aboutsummaryrefslogtreecommitdiffstats
path: root/examples/ip_pipeline/config/network_layers.cfg
diff options
context:
space:
mode:
Diffstat (limited to 'examples/ip_pipeline/config/network_layers.cfg')
-rw-r--r--examples/ip_pipeline/config/network_layers.cfg223
1 files changed, 223 insertions, 0 deletions
diff --git a/examples/ip_pipeline/config/network_layers.cfg b/examples/ip_pipeline/config/network_layers.cfg
new file mode 100644
index 00000000..8054d9fe
--- /dev/null
+++ b/examples/ip_pipeline/config/network_layers.cfg
@@ -0,0 +1,223 @@
+; BSD LICENSE
+;
+; Copyright(c) 2016 Intel Corporation. All rights reserved.
+; All rights reserved.
+;
+; Redistribution and use in source and binary forms, with or without
+; modification, are permitted provided that the following conditions
+; are met:
+;
+; * Redistributions of source code must retain the above copyright
+; notice, this list of conditions and the following disclaimer.
+; * Redistributions in binary form must reproduce the above copyright
+; notice, this list of conditions and the following disclaimer in
+; the documentation and/or other materials provided with the
+; distribution.
+; * Neither the name of Intel Corporation nor the names of its
+; contributors may be used to endorse or promote products derived
+; from this software without specific prior written permission.
+;
+; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+; The diagram below shows how additional protocol components can be plugged into
+; the IP layer implemented by the ip_pipeline application. Pick your favorite
+; open source components for dynamic ARP, ICMP, UDP or TCP termination, etc and
+; connect them through SWQs to the IP infrastructure.
+;
+; The input packets with local destination are sent to the UDP/TCP applications
+; while the input packets with remote destination are routed back to the
+; network. Additional features can easily be added to this setup:
+; * IP Reassembly: add SWQs with IP reassembly enabled (typically required for
+; the input traffic with local destination);
+; * IP Fragmentation: add SWQs with IP fragmentation enabled (typically
+; required to enforce the MTU for the routed output traffic);
+; * Traffic Metering: add Flow Action pipeline instances (e.g. for metering the
+; TCP connections or ICMP input traffic);
+; * Traffic Management: add TMs for the required output LINKs;
+; * Protocol encapsulations (QinQ, MPLS) for the output packets: part of the
+; routing pipeline configuration.
+;
+; _________ _________
+; | | | |
+; | UDP | | TCP |
+; | App | | App |
+; |_________| |_________|
+; ^ | ^ |
+; __|___V__ __|___V__
+; | | SWQ0 (UDP TX) | | SWQ1 (TCP TX)
+; | UDP |-------+ | TCP |------------+
+; | | | | | |
+; |_________| | |_________| |
+; ^ | ^ |
+; | SWQ2 | | SWQ3 |
+; | (UDP RX) | | (TCP RX) |
+; ____|____ | ____|____ |
+; | | | | | |
+; RXQ<0..3>.1 ------>|Firewall +--->| | +------>| Flow +--->| |
+; (UDP local dest) | (P2) | SINK0 | | | (P3) | SINK1 |
+; |_________| (Deny)| | |_________| (RST) |
+; RXQ<0..3>.2 -------------------------|-----+ |
+; (TCP local dest) | |
+; | +------------------------------+
+; | |
+; _V_____V_
+; | |
+; | Routing | TXQ<0..3>.0
+; RXQ<0..3>.0 ---------------------->| & ARP +----------------------------->
+; (IP remote dest) | (P1) |
+; |_________|
+; | ^ |
+; SWQ4 +-------------+ | | SWQ5 (ARP miss)
+; (Route miss) | | +------------+
+; | +-------------+ |
+; ___V__|__ SWQ6 ____V____
+; | | (ICMP TX) | | TXQ<0..3>.1
+; RXQ<0..3>.3 ------>| ICMP | +------>| Dyn ARP +------------->
+; (IP local dest) | | | | |
+; |_________| | |_________|
+; RXQ<0..3>.4 -------------------------------+
+; (ARP)
+;
+; This configuration file implements the diagram presented below, where the
+; dynamic ARP, ICMP, UDP and TCP components have been stubbed out and replaced
+; with loop-back and packet drop devices.
+;
+; _________ _________
+; | | SWQ0 (UDP TX) | | SWQ1 (TCP TX)
+; |Loobpack |-------+ |Loopback |------------+
+; | (P4) | | | (P5) | |
+; |_________| | |_________| |
+; ^ | ^ |
+; | SWQ2 | | SWQ3 |
+; | (UDP RX) | | (TCP RX) |
+; ____|____ | ____|____ |
+; | | | | | |
+; RXQ<0..3>.1 ------>|Firewall +--->| | +------>| Flow +--->| |
+; (UDP local dest) | (P2) | SINK0 | | | (P3) | SINK1 |
+; |_________| (Deny)| | |_________| (RST) |
+; RXQ<0..3>.2 -------------------------|-----+ |
+; (TCP local dest) | |
+; | +------------------------------+
+; | |
+; _V_____V_
+; | |
+; | Routing | TXQ<0..3>.0
+; RXQ<0..3>.0 ---------------------->| & ARP +----------------------------->
+; (IP remote dest) | (P1) |
+; |_________|
+; | |
+; SINK2 |<---+ +--->| SINK3
+; (Route miss) (ARP miss)
+;
+; _________ _________
+; | | | |
+; RXQ<0..3>.3 ------>| Drop +--->| SINK<4..7> +------>| Drop +--->| SINK<8..11>
+; (IP local dest) | (P6) | (IP local dest) | | (P7) | (ARP)
+; |_________| | |_________|
+; RXQ<0..3>.4 ------------------------------------+
+; (ARP)
+;
+;
+; Input packet: Ethernet/IPv4 or Ethernet/ARP
+; Output packet: Ethernet/IPv4 or Ethernet/ARP
+;
+; Packet buffer layout (for input IPv4 packets):
+; # Field Name Offset (Bytes) Size (Bytes)
+; 0 Mbuf 0 128
+; 1 Headroom 128 128
+; 2 Ethernet header 256 14
+; 3 IPv4 header 270 20
+; 4 ICMP/UDP/TCP header 290 8/8/20
+
+[EAL]
+log_level = 0
+
+[LINK0]
+udp_local_q = 1
+tcp_local_q = 2
+ip_local_q = 3
+arp_q = 4
+
+[LINK1]
+udp_local_q = 1
+tcp_local_q = 2
+ip_local_q = 3
+arp_q = 4
+
+[LINK2]
+udp_local_q = 1
+tcp_local_q = 2
+ip_local_q = 3
+arp_q = 4
+
+[LINK3]
+udp_local_q = 1
+tcp_local_q = 2
+ip_local_q = 3
+arp_q = 4
+
+[PIPELINE0]
+type = MASTER
+core = 0
+
+[PIPELINE1]
+type = ROUTING
+core = 1
+pktq_in = RXQ0.0 RXQ1.0 RXQ2.0 RXQ3.0 SWQ0 SWQ1
+pktq_out = TXQ0.0 TXQ1.0 TXQ2.0 TXQ3.0 SINK2 SINK3
+port_local_dest = 4 ; SINK2 (Drop)
+n_arp_entries = 1000
+ip_hdr_offset = 270
+arp_key_offset = 128
+
+[PIPELINE2]
+type = FIREWALL
+core = 1
+pktq_in = RXQ0.1 RXQ1.1 RXQ2.1 RXQ3.1
+pktq_out = SWQ2 SINK0
+n_rules = 4096
+
+[PIPELINE3]
+type = FLOW_CLASSIFICATION
+core = 1
+pktq_in = RXQ0.2 RXQ1.2 RXQ2.2 RXQ3.2
+pktq_out = SWQ3 SINK1
+n_flows = 65536
+key_size = 16 ; IPv4 5-tuple key size
+key_offset = 278 ; IPv4 5-tuple key offset
+key_mask = 00FF0000FFFFFFFFFFFFFFFFFFFFFFFF ; IPv4 5-tuple key mask
+flowid_offset = 128 ; Flow ID effectively acts as TCP socket ID
+
+[PIPELINE4]
+type = PASS-THROUGH ; Loop-back (UDP place-holder)
+core = 1
+pktq_in = SWQ2
+pktq_out = SWQ0
+
+[PIPELINE5]
+type = PASS-THROUGH ; Loop-back (TCP place-holder)
+core = 1
+pktq_in = SWQ3
+pktq_out = SWQ1
+
+[PIPELINE6]
+type = PASS-THROUGH ; Drop (ICMP place-holder)
+core = 1
+pktq_in = RXQ0.3 RXQ1.3 RXQ2.3 RXQ3.3
+pktq_out = SINK4 SINK5 SINK6 SINK7
+
+[PIPELINE7]
+type = PASS-THROUGH ; Drop (Dynamic ARP place-holder)
+core = 1
+pktq_in = RXQ0.4 RXQ1.4 RXQ2.4 RXQ3.4
+pktq_out = SINK8 SINK9 SINK10 SINK11