ _mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
+ -1, -1, /* skip vlan_tci */
+ 14, 15, /* data_len, bswap16 */
+ -1, -1, 14, 15, /* pkt_len, bswap16 */
+ -1, -1, -1, -1 /* skip packet_type */);
+ /* Restore the compressed count. Must be 16 bits. */
+ const uint16_t mcqe_n = t_pkt->data_len +
+ (rxq->crc_present * ETHER_CRC_LEN);
+ const __m128i rearm =
+ _mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
+ const __m128i rxdf =
+ _mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
+ const __m128i crc_adj =
+ _mm_set_epi16(0, 0, 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0, 0);
+ const uint32_t flow_tag = t_pkt->hash.fdir.hi;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+ uint32_t rcvd_byte = 0;
+ /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+ const __m128i len_shuf_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 14, 15, 6, 7,
+ 10, 11, 2, 3);
+#endif
+
+ /* Compile time sanity check for this function. */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+ /*
+ * A. load mCQEs into a 128bit register.
+ * B. store rearm data to mbuf.
+ * C. combine data from mCQEs with rx_descriptor_fields1.
+ * D. store rx_descriptor_fields1.
+ * E. store flow tag (rte_flow mark).
+ */
+ for (pos = 0; pos < mcqe_n; ) {
+ __m128i mcqe1, mcqe2;
+ __m128i rxdf1, rxdf2;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ __m128i byte_cnt, invalid_mask;
+#endif
+
+ if (!(pos & 0x7) && pos + 8 < mcqe_n)
+ rte_prefetch0((void *)(cq + pos + 8));
+ /* A.1 load mCQEs into a 128bit register. */
+ mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
+ mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
+ /* B.1 store rearm data to mbuf. */
+ _mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
+ _mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
+ /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+ rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
+ rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
+ rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+ rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+ rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+ rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+ /* D.1 store rx_descriptor_fields1. */
+ _mm_storeu_si128((__m128i *)
+ &elts[pos]->rx_descriptor_fields1,
+ rxdf1);
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 1]->rx_descriptor_fields1,
+ rxdf2);
+ /* B.1 store rearm data to mbuf. */
+ _mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
+ _mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
+ /* C.1 combine data from mCQEs with rx_descriptor_fields1. */
+ rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
+ rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
+ rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
+ rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
+ rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
+ rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
+ /* D.1 store rx_descriptor_fields1. */
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 2]->rx_descriptor_fields1,
+ rxdf1);
+ _mm_storeu_si128((__m128i *)
+ &elts[pos + 3]->rx_descriptor_fields1,
+ rxdf2);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ invalid_mask = _mm_set_epi64x(0,
+ (mcqe_n - pos) *
+ sizeof(uint16_t) * 8);
+ invalid_mask = _mm_sll_epi64(ones, invalid_mask);
+ mcqe1 = _mm_srli_si128(mcqe1, 4);
+ byte_cnt = _mm_blend_epi16(mcqe1, mcqe2, 0xcc);
+ byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
+ byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+ byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+ rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+ if (rxq->mark) {
+ /* E.1 store flow tag (rte_flow mark). */
+ elts[pos]->hash.fdir.hi = flow_tag;
+ elts[pos + 1]->hash.fdir.hi = flow_tag;
+ elts[pos + 2]->hash.fdir.hi = flow_tag;
+ elts[pos + 3]->hash.fdir.hi = flow_tag;
+ }
+ pos += MLX5_VPMD_DESCS_PER_LOOP;
+ /* Move to next CQE and invalidate consumed CQEs. */
+ if (!(pos & 0x7) && pos < mcqe_n) {
+ mcq = (void *)(cq + pos);
+ for (i = 0; i < 8; ++i)
+ cq[inv++].op_own = MLX5_CQE_INVALIDATE;
+ }
+ }
+ /* Invalidate the rest of CQEs. */
+ for (; inv < mcqe_n; ++inv)
+ cq[inv].op_own = MLX5_CQE_INVALIDATE;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ rxq->stats.ipackets += mcqe_n;
+ rxq->stats.ibytes += rcvd_byte;
+#endif
+ rxq->cq_ci += mcqe_n;
+}
+
+/**
+ * Calculate packet type and offload flag for mbuf and store it.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param cqes[4]
+ * Array of four 16bytes completions extracted from the original completion
+ * descriptor.
+ * @param op_err
+ * Opcode vector having responder error status. Each field is 4B.
+ * @param pkts
+ * Pointer to array of packets to be filled.
+ */
+static inline void
+rxq_cq_to_ptype_oflags_v(struct rxq *rxq, __m128i cqes[4], __m128i op_err,
+ struct rte_mbuf **pkts)
+{
+ __m128i pinfo0, pinfo1;
+ __m128i pinfo, ptype;
+ __m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH);
+ __m128i cv_flags;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ptype_mask =
+ _mm_set_epi32(0xfd06, 0xfd06, 0xfd06, 0xfd06);
+ const __m128i ptype_ol_mask =
+ _mm_set_epi32(0x106, 0x106, 0x106, 0x106);
+ const __m128i pinfo_mask =
+ _mm_set_epi32(0x3, 0x3, 0x3, 0x3);
+ const __m128i cv_flag_sel =
+ _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
+ (uint8_t)((PKT_RX_IP_CKSUM_GOOD |
+ PKT_RX_L4_CKSUM_GOOD) >> 1),
+ 0,
+ (uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
+ 0,
+ (uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
+ (uint8_t)(PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED),
+ 0);
+ const __m128i cv_mask =
+ _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
+ PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
+ PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED);
+ const __m128i mbuf_init =
+ _mm_loadl_epi64((__m128i *)&rxq->mbuf_initializer);
+ __m128i rearm0, rearm1, rearm2, rearm3;
+
+ /* Extract pkt_info field. */
+ pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+ pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+ pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
+ /* Extract hdr_type_etc field. */
+ pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
+ pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
+ ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
+ if (rxq->mark) {
+ const __m128i pinfo_ft_mask =
+ _mm_set_epi32(0xffffff00, 0xffffff00,
+ 0xffffff00, 0xffffff00);
+ const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
+ const __m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
+ __m128i flow_tag, invalid_mask;
+
+ flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
+ /* Check if flow tag is non-zero then set PKT_RX_FDIR. */
+ invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
+ ol_flags = _mm_or_si128(ol_flags,
+ _mm_andnot_si128(invalid_mask,
+ fdir_flags));
+ /* Mask out invalid entries. */
+ flow_tag = _mm_andnot_si128(invalid_mask, flow_tag);
+ /* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
+ ol_flags = _mm_or_si128(ol_flags,
+ _mm_andnot_si128(
+ _mm_cmpeq_epi32(flow_tag,
+ pinfo_ft_mask),
+ fdir_id_flags));
+ }
+ /*
+ * Merge the two fields to generate the following:
+ * bit[1] = l3_ok
+ * bit[2] = l4_ok
+ * bit[8] = cv
+ * bit[11:10] = l3_hdr_type
+ * bit[14:12] = l4_hdr_type
+ * bit[15] = ip_frag
+ * bit[16] = tunneled
+ * bit[17] = outer_l3_type
+ */
+ ptype = _mm_and_si128(ptype, ptype_mask);
+ pinfo = _mm_and_si128(pinfo, pinfo_mask);
+ pinfo = _mm_slli_epi32(pinfo, 16);
+ /* Make pinfo has merged fields for ol_flags calculation. */
+ pinfo = _mm_or_si128(ptype, pinfo);
+ ptype = _mm_srli_epi32(pinfo, 10);
+ ptype = _mm_packs_epi32(ptype, zero);
+ /* Errored packets will have RTE_PTYPE_ALL_MASK. */
+ op_err = _mm_srli_epi16(op_err, 8);
+ ptype = _mm_or_si128(ptype, op_err);
+ pkts[0]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 0)];
+ pkts[1]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 2)];
+ pkts[2]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 4)];
+ pkts[3]->packet_type = mlx5_ptype_table[_mm_extract_epi8(ptype, 6)];
+ /* Fill flags for checksum and VLAN. */
+ pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
+ pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
+ /* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
+ cv_flags = _mm_slli_epi32(pinfo, 9);
+ cv_flags = _mm_or_si128(pinfo, cv_flags);
+ /* Move back flags to start from byte[0]. */
+ cv_flags = _mm_srli_epi32(cv_flags, 8);
+ /* Mask out garbage bits. */
+ cv_flags = _mm_and_si128(cv_flags, cv_mask);
+ /* Merge to ol_flags. */
+ ol_flags = _mm_or_si128(ol_flags, cv_flags);
+ /* Merge mbuf_init and ol_flags. */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
+ rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
+ rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
+ rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
+ /* Write 8B rearm_data and 8B ol_flags. */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
+ _mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
+ _mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
+ _mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
+ _mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
+}
+
+/**
+ * Skip error packets.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+static uint16_t
+rxq_handle_pending_error(struct rxq *rxq, struct rte_mbuf **pkts,
+ uint16_t pkts_n)
+{
+ uint16_t n = 0;
+ unsigned int i;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t err_bytes = 0;
+#endif
+
+ for (i = 0; i < pkts_n; ++i) {
+ struct rte_mbuf *pkt = pkts[i];
+
+ if (pkt->packet_type == RTE_PTYPE_ALL_MASK) {
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ err_bytes += PKT_LEN(pkt);
+#endif
+ rte_pktmbuf_free_seg(pkt);
+ } else {
+ pkts[n++] = pkt;
+ }
+ }
+ rxq->stats.idropped += (pkts_n - n);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Correct counters of errored completions. */
+ rxq->stats.ipackets -= (pkts_n - n);
+ rxq->stats.ibytes -= err_bytes;
+#endif
+ rxq->pending_err = 0;
+ return n;
+}
+
+/**
+ * Receive burst of packets. An errored completion also consumes a mbuf, but the
+ * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
+ * before returning to application.
+ *
+ * @param rxq
+ * Pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets received including errors (<= pkts_n).
+ */
+static inline uint16_t
+rxq_burst_v(struct rxq *rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ const uint16_t q_n = 1 << rxq->cqe_n;
+ const uint16_t q_mask = q_n - 1;
+ volatile struct mlx5_cqe *cq;
+ struct rte_mbuf **elts;
+ unsigned int pos;
+ uint64_t n;
+ uint16_t repl_n;
+ uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
+ uint16_t nocmp_n = 0;
+ uint16_t rcvd_pkt = 0;
+ unsigned int cq_idx = rxq->cq_ci & q_mask;
+ unsigned int elts_idx;
+ unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
+ const __m128i owner_check =
+ _mm_set_epi64x(0x0100000001000000LL, 0x0100000001000000LL);
+ const __m128i opcode_check =
+ _mm_set_epi64x(0xf0000000f0000000LL, 0xf0000000f0000000LL);
+ const __m128i format_check =
+ _mm_set_epi64x(0x0c0000000c000000LL, 0x0c0000000c000000LL);
+ const __m128i resp_err_check =
+ _mm_set_epi64x(0xe0000000e0000000LL, 0xe0000000e0000000LL);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ uint32_t rcvd_byte = 0;
+ /* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
+ const __m128i len_shuf_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 12, 13, 8, 9,
+ 4, 5, 0, 1);
+#endif
+ /* Mask to shuffle from extracted CQE to mbuf. */
+ const __m128i shuf_mask =
+ _mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
+ 12, 13, 14, 15, /* rss, bswap32 */
+ 10, 11, /* vlan_tci, bswap16 */
+ 4, 5, /* data_len, bswap16 */
+ -1, -1, /* zero out 2nd half of pkt_len */
+ 4, 5 /* pkt_len, bswap16 */);
+ /* Mask to blend from the last Qword to the first DQword. */
+ const __m128i blend_mask =
+ _mm_set_epi8(-1, -1, -1, -1,
+ -1, -1, -1, -1,
+ 0, 0, 0, 0,
+ 0, 0, 0, -1);
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i ones = _mm_cmpeq_epi32(zero, zero);
+ const __m128i crc_adj =
+ _mm_set_epi16(0, 0, 0, 0, 0,
+ rxq->crc_present * ETHER_CRC_LEN,
+ 0,
+ rxq->crc_present * ETHER_CRC_LEN);
+ const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
+
+ /* Compile time sanity check for this function. */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, pkt_info) != 0);
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, rx_hash_res) !=
+ offsetof(struct mlx5_cqe, pkt_info) + 12);
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, rsvd1) +
+ sizeof(((struct mlx5_cqe *)0)->rsvd1) !=
+ offsetof(struct mlx5_cqe, hdr_type_etc));
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, vlan_info) !=
+ offsetof(struct mlx5_cqe, hdr_type_etc) + 2);
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, rsvd2) +
+ sizeof(((struct mlx5_cqe *)0)->rsvd2) !=
+ offsetof(struct mlx5_cqe, byte_cnt));
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, sop_drop_qpn) !=
+ RTE_ALIGN(offsetof(struct mlx5_cqe, sop_drop_qpn), 8));
+ RTE_BUILD_BUG_ON(offsetof(struct mlx5_cqe, op_own) !=
+ offsetof(struct mlx5_cqe, sop_drop_qpn) + 7);
+ assert(rxq->sges_n == 0);
+ assert(rxq->cqe_n == rxq->elts_n);
+ cq = &(*rxq->cqes)[cq_idx];
+ rte_prefetch0(cq);
+ rte_prefetch0(cq + 1);
+ rte_prefetch0(cq + 2);
+ rte_prefetch0(cq + 3);
+ pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
+ /*
+ * Order of indexes:
+ * rq_ci >= cq_ci >= rq_pi
+ * Definition of indexes:
+ * rq_ci - cq_ci := # of buffers owned by HW (posted).
+ * cq_ci - rq_pi := # of buffers not returned to app (decompressed).
+ * N - (rq_ci - rq_pi) := # of buffers consumed (to be replenished).
+ */
+ repl_n = q_n - (rxq->rq_ci - rxq->rq_pi);
+ if (repl_n >= MLX5_VPMD_RXQ_RPLNSH_THRESH)
+ rxq_replenish_bulk_mbuf(rxq, repl_n);
+ /* See if there're unreturned mbufs from compressed CQE. */
+ rcvd_pkt = rxq->cq_ci - rxq->rq_pi;
+ if (rcvd_pkt > 0) {
+ rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
+ rxq_copy_mbuf_v(rxq, pkts, rcvd_pkt);
+ rxq->rq_pi += rcvd_pkt;
+ pkts += rcvd_pkt;
+ }
+ elts_idx = rxq->rq_pi & q_mask;
+ elts = &(*rxq->elts)[elts_idx];
+ /* Not to overflow pkts array. */
+ pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
+ /* Not to cross queue end. */
+ pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
+ if (!pkts_n)
+ return rcvd_pkt;
+ /* At this point, there shouldn't be any remained packets. */
+ assert(rxq->rq_pi == rxq->cq_ci);
+ /*
+ * A. load first Qword (8bytes) in one loop.
+ * B. copy 4 mbuf pointers from elts ring to returing pkts.
+ * C. load remained CQE data and extract necessary fields.
+ * Final 16bytes cqes[] extracted from original 64bytes CQE has the
+ * following structure:
+ * struct {
+ * uint8_t pkt_info;
+ * uint8_t flow_tag[3];
+ * uint16_t byte_cnt;
+ * uint8_t rsvd4;
+ * uint8_t op_own;
+ * uint16_t hdr_type_etc;
+ * uint16_t vlan_info;
+ * uint32_t rx_has_res;
+ * } c;
+ * D. fill in mbuf.
+ * E. get valid CQEs.
+ * F. find compressed CQE.
+ */
+ for (pos = 0;
+ pos < pkts_n;
+ pos += MLX5_VPMD_DESCS_PER_LOOP) {
+ __m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
+ __m128i cqe_tmp1, cqe_tmp2;
+ __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
+ __m128i op_own, op_own_tmp1, op_own_tmp2;
+ __m128i opcode, owner_mask, invalid_mask;
+ __m128i comp_mask;
+ __m128i mask;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ __m128i byte_cnt;
+#endif
+ __m128i mbp1, mbp2;
+ __m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
+ unsigned int p1, p2, p3;
+
+ /* Prefetch next 4 CQEs. */
+ if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
+ rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
+ }
+ /* A.0 do not cross the end of CQ. */
+ mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ p = _mm_andnot_si128(mask, p);
+ /* A.1 load cqes. */
+ p3 = _mm_extract_epi16(p, 3);
+ cqes[3] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p3].sop_drop_qpn);
+ rte_compiler_barrier();
+ p2 = _mm_extract_epi16(p, 2);
+ cqes[2] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p2].sop_drop_qpn);
+ rte_compiler_barrier();
+ /* B.1 load mbuf pointers. */
+ mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
+ mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
+ /* A.1 load a block having op_own. */
+ p1 = _mm_extract_epi16(p, 1);
+ cqes[1] = _mm_loadl_epi64((__m128i *)
+ &cq[pos + p1].sop_drop_qpn);
+ rte_compiler_barrier();
+ cqes[0] = _mm_loadl_epi64((__m128i *)
+ &cq[pos].sop_drop_qpn);
+ /* B.2 copy mbuf pointers. */
+ _mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
+ _mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
+ rte_compiler_barrier();
+ /* C.1 load remained CQE data and extract necessary fields. */
+ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
+ cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
+ cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
+ cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
+ cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].rsvd1[3]);
+ cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].rsvd1[3]);
+ cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
+ cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
+ cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd2[10]);
+ cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd2[10]);
+ cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
+ cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
+ /* C.2 generate final structure for mbuf with swapping bytes. */
+ pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
+ pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
+ /* C.3 adjust CRC length. */
+ pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
+ pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
+ /* C.4 adjust flow mark. */
+ pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
+ pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
+ /* D.1 fill in mbuf - rx_descriptor_fields1. */
+ _mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
+ _mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
+ /* E.1 extract op_own field. */
+ op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
+ /* C.1 load remained CQE data and extract necessary fields. */
+ cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
+ cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
+ cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
+ cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
+ cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].rsvd1[3]);
+ cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].rsvd1[3]);
+ cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
+ cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
+ cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd2[10]);
+ cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd2[10]);
+ cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
+ cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
+ /* C.2 generate final structure for mbuf with swapping bytes. */
+ pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
+ pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
+ /* C.3 adjust CRC length. */
+ pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
+ pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
+ /* C.4 adjust flow mark. */
+ pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
+ pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
+ /* E.1 extract op_own byte. */
+ op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
+ op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
+ /* D.1 fill in mbuf - rx_descriptor_fields1. */
+ _mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
+ _mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
+ /* E.2 flip owner bit to mark CQEs from last round. */
+ owner_mask = _mm_and_si128(op_own, owner_check);
+ if (ownership)
+ owner_mask = _mm_xor_si128(owner_mask, owner_check);
+ owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
+ owner_mask = _mm_packs_epi32(owner_mask, zero);
+ /* E.3 get mask for invalidated CQEs. */
+ opcode = _mm_and_si128(op_own, opcode_check);
+ invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
+ invalid_mask = _mm_packs_epi32(invalid_mask, zero);
+ /* E.4 mask out beyond boundary. */
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* E.5 merge invalid_mask with invalid owner. */
+ invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
+ /* F.1 find compressed CQE format. */
+ comp_mask = _mm_and_si128(op_own, format_check);
+ comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
+ comp_mask = _mm_packs_epi32(comp_mask, zero);
+ /* F.2 mask out invalid entries. */
+ comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
+ comp_idx = _mm_cvtsi128_si64(comp_mask);
+ /* F.3 get the first compressed CQE. */
+ comp_idx = comp_idx ?
+ __builtin_ctzll(comp_idx) /
+ (sizeof(uint16_t) * 8) :
+ MLX5_VPMD_DESCS_PER_LOOP;
+ /* E.6 mask out entries after the compressed CQE. */
+ mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* E.7 count non-compressed valid CQEs. */
+ n = _mm_cvtsi128_si64(invalid_mask);
+ n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
+ MLX5_VPMD_DESCS_PER_LOOP;
+ nocmp_n += n;
+ /* D.2 get the final invalid mask. */
+ mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
+ mask = _mm_sll_epi64(ones, mask);
+ invalid_mask = _mm_or_si128(invalid_mask, mask);
+ /* D.3 check error in opcode. */
+ opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
+ opcode = _mm_packs_epi32(opcode, zero);
+ opcode = _mm_andnot_si128(invalid_mask, opcode);
+ /* D.4 mark if any error is set */
+ rxq->pending_err |= !!_mm_cvtsi128_si64(opcode);
+ /* D.5 fill in mbuf - rearm_data and packet_type. */
+ rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ /* Add up received bytes count. */
+ byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
+ byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
+ byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
+ rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
+#endif
+ /*
+ * Break the loop unless more valid CQE is expected, or if
+ * there's a compressed CQE.
+ */
+ if (n != MLX5_VPMD_DESCS_PER_LOOP)
+ break;
+ }
+ /* If no new CQE seen, return without updating cq_db. */
+ if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP))
+ return rcvd_pkt;
+ /* Update the consumer indexes for non-compressed CQEs. */
+ assert(nocmp_n <= pkts_n);
+ rxq->cq_ci += nocmp_n;
+ rxq->rq_pi += nocmp_n;
+ rcvd_pkt += nocmp_n;
+#ifdef MLX5_PMD_SOFT_COUNTERS
+ rxq->stats.ipackets += nocmp_n;
+ rxq->stats.ibytes += rcvd_byte;
+#endif
+ /* Decompress the last CQE if compressed. */
+ if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP && comp_idx == n) {
+ assert(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
+ rxq_cq_decompress_v(rxq, &cq[nocmp_n], &elts[nocmp_n]);
+ /* Return more packets if needed. */
+ if (nocmp_n < pkts_n) {
+ uint16_t n = rxq->cq_ci - rxq->rq_pi;
+
+ n = RTE_MIN(n, pkts_n - nocmp_n);
+ rxq_copy_mbuf_v(rxq, &pkts[nocmp_n], n);
+ rxq->rq_pi += n;
+ rcvd_pkt += n;
+ }
+ }
+ rte_wmb();
+ *rxq->cq_db = htonl(rxq->cq_ci);
+ return rcvd_pkt;
+}
+
+/**
+ * DPDK callback for vectorized RX.
+ *
+ * @param dpdk_rxq
+ * Generic pointer to RX queue structure.
+ * @param[out] pkts
+ * Array to store received packets.
+ * @param pkts_n
+ * Maximum number of packets in array.
+ *
+ * @return
+ * Number of packets successfully received (<= pkts_n).
+ */
+uint16_t
+mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
+{
+ struct rxq *rxq = dpdk_rxq;
+ uint16_t nb_rx;
+
+ nb_rx = rxq_burst_v(rxq, pkts, pkts_n);
+ if (unlikely(rxq->pending_err))
+ nb_rx = rxq_handle_pending_error(rxq, pkts, nb_rx);
+ return nb_rx;
+}
+
+/**
+ * Check Tx queue flags are set for raw vectorized Tx.
+ *
+ * @param priv
+ * Pointer to private structure.
+ *
+ * @return
+ * 1 if supported, negative errno value if not.
+ */
+int __attribute__((cold))
+priv_check_raw_vec_tx_support(struct priv *priv)
+{
+ uint16_t i;
+
+ /* All the configured queues should support. */
+ for (i = 0; i < priv->txqs_n; ++i) {
+ struct txq *txq = (*priv->txqs)[i];
+
+ if (!(txq->flags & ETH_TXQ_FLAGS_NOMULTSEGS) ||
+ !(txq->flags & ETH_TXQ_FLAGS_NOOFFLOADS))
+ break;
+ }
+ if (i != priv->txqs_n)
+ return -ENOTSUP;
+ return 1;
+}
+
+/**
+ * Check a device can support vectorized TX.
+ *
+ * @param priv
+ * Pointer to private structure.
+ *
+ * @return
+ * 1 if supported, negative errno value if not.
+ */
+int __attribute__((cold))
+priv_check_vec_tx_support(struct priv *priv)
+{
+ if (!priv->tx_vec_en ||
+ priv->txqs_n > MLX5_VPMD_MIN_TXQS ||
+ priv->mps != MLX5_MPW_ENHANCED ||
+ priv->tso)
+ return -ENOTSUP;
+ return 1;
+}
+
+/**
+ * Check a RX queue can support vectorized RX.
+ *
+ * @param rxq
+ * Pointer to RX queue.
+ *
+ * @return
+ * 1 if supported, negative errno value if not.
+ */
+int __attribute__((cold))
+rxq_check_vec_support(struct rxq *rxq)
+{
+ struct rxq_ctrl *ctrl = container_of(rxq, struct rxq_ctrl, rxq);
+
+ if (!ctrl->priv->rx_vec_en || rxq->sges_n != 0)
+ return -ENOTSUP;
+ return 1;
+}
+
+/**
+ * Check a device can support vectorized RX.
+ *
+ * @param priv
+ * Pointer to private structure.
+ *
+ * @return
+ * 1 if supported, negative errno value if not.
+ */
+int __attribute__((cold))
+priv_check_vec_rx_support(struct priv *priv)
+{
+ uint16_t i;
+
+ if (!priv->rx_vec_en)
+ return -ENOTSUP;
+ /* All the configured queues should support. */
+ for (i = 0; i < priv->rxqs_n; ++i) {
+ struct rxq *rxq = (*priv->rxqs)[i];
+
+ if (rxq_check_vec_support(rxq) < 0)
+ break;
+ }
+ if (i != priv->rxqs_n)
+ return -ENOTSUP;
+ return 1;
+}
+
+/**
+ * Prepare for vectorized RX.
+ *
+ * @param priv
+ * Pointer to private structure.
+ */
+void
+priv_prep_vec_rx_function(struct priv *priv)
+{
+ uint16_t i;
+
+ for (i = 0; i < priv->rxqs_n; ++i) {
+ struct rxq *rxq = (*priv->rxqs)[i];
+ struct rte_mbuf *mbuf_init = &rxq->fake_mbuf;
+ const uint16_t desc = 1 << rxq->elts_n;
+ int j;
+
+ assert(rxq->elts_n == rxq->cqe_n);
+ /* Initialize default rearm_data for vPMD. */
+ mbuf_init->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_mbuf_refcnt_set(mbuf_init, 1);
+ mbuf_init->nb_segs = 1;
+ mbuf_init->port = rxq->port_id;
+ /*
+ * prevent compiler reordering:
+ * rearm_data covers previous fields.
+ */
+ rte_compiler_barrier();
+ rxq->mbuf_initializer =
+ *(uint64_t *)&mbuf_init->rearm_data;
+ /* Padding with a fake mbuf for vectorized Rx. */
+ for (j = 0; j < MLX5_VPMD_DESCS_PER_LOOP; ++j)
+ (*rxq->elts)[desc + j] = &rxq->fake_mbuf;
+ /* Mark that it need to be cleaned up for rxq_alloc_elts(). */
+ rxq->trim_elts = 1;
+ }
+}