diff options
Diffstat (limited to 'kernel/linux/kni/ethtool/igb/e1000_82575.c')
-rw-r--r-- | kernel/linux/kni/ethtool/igb/e1000_82575.c | 3650 |
1 files changed, 3650 insertions, 0 deletions
diff --git a/kernel/linux/kni/ethtool/igb/e1000_82575.c b/kernel/linux/kni/ethtool/igb/e1000_82575.c new file mode 100644 index 00000000..98346709 --- /dev/null +++ b/kernel/linux/kni/ethtool/igb/e1000_82575.c @@ -0,0 +1,3650 @@ +// SPDX-License-Identifier: GPL-2.0 +/******************************************************************************* + + Intel(R) Gigabit Ethernet Linux driver + Copyright(c) 2007-2013 Intel Corporation. + + Contact Information: + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* + * 82575EB Gigabit Network Connection + * 82575EB Gigabit Backplane Connection + * 82575GB Gigabit Network Connection + * 82576 Gigabit Network Connection + * 82576 Quad Port Gigabit Mezzanine Adapter + * 82580 Gigabit Network Connection + * I350 Gigabit Network Connection + */ + +#include "e1000_api.h" +#include "e1000_i210.h" + +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); +static void e1000_release_phy_82575(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); +static void e1000_release_nvm_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_init_hw_82575(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_reset_hw_82575(struct e1000_hw *hw); +static s32 e1000_reset_hw_82580(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 *data); +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 data); +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_get_media_type_82575(struct e1000_hw *hw); +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, + u32 offset, u16 data); +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static bool e1000_sgmii_active_82575(struct e1000_hw *hw); +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); +static void e1000_config_collision_dist_82575(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); +static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); +static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); +static void e1000_clear_vfta_i350(struct e1000_hw *hw); + +static void e1000_i2c_start(struct e1000_hw *hw); +static void e1000_i2c_stop(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); +static s32 e1000_get_i2c_ack(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); +static bool e1000_get_i2c_data(u32 *i2cctl); + +static const u16 e1000_82580_rxpbs_table[] = { + 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; +#define E1000_82580_RXPBS_TABLE_SIZE \ + (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) + + +/** + * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO + * @hw: pointer to the HW structure + * + * Called to determine if the I2C pins are being used for I2C or as an + * external MDIO interface since the two options are mutually exclusive. + **/ +static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) +{ + u32 reg = 0; + bool ext_mdio = false; + + DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); + + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + reg = E1000_READ_REG(hw, E1000_MDIC); + ext_mdio = !!(reg & E1000_MDIC_DEST); + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + case e1000_i210: + case e1000_i211: + reg = E1000_READ_REG(hw, E1000_MDICNFG); + ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); + break; + default: + break; + } + return ext_mdio; +} + +/** + * e1000_init_phy_params_82575 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext; + + DEBUGFUNC("e1000_init_phy_params_82575"); + + phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } + + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82575; + + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_phy_82575; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_82575; + phy->ops.release = e1000_release_phy_82575; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + if (e1000_sgmii_active_82575(hw)) { + phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else { + phy->ops.reset = e1000_phy_hw_reset_generic; + ctrl_ext &= ~E1000_CTRL_I2C_ENA; + } + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + e1000_reset_mdicnfg_82580(hw); + + if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { + phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; + phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; + } else { + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i354: + phy->ops.read_reg = e1000_read_phy_reg_82580; + phy->ops.write_reg = e1000_write_phy_reg_82580; + break; + case e1000_i210: + case e1000_i211: + phy->ops.read_reg = e1000_read_phy_reg_gs40g; + phy->ops.write_reg = e1000_write_phy_reg_gs40g; + break; + default: + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + } + } + + /* Set phy->phy_addr and phy->id. */ + ret_val = e1000_get_phy_id_82575(hw); + + /* Verify phy id and set remaining function pointers */ + switch (phy->id) { + case M88E1543_E_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1111_I_PHY_ID: + phy->type = e1000_phy_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + if (phy->id == I347AT4_E_PHY_ID || + phy->id == M88E1112_E_PHY_ID || + phy->id == M88E1340M_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else if (phy->id == M88E1543_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + /* Check if this PHY is configured for media swap. */ + if (phy->id == M88E1112_E_PHY_ID) { + u16 data; + + ret_val = phy->ops.write_reg(hw, + E1000_M88E1112_PAGE_ADDR, + 2); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, + E1000_M88E1112_MAC_CTRL_1, + &data); + if (ret_val) + goto out; + + data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> + E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; + if (data == E1000_M88E1112_AUTO_COPPER_SGMII || + data == E1000_M88E1112_AUTO_COPPER_BASEX) + hw->mac.ops.check_for_link = + e1000_check_for_link_media_swap; + } + break; + case IGP03E1000_E_PHY_ID: + case IGP04E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + break; + case I82580_I_PHY_ID: + case I350_I_PHY_ID: + phy->type = e1000_phy_82580; + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + break; + case I210_I_PHY_ID: + phy->type = e1000_phy_i210; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82575 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82575"); + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* Just in case size is out of range, cap it to the largest + * EEPROM size supported + */ + if (size > 15) + size = 15; + + nvm->word_size = 1 << size; + if (hw->mac.type < e1000_i210) { + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? + 16 : 8; + break; + } + if (nvm->word_size == (1 << 15)) + nvm->page_size = 128; + + nvm->type = e1000_nvm_eeprom_spi; + } else { + nvm->type = e1000_nvm_flash_hw; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82575; + nvm->ops.release = e1000_release_nvm_82575; + if (nvm->word_size < (1 << 15)) + nvm->ops.read = e1000_read_nvm_eerd; + else + nvm->ops.read = e1000_read_nvm_spi; + + nvm->ops.write = e1000_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_82575; + + /* override generic family function pointers for specific descendants */ + switch (hw->mac.type) { + case e1000_82580: + nvm->ops.validate = e1000_validate_nvm_checksum_82580; + nvm->ops.update = e1000_update_nvm_checksum_82580; + break; + case e1000_i350: + //case e1000_i354: + nvm->ops.validate = e1000_validate_nvm_checksum_i350; + nvm->ops.update = e1000_update_nvm_checksum_i350; + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82575 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + + DEBUGFUNC("e1000_init_mac_params_82575"); + + /* Derives media type */ + e1000_get_media_type_82575(hw); + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set uta register count */ + mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + if (mac->type == e1000_82576) + mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + if (mac->type == e1000_82580) + mac->rar_entry_count = E1000_RAR_ENTRIES_82580; + if (mac->type == e1000_i350 || mac->type == e1000_i354) + mac->rar_entry_count = E1000_RAR_ENTRIES_I350; + + /* Enable EEE default settings for EEE supported devices */ + if (mac->type >= e1000_i350) + dev_spec->eee_disable = false; + + /* Allow a single clear of the SW semaphore on I210 and newer */ + if (mac->type >= e1000_i210) + dev_spec->clear_semaphore_once = true; + + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = true; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = + !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + if (mac->type >= e1000_82580) + mac->ops.reset_hw = e1000_reset_hw_82580; + else + mac->ops.reset_hw = e1000_reset_hw_82575; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82575; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; + /* physical interface shutdown */ + mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; + /* physical interface power up */ + mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82575; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82575; + /* configure collision distance */ + mac->ops.config_collision_dist = e1000_config_collision_dist_82575; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_i350; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_i350; + } else { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + } + if (hw->mac.type >= e1000_82580) + mac->ops.validate_mdi_setting = + e1000_validate_mdi_setting_crossover_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82575; + /* get thermal sensor data */ + mac->ops.get_thermal_sensor_data = + e1000_get_thermal_sensor_data_generic; + mac->ops.init_thermal_sensor_thresh = + e1000_init_thermal_sensor_thresh_generic; + /* acquire SW_FW sync */ + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; + if (mac->type >= e1000_i210) { + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; + } + + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82575 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82575"); + + hw->mac.ops.init_params = e1000_init_mac_params_82575; + hw->nvm.ops.init_params = e1000_init_nvm_params_82575; + hw->phy.ops.init_params = e1000_init_phy_params_82575; + hw->mbx.ops.init_params = e1000_init_mbx_params_pf; +} + +/** + * e1000_acquire_phy_82575 - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * Acquire access rights to the correct PHY. + **/ +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_acquire_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + return hw->mac.ops.acquire_swfw_sync(hw, mask); +} + +/** + * e1000_release_phy_82575 - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. + **/ +static void e1000_release_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_release_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + hw->mac.ops.release_swfw_sync(hw, mask); +} + +/** + * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the serial gigabit media independent + * interface and stores the retrieved information in data. + **/ +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %u is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the serial gigabit + * media independent interface. + **/ +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_get_phy_id_82575 - Retrieve PHY addr and id + * @hw: pointer to the HW structure + * + * Retrieves the PHY address and ID for both PHY's which do and do not use + * sgmi interface. + **/ +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u32 ctrl_ext; + u32 mdic; + + DEBUGFUNC("e1000_get_phy_id_82575"); + + /* i354 devices can have a PHY that needs an extra read for id */ + if (hw->mac.type == e1000_i354) + e1000_get_phy_id(hw); + + + /* + * For SGMII PHYs, we try the list of possible addresses until + * we find one that works. For non-SGMII PHYs + * (e.g. integrated copper PHYs), an address of 1 should + * work. The result of this function should mean phy->phy_addr + * and phy->id are set correctly. + */ + if (!e1000_sgmii_active_82575(hw)) { + phy->addr = 1; + ret_val = e1000_get_phy_id(hw); + goto out; + } + + if (e1000_sgmii_uses_mdio_82575(hw)) { + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + mdic = E1000_READ_REG(hw, E1000_MDIC); + mdic &= E1000_MDIC_PHY_MASK; + phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; + break; + case e1000_82580: + case e1000_i350: + case e1000_i354: + case e1000_i210: + case e1000_i211: + mdic = E1000_READ_REG(hw, E1000_MDICNFG); + mdic &= E1000_MDICNFG_PHY_MASK; + phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + ret_val = e1000_get_phy_id(hw); + goto out; + } + + /* Power on sgmii phy if it is disabled */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); + E1000_WRITE_FLUSH(hw); + msec_delay(300); + + /* + * The address field in the I2CCMD register is 3 bits and 0 is invalid. + * Therefore, we need to test 1-7 + */ + for (phy->addr = 1; phy->addr < 8; phy->addr++) { + ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); + if (ret_val == E1000_SUCCESS) { + DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", + phy_id, phy->addr); + /* + * At the time of this writing, The M88 part is + * the only supported SGMII PHY product. + */ + if (phy_id == M88_VENDOR) + break; + } else { + DEBUGOUT1("PHY address %u was unreadable\n", + phy->addr); + } + } + + /* A valid PHY type couldn't be found. */ + if (phy->addr == 8) { + phy->addr = 0; + ret_val = -E1000_ERR_PHY; + } else { + ret_val = e1000_get_phy_id(hw); + } + + /* restore previous sfp cage power state */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY using the serial gigabit media independent interface. + **/ +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); + + /* + * This isn't a true "hard" reset, but is the only reset + * available to us at this time. + */ + + DEBUGOUT("Soft resetting SGMII attached PHY...\n"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* + * SFP documentation requires the following to configure the SPF module + * to work on SGMII. No further documentation is given. + */ + ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.commit(hw); + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82575"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (active) { + data |= E1000_82580_PM_D0_LPLU; + + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } else { + data &= ~E1000_82580_PM_D0_LPLU; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return ret_val; +} + +/** + * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (!active) { + data &= ~E1000_82580_PM_D3_LPLU; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_82580_PM_D3_LPLU; + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return ret_val; +} + +/** + * e1000_acquire_nvm_82575 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82575"); + + ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + if (ret_val) + goto out; + + /* + * Check if there is some access + * error this access may hook on + */ + if (hw->mac.type == e1000_i350) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | + E1000_EECD_TIMEOUT)) { + /* Clear all access error flags */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_ERROR_CLR); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + if (hw->mac.type == e1000_82580) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_BLOCKED) { + /* Clear access error flag */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_BLOCKED); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + + + ret_val = e1000_acquire_nvm_generic(hw); + if (ret_val) + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_82575 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +static void e1000_release_nvm_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82575"); + + e1000_release_nvm_generic(hw); + + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + + DEBUGFUNC("e1000_acquire_swfw_sync_82575"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_82575 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_82575"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_cfg_done_82575 - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_NVM_CFG_DONE_PORT_1; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_NVM_CFG_DONE_PORT_2; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_NVM_CFG_DONE_PORT_3; + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) + DEBUGOUT("MNG configuration cycle has not completed.\n"); + + /* If EEPROM is not marked present, init the PHY manually */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && + (hw->phy.type == e1000_phy_igp_3)) + e1000_phy_init_script_igp3(hw); + + return ret_val; +} + +/** + * e1000_get_link_up_info_82575 - Get link speed/duplex info + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * This is a wrapper function, if using the serial gigabit media independent + * interface, use PCS to retrieve the link speed and duplex information. + * Otherwise, use the generic function to get the link speed and duplex info. + **/ +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, + duplex); + else + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + + return ret_val; +} + +/** + * e1000_check_for_link_82575 - Check for link + * @hw: pointer to the HW structure + * + * If sgmii is enabled, then use the pcs register to determine link, otherwise + * use the generic interface for determining link. + **/ +static s32 e1000_check_for_link_82575(struct e1000_hw *hw) +{ + s32 ret_val; + u16 speed, duplex; + + DEBUGFUNC("e1000_check_for_link_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) { + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, + &duplex); + /* + * Use this flag to determine if link needs to be checked or + * not. If we have link clear the flag so that we do not + * continue to check for link. + */ + hw->mac.get_link_status = !hw->mac.serdes_has_link; + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + } else { + ret_val = e1000_check_for_copper_link_generic(hw); + } + + return ret_val; +} + +/** + * e1000_check_for_link_media_swap - Check which M88E1112 interface linked + * @hw: pointer to the HW structure + * + * Poll the M88E1112 interfaces to see which interface achieved link. + */ +static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + u8 port = 0; + + DEBUGFUNC("e1000_check_for_link_media_swap"); + + /* Check the copper medium. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_COPPER; + + /* Check the other medium. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); + if (ret_val) + return ret_val; + + if (data & E1000_M88E1112_STATUS_LINK) + port = E1000_MEDIA_PORT_OTHER; + + /* Determine if a swap needs to happen. */ + if (port && (hw->dev_spec._82575.media_port != port)) { + hw->dev_spec._82575.media_port = port; + hw->dev_spec._82575.media_changed = true; + } else { + ret_val = e1000_check_for_link_82575(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown + * @hw: pointer to the HW structure + **/ +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_power_up_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + /* Enable PCS to turn on link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg |= E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* Power up the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); +} + +/** + * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Using the physical coding sub-layer (PCS), retrieve the current speed and + * duplex, then store the values in the pointers provided. + **/ +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 pcs; + u32 status; + + DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); + + /* + * Read the PCS Status register for link state. For non-copper mode, + * the status register is not accurate. The PCS status register is + * used instead. + */ + pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + /* + * The link up bit determines when link is up on autoneg. + */ + if (pcs & E1000_PCS_LSTS_LINK_OK) { + mac->serdes_has_link = true; + + /* Detect and store PCS speed */ + if (pcs & E1000_PCS_LSTS_SPEED_1000) + *speed = SPEED_1000; + else if (pcs & E1000_PCS_LSTS_SPEED_100) + *speed = SPEED_100; + else + *speed = SPEED_10; + + /* Detect and store PCS duplex */ + if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) + *duplex = FULL_DUPLEX; + else + *duplex = HALF_DUPLEX; + + /* Check if it is an I354 2.5Gb backplane connection. */ + if (mac->type == e1000_i354) { + status = E1000_READ_REG(hw, E1000_STATUS); + if ((status & E1000_STATUS_2P5_SKU) && + !(status & E1000_STATUS_2P5_SKU_OVER)) { + *speed = SPEED_2500; + *duplex = FULL_DUPLEX; + DEBUGOUT("2500 Mbs, "); + DEBUGOUT("Full Duplex\n"); + } + } + + } else { + mac->serdes_has_link = false; + *speed = 0; + *duplex = 0; + } + + return E1000_SUCCESS; +} + +/** + * e1000_shutdown_serdes_link_82575 - Remove link during power down + * @hw: pointer to the HW structure + * + * In the case of serdes shut down sfp and PCS on driver unload + * when management pass through is not enabled. + **/ +void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_shutdown_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + if (!e1000_enable_mng_pass_thru(hw)) { + /* Disable PCS to turn off link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg &= ~E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* shutdown the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); + } + + return; +} + +/** + * e1000_reset_hw_82575 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82575"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + /* set the completion timeout for interface */ + ret_val = e1000_set_pcie_completion_timeout(hw); + if (ret_val) + DEBUGOUT("PCI-E Set completion timeout has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* If EEPROM is not present, run manual init scripts */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) + e1000_reset_init_script_82575(hw); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_init_hw_82575 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82575"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address */ + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Zero out the Unicast HASH table */ + DEBUGOUT("Zeroing the UTA\n"); + for (i = 0; i < mac->uta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the default MTU size */ + hw->dev_spec._82575.mtu = 1500; + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82575(hw); + + return ret_val; +} + +/** + * e1000_setup_copper_link_82575 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u32 phpm_reg; + + DEBUGFUNC("e1000_setup_copper_link_82575"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Clear Go Link Disconnect bit on supported devices */ + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + case e1000_i210: + case e1000_i211: + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg &= ~E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + break; + default: + break; + } + + ret_val = e1000_setup_serdes_link_82575(hw); + if (ret_val) + goto out; + + if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) { + /* allow time for SFP cage time to power up phy */ + msec_delay(300); + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + goto out; + } + } + switch (hw->phy.type) { + case e1000_phy_i210: + case e1000_phy_m88: + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1543_E_PHY_ID: + case I210_I_PHY_ID: + ret_val = e1000_copper_link_setup_m88_gen2(hw); + break; + default: + ret_val = e1000_copper_link_setup_m88(hw); + break; + } + break; + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + break; + case e1000_phy_82580: + ret_val = e1000_copper_link_setup_82577(hw); + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); +out: + return ret_val; +} + +/** + * e1000_setup_serdes_link_82575 - Setup link for serdes + * @hw: pointer to the HW structure + * + * Configure the physical coding sub-layer (PCS) link. The PCS link is + * used on copper connections where the serialized gigabit media independent + * interface (sgmii), or serdes fiber is being used. Configures the link + * for auto-negotiation or forces speed/duplex. + **/ +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) +{ + u32 ctrl_ext, ctrl_reg, reg, anadv_reg; + bool pcs_autoneg; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_setup_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return ret_val; + + /* + * On the 82575, SerDes loopback mode persists until it is + * explicitly turned off or a power cycle is performed. A read to + * the register does not indicate its status. Therefore, we ensure + * loopback mode is disabled during initialization. + */ + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + + /* power on the sfp cage if present */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); + ctrl_reg |= E1000_CTRL_SLU; + + /* set both sw defined pins on 82575/82576*/ + if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) + ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; + + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + + /* default pcs_autoneg to the same setting as mac autoneg */ + pcs_autoneg = hw->mac.autoneg; + + switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* sgmii mode lets the phy handle forcing speed/duplex */ + pcs_autoneg = true; + /* autoneg time out should be disabled for SGMII mode */ + reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); + break; + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + /* disable PCS autoneg and support parallel detect only */ + pcs_autoneg = false; + /* fall through to default case */ + default: + if (hw->mac.type == e1000_82575 || + hw->mac.type == e1000_82576) { + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) + pcs_autoneg = false; + } + + /* + * non-SGMII modes only supports a speed of 1000/Full for the + * link so it is best to just force the MAC and let the pcs + * link either autoneg or be forced to 1000/Full + */ + ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | + E1000_CTRL_FD | E1000_CTRL_FRCDPX; + + /* set speed of 1000/Full if speed/duplex is forced */ + reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; + break; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); + + /* + * New SerDes mode allows for forcing speed or autonegotiating speed + * at 1gb. Autoneg should be default set by most drivers. This is the + * mode that will be compatible with older link partners and switches. + * However, both are supported by the hardware and some drivers/tools. + */ + reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | + E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); + + if (pcs_autoneg) { + /* Set PCS register for autoneg */ + reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ + E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ + + /* Disable force flow control for autoneg */ + reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; + + /* Configure flow control advertisement for autoneg */ + anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); + + switch (hw->fc.requested_mode) { + case e1000_fc_full: + case e1000_fc_rx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + anadv_reg |= E1000_TXCW_PAUSE; + break; + case e1000_fc_tx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + break; + default: + break; + } + + E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); + + DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); + } else { + /* Set PCS register for forced link */ + reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ + + /* Force flow control for forced link */ + reg |= E1000_PCS_LCTL_FORCE_FCTRL; + + DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); + } + + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + + if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) + e1000_force_mac_fc_generic(hw); + + return ret_val; +} + +/** + * e1000_get_media_type_82575 - derives current media type. + * @hw: pointer to the HW structure + * + * The media type is chosen reflecting few settings. + * The following are taken into account: + * - link mode set in the current port Init Control Word #3 + * - current link mode settings in CSR register + * - MDIO vs. I2C PHY control interface chosen + * - SFP module media type + **/ +static s32 e1000_get_media_type_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext = 0; + u32 link_mode = 0; + + /* Set internal phy as default */ + dev_spec->sgmii_active = false; + dev_spec->module_plugged = false; + + /* Get CSR setting */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + /* extract link mode setting */ + link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; + + switch (link_mode) { + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + case E1000_CTRL_EXT_LINK_MODE_GMII: + hw->phy.media_type = e1000_media_type_copper; + break; + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* Get phy control interface type set (MDIO vs. I2C)*/ + if (e1000_sgmii_uses_mdio_82575(hw)) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + break; + } + /* fall through for I2C based SGMII */ + case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: + /* read media type from SFP EEPROM */ + ret_val = e1000_set_sfp_media_type_82575(hw); + if ((ret_val != E1000_SUCCESS) || + (hw->phy.media_type == e1000_media_type_unknown)) { + /* + * If media type was not identified then return media + * type defined by the CTRL_EXT settings. + */ + hw->phy.media_type = e1000_media_type_internal_serdes; + + if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = true; + } + + break; + } + + /* do not change link mode for 100BaseFX */ + if (dev_spec->eth_flags.e100_base_fx) + break; + + /* change current link mode setting */ + ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; + + if (hw->phy.media_type == e1000_media_type_copper) + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; + else + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + break; + } + + return ret_val; +} + +/** + * e1000_set_sfp_media_type_82575 - derives SFP module media type. + * @hw: pointer to the HW structure + * + * The media type is chosen based on SFP module. + * compatibility flags retrieved from SFP ID EEPROM. + **/ +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_ERR_CONFIG; + u32 ctrl_ext = 0; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; + u8 tranceiver_type = 0; + s32 timeout = 3; + + /* Turn I2C interface ON and power on sfp cage */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); + + E1000_WRITE_FLUSH(hw); + + /* Read SFP module data */ + while (timeout) { + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), + &tranceiver_type); + if (ret_val == E1000_SUCCESS) + break; + msec_delay(100); + timeout--; + } + if (ret_val != E1000_SUCCESS) + goto out; + + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), + (u8 *)eth_flags); + if (ret_val != E1000_SUCCESS) + goto out; + + /* Check if there is some SFP module plugged and powered */ + if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || + (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { + dev_spec->module_plugged = true; + if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e100_base_fx) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e1000_base_t) { + dev_spec->sgmii_active = true; + hw->phy.media_type = e1000_media_type_copper; + } else { + hw->phy.media_type = e1000_media_type_unknown; + DEBUGOUT("PHY module has not been recognized\n"); + goto out; + } + } else { + hw->phy.media_type = e1000_media_type_unknown; + } + ret_val = E1000_SUCCESS; +out: + /* Restore I2C interface setting */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + return ret_val; +} + +/** + * e1000_valid_led_default_82575 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82575"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: + return ret_val; +} + +/** + * e1000_sgmii_active_82575 - Return sgmii state + * @hw: pointer to the HW structure + * + * 82575 silicon has a serialized gigabit media independent interface (sgmii) + * which can be enabled for use in the embedded applications. Simply + * return the current state of the sgmii interface. + **/ +static bool e1000_sgmii_active_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + return dev_spec->sgmii_active; +} + +/** + * e1000_reset_init_script_82575 - Inits HW defaults after reset + * @hw: pointer to the HW structure + * + * Inits recommended HW defaults after a reset when there is no EEPROM + * detected. This is only for the 82575. + **/ +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_reset_init_script_82575"); + + if (hw->mac.type == e1000_82575) { + DEBUGOUT("Running reset init script for 82575\n"); + /* SerDes configuration via SERDESCTRL */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); + + /* CCM configuration via CCMCTL register */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); + + /* PCIe lanes configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); + + /* PCIe PLL Configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_82575 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_82575"); + + /* + * If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_mac_addr_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_config_collision_dist_82575 - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +static void e1000_config_collision_dist_82575(struct e1000_hw *hw) +{ + u32 tctl_ext; + + DEBUGFUNC("e1000_config_collision_dist_82575"); + + tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); + + tctl_ext &= ~E1000_TCTL_EXT_COLD; + tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_power_down_phy_copper_82575 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + + if (!(phy->ops.check_reset_block)) + return; + + /* If the management interface is not enabled, then power down */ + if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82575"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); + + E1000_READ_REG(hw, E1000_CBTMPC); + E1000_READ_REG(hw, E1000_HTDPMC); + E1000_READ_REG(hw, E1000_CBRMPC); + E1000_READ_REG(hw, E1000_RPTHC); + E1000_READ_REG(hw, E1000_HGPTC); + E1000_READ_REG(hw, E1000_HTCBDPC); + E1000_READ_REG(hw, E1000_HGORCL); + E1000_READ_REG(hw, E1000_HGORCH); + E1000_READ_REG(hw, E1000_HGOTCL); + E1000_READ_REG(hw, E1000_HGOTCH); + E1000_READ_REG(hw, E1000_LENERRS); + + /* This register should not be read in copper configurations */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) || + e1000_sgmii_active_82575(hw)) + E1000_READ_REG(hw, E1000_SCVPC); +} + +/** + * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable + * @hw: pointer to the HW structure + * + * After rx enable if managability is enabled then there is likely some + * bad data at the start of the fifo and possibly in the DMA fifo. This + * function clears the fifos and flushes any packets that came in as rx was + * being enabled. + **/ +void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) +{ + u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; + int i, ms_wait; + + DEBUGFUNC("e1000_rx_fifo_workaround_82575"); + if (hw->mac.type != e1000_82575 || + !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) + return; + + /* Disable all Rx queues */ + for (i = 0; i < 4; i++) { + rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), + rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); + } + /* Poll all queues to verify they have shut down */ + for (ms_wait = 0; ms_wait < 10; ms_wait++) { + msec_delay(1); + rx_enabled = 0; + for (i = 0; i < 4; i++) + rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); + if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) + break; + } + + if (ms_wait == 10) + DEBUGOUT("Queue disable timed out after 10ms\n"); + + /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all + * incoming packets are rejected. Set enable and wait 2ms so that + * any packet that was coming in as RCTL.EN was set is flushed + */ + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); + + rlpml = E1000_READ_REG(hw, E1000_RLPML); + E1000_WRITE_REG(hw, E1000_RLPML, 0); + + rctl = E1000_READ_REG(hw, E1000_RCTL); + temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); + temp_rctl |= E1000_RCTL_LPE; + + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); + E1000_WRITE_FLUSH(hw); + msec_delay(2); + + /* Enable Rx queues that were previously enabled and restore our + * previous state + */ + for (i = 0; i < 4; i++) + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + E1000_WRITE_REG(hw, E1000_RLPML, rlpml); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* Flush receive errors generated by workaround */ + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_MPC); +} + +/** + * e1000_set_pcie_completion_timeout - set pci-e completion timeout + * @hw: pointer to the HW structure + * + * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, + * however the hardware default for these parts is 500us to 1ms which is less + * than the 10ms recommended by the pci-e spec. To address this we need to + * increase the value to either 10ms to 200ms for capability version 1 config, + * or 16ms to 55ms for version 2. + **/ +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) +{ + u32 gcr = E1000_READ_REG(hw, E1000_GCR); + s32 ret_val = E1000_SUCCESS; + u16 pcie_devctl2; + + /* only take action if timeout value is defaulted to 0 */ + if (gcr & E1000_GCR_CMPL_TMOUT_MASK) + goto out; + + /* + * if capababilities version is type 1 we can write the + * timeout of 10ms to 200ms through the GCR register + */ + if (!(gcr & E1000_GCR_CAP_VER2)) { + gcr |= E1000_GCR_CMPL_TMOUT_10ms; + goto out; + } + + /* + * for version 2 capabilities we need to write the config space + * directly in order to set the completion timeout value for + * 16ms to 55ms + */ + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); + if (ret_val) + goto out; + + pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; + + ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); +out: + /* disable completion timeout resend */ + gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; + + E1000_WRITE_REG(hw, E1000_GCR, gcr); + return ret_val; +} + +/** + * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * @pf: Physical Function pool - do not set anti-spoofing for the PF + * + * enables/disables L2 switch anti-spoofing functionality. + **/ +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) +{ + u32 reg_val, reg_offset; + + switch (hw->mac.type) { + case e1000_82576: + reg_offset = E1000_DTXSWC; + break; + case e1000_i350: + case e1000_i354: + reg_offset = E1000_TXSWC; + break; + default: + return; + } + + reg_val = E1000_READ_REG(hw, reg_offset); + if (enable) { + reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + /* The PF can spoof - it has to in order to + * support emulation mode NICs + */ + reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); + } else { + reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + } + E1000_WRITE_REG(hw, reg_offset, reg_val); +} + +/** + * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables L2 switch loopback functionality. + **/ +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) +{ + u32 dtxswc; + + switch (hw->mac.type) { + case e1000_82576: + dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); + break; + case e1000_i350: + case e1000_i354: + dtxswc = E1000_READ_REG(hw, E1000_TXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); + break; + default: + /* Currently no other hardware supports loopback */ + break; + } + + +} + +/** + * e1000_vmdq_set_replication_pf - enable or disable vmdq replication + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables replication of packets across multiple pools. + **/ +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) +{ + u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); + + if (enable) + vt_ctl |= E1000_VT_CTL_VM_REPL_EN; + else + vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; + + E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); +} + +/** + * e1000_read_phy_reg_82580 - Read 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82580 - Write 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits + * @hw: pointer to the HW structure + * + * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on + * the values found in the EEPROM. This addresses an issue in which these + * bits are not restored from EEPROM after reset. + **/ +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 mdicnfg; + u16 nvm_data = 0; + + DEBUGFUNC("e1000_reset_mdicnfg_82580"); + + if (hw->mac.type != e1000_82580) + goto out; + if (!e1000_sgmii_active_82575(hw)) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); + if (nvm_data & NVM_WORD24_EXT_MDIO) + mdicnfg |= E1000_MDICNFG_EXT_MDIO; + if (nvm_data & NVM_WORD24_COM_MDIO) + mdicnfg |= E1000_MDICNFG_COM_MDIO; + E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); +out: + return ret_val; +} + +/** + * e1000_reset_hw_82580 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets function or entire device (all ports, etc.) + * to a known state. + **/ +static s32 e1000_reset_hw_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + /* BH SW mailbox bit in SW_FW_SYNC */ + u16 swmbsw_mask = E1000_SW_SYNCH_MB; + u32 ctrl; + bool global_device_reset = hw->dev_spec._82575.global_device_reset; + + DEBUGFUNC("e1000_reset_hw_82580"); + + hw->dev_spec._82575.global_device_reset = false; + + /* 82580 does not reliably do global_device_reset due to hw errata */ + if (hw->mac.type == e1000_82580) + global_device_reset = false; + + /* Get current control state. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Determine whether or not a global dev reset is requested */ + if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, + swmbsw_mask)) + global_device_reset = false; + + if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STAT_DEV_RST_SET)) + ctrl |= E1000_CTRL_DEV_RST; + else + ctrl |= E1000_CTRL_RST; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* Add delay to insure DEV_RST has time to complete */ + if (global_device_reset) + msec_delay(5); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* clear global device reset status bit */ + E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + ret_val = e1000_reset_mdicnfg_82580(hw); + if (ret_val) + DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + /* Release semaphore */ + if (global_device_reset) + hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); + + return ret_val; +} + +/** + * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size + * @data: data received by reading RXPBS register + * + * The 82580 uses a table based approach for packet buffer allocation sizes. + * This function converts the retrieved value into the correct table value + * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 + * 0x0 36 72 144 1 2 4 8 16 + * 0x8 35 70 140 rsv rsv rsv rsv rsv + */ +u16 e1000_rxpbs_adjust_82580(u32 data) +{ + u16 ret_val = 0; + + if (data < E1000_82580_RXPBS_TABLE_SIZE) + ret_val = e1000_82580_rxpbs_table[data]; + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_with_offset - Validate EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); + + for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_with_offset - Update EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); + + for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, + &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 eeprom_regions_count = 1; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { + /* if chekcsums compatibility bit is set validate checksums + * for all 4 ports. */ + eeprom_regions_count = 4; + } + + for (j = 0; j < eeprom_regions_count; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82580 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); + goto out; + } + + if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { + /* set compatibility bit to validate checksums appropriately */ + nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; + ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); + goto out; + } + } + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_i350 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * __e1000_access_emi_reg - Read/write EMI register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: pointer to value to read/write from/to the EMI address + * @read: boolean flag to indicate read or write + **/ +static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, + u16 *data, bool read) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_access_emi_reg"); + + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); + else + ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); + + return ret_val; +} + +/** + * e1000_read_emi_reg - Read Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be read from the EMI address + **/ +s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) +{ + DEBUGFUNC("e1000_read_emi_reg"); + + return __e1000_access_emi_reg(hw, addr, data, true); +} + +/** + * e1000_set_eee_i350 - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ipcnfg, eeer; + + DEBUGFUNC("e1000_set_eee_i350"); + + if ((hw->mac.type < e1000_i350) || + (hw->phy.media_type != e1000_media_type_copper)) + goto out; + ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); + eeer = E1000_READ_REG(hw, E1000_EEER); + + /* enable or disable per user setting */ + if (!(hw->dev_spec._82575.eee_disable)) { + u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); + + ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + + /* This bit should not be set in normal operation. */ + if (eee_su & E1000_EEE_SU_LPI_CLK_STP) + DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); + } else { + ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + } + E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); + E1000_WRITE_REG(hw, E1000_EEER, eeer); + E1000_READ_REG(hw, E1000_IPCNFG); + E1000_READ_REG(hw, E1000_EEER); +out: + + return ret_val; +} + +/** + * e1000_set_eee_i354 - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE legacy mode based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i354(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_set_eee_i354"); + + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID))) + goto out; + + if (!hw->dev_spec._82575.eee_disable) { + /* Switch to PHY page 18. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); + if (ret_val) + goto out; + + ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, + &phy_data); + if (ret_val) + goto out; + + phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, + phy_data); + if (ret_val) + goto out; + + /* Return the PHY to page 0. */ + ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); + if (ret_val) + goto out; + + /* Turn on EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + phy_data |= E1000_EEE_ADV_100_SUPPORTED | + E1000_EEE_ADV_1000_SUPPORTED; + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } else { + /* Turn off EEE advertisement. */ + ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | + E1000_EEE_ADV_1000_SUPPORTED); + ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, + E1000_EEE_ADV_DEV_I354, + phy_data); + } + +out: + return ret_val; +} + +/** + * e1000_get_eee_status_i354 - Get EEE status + * @hw: pointer to the HW structure + * @status: EEE status + * + * Get EEE status by guessing based on whether Tx or Rx LPI indications have + * been received. + **/ +s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_get_eee_status_i354"); + + /* Check if EEE is supported on this device. */ + if ((hw->phy.media_type != e1000_media_type_copper) || + ((phy->id != M88E1543_E_PHY_ID))) + goto out; + + ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, + E1000_PCS_STATUS_DEV_I354, + &phy_data); + if (ret_val) + goto out; + + *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | + E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; + +out: + return ret_val; +} + +/* Due to a hw errata, if the host tries to configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + * e1000_clear_vfta_i350 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_i350(struct e1000_hw *hw) +{ + u32 offset; + int i; + + DEBUGFUNC("e1000_clear_vfta_350"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_i350 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ + int i; + + DEBUGFUNC("e1000_write_vfta_350"); + + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + + E1000_WRITE_FLUSH(hw); +} + + +/** + * e1000_set_i2c_bb - Enable I2C bit-bang + * @hw: pointer to the HW structure + * + * Enable I2C bit-bang interface + * + **/ +s32 e1000_set_i2c_bb(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext, i2cparams; + + DEBUGFUNC("e1000_set_i2c_bb"); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_I2C_ENA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); + i2cparams |= E1000_I2CBB_EN; + i2cparams |= E1000_I2C_DATA_OE_N; + i2cparams |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); + E1000_WRITE_FLUSH(hw); + + return ret_val; +} + +/** + * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to read + * @dev_addr: device address + * @data: value read + * + * Performs byte read operation over I2C interface at + * a specified device address. + **/ +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 10; + u32 retry = 1; + u16 swfw_mask = 0; + + bool nack = true; + + DEBUGFUNC("e1000_read_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + do { + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) + != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto read_byte_out; + } + + e1000_i2c_start(hw); + + /* Device Address and write indication */ + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_start(hw); + + /* Device Address and read indication */ + status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_in_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_bit(hw, nack); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + msec_delay(100); + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte read error - Retrying.\n"); + else + DEBUGOUT("I2C byte read error.\n"); + + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +read_byte_out: + + return status; +} + +/** + * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: value to write + * + * Performs byte write operation over I2C interface at + * a specified device address. + **/ +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 1; + u32 retry = 0; + u16 swfw_mask = 0; + + DEBUGFUNC("e1000_write_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto write_byte_out; + } + + do { + e1000_i2c_start(hw); + + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte write error - Retrying.\n"); + else + DEBUGOUT("I2C byte write error.\n"); + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +write_byte_out: + + return status; +} + +/** + * e1000_i2c_start - Sets I2C start condition + * @hw: pointer to hardware structure + * + * Sets I2C start condition (High -> Low on SDA while SCL is High) + **/ +static void e1000_i2c_start(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_start"); + + /* Start condition must begin with data and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 1); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for start condition (4.7us) */ + usec_delay(E1000_I2C_T_SU_STA); + + e1000_set_i2c_data(hw, &i2cctl, 0); + + /* Hold time for start condition (4us) */ + usec_delay(E1000_I2C_T_HD_STA); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + +} + +/** + * e1000_i2c_stop - Sets I2C stop condition + * @hw: pointer to hardware structure + * + * Sets I2C stop condition (Low -> High on SDA while SCL is High) + **/ +static void e1000_i2c_stop(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_stop"); + + /* Stop condition must begin with data low and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 0); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for stop condition (4us) */ + usec_delay(E1000_I2C_T_SU_STO); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + /* bus free time between stop and start (4.7us)*/ + usec_delay(E1000_I2C_T_BUF); +} + +/** + * e1000_clock_in_i2c_byte - Clocks in one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte to clock in + * + * Clocks in one byte data via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) +{ + s32 i; + bool bit = 0; + + DEBUGFUNC("e1000_clock_in_i2c_byte"); + + *data = 0; + for (i = 7; i >= 0; i--) { + e1000_clock_in_i2c_bit(hw, &bit); + *data |= bit << i; + } + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_byte - Clocks out one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte clocked out + * + * Clocks out one byte data via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) +{ + s32 status = E1000_SUCCESS; + s32 i; + u32 i2cctl; + bool bit = 0; + + DEBUGFUNC("e1000_clock_out_i2c_byte"); + + for (i = 7; i >= 0; i--) { + bit = (data >> i) & 0x1; + status = e1000_clock_out_i2c_bit(hw, bit); + + if (status != E1000_SUCCESS) + break; + } + + /* Release SDA line (set high) */ + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + i2cctl |= E1000_I2C_DATA_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); + E1000_WRITE_FLUSH(hw); + + return status; +} + +/** + * e1000_get_i2c_ack - Polls for I2C ACK + * @hw: pointer to hardware structure + * + * Clocks in/out one bit via I2C data/clock + **/ +static s32 e1000_get_i2c_ack(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u32 i = 0; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 timeout = 10; + bool ack = true; + + DEBUGFUNC("e1000_get_i2c_ack"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + /* Wait until SCL returns high */ + for (i = 0; i < timeout; i++) { + usec_delay(1); + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (i2cctl & E1000_I2C_CLK_IN) + break; + } + if (!(i2cctl & E1000_I2C_CLK_IN)) + return E1000_ERR_I2C; + + ack = e1000_get_i2c_data(&i2cctl); + if (ack) { + DEBUGOUT("I2C ack was not received.\n"); + status = E1000_ERR_I2C; + } + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return status; +} + +/** + * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: read data value + * + * Clocks in one bit via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_in_i2c_bit"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + *data = e1000_get_i2c_data(&i2cctl); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: data value to write + * + * Clocks out one bit via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) +{ + s32 status; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_out_i2c_bit"); + + status = e1000_set_i2c_data(hw, &i2cctl, data); + if (status == E1000_SUCCESS) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us. + * This also takes care of the data hold time. + */ + usec_delay(E1000_I2C_T_LOW); + } else { + status = E1000_ERR_I2C; + DEBUGOUT1("I2C data was not set to %X\n", data); + } + + return status; +} +/** + * e1000_raise_i2c_clk - Raises the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Raises the I2C clock line '0'->'1' + **/ +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + DEBUGFUNC("e1000_raise_i2c_clk"); + + *i2cctl |= E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL rise time (1000ns) */ + usec_delay(E1000_I2C_T_RISE); +} + +/** + * e1000_lower_i2c_clk - Lowers the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Lowers the I2C clock line '1'->'0' + **/ +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + + DEBUGFUNC("e1000_lower_i2c_clk"); + + *i2cctl &= ~E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL fall time (300ns) */ + usec_delay(E1000_I2C_T_FALL); +} + +/** + * e1000_set_i2c_data - Sets the I2C data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * @data: I2C data value (0 or 1) to set + * + * Sets the I2C data bit + **/ +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) +{ + s32 status = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_i2c_data"); + + if (data) + *i2cctl |= E1000_I2C_DATA_OUT; + else + *i2cctl &= ~E1000_I2C_DATA_OUT; + + *i2cctl &= ~E1000_I2C_DATA_OE_N; + *i2cctl |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ + usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); + + *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (data != e1000_get_i2c_data(i2cctl)) { + status = E1000_ERR_I2C; + DEBUGOUT1("Error - I2C data was not set to %X.\n", data); + } + + return status; +} + +/** + * e1000_get_i2c_data - Reads the I2C SDA data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Returns the I2C data bit value + **/ +static bool e1000_get_i2c_data(u32 *i2cctl) +{ + bool data; + + DEBUGFUNC("e1000_get_i2c_data"); + + if (*i2cctl & E1000_I2C_DATA_IN) + data = 1; + else + data = 0; + + return data; +} + +/** + * e1000_i2c_bus_clear - Clears the I2C bus + * @hw: pointer to hardware structure + * + * Clears the I2C bus by sending nine clock pulses. + * Used when data line is stuck low. + **/ +void e1000_i2c_bus_clear(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 i; + + DEBUGFUNC("e1000_i2c_bus_clear"); + + e1000_i2c_start(hw); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + for (i = 0; i < 9; i++) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Min high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Min low period of clock is 4.7us*/ + usec_delay(E1000_I2C_T_LOW); + } + + e1000_i2c_start(hw); + + /* Put the i2c bus back to default state */ + e1000_i2c_stop(hw); +} + +static const u8 e1000_emc_temp_data[4] = { + E1000_EMC_INTERNAL_DATA, + E1000_EMC_DIODE1_DATA, + E1000_EMC_DIODE2_DATA, + E1000_EMC_DIODE3_DATA +}; +static const u8 e1000_emc_therm_limit[4] = { + E1000_EMC_INTERNAL_THERM_LIMIT, + E1000_EMC_DIODE1_THERM_LIMIT, + E1000_EMC_DIODE2_THERM_LIMIT, + E1000_EMC_DIODE3_THERM_LIMIT +}; + +/** + * e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data + * @hw: pointer to hardware structure + * + * Updates the temperatures in mac.thermal_sensor_data + **/ +s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u16 ets_offset; + u16 ets_cfg; + u16 ets_sensor; + u8 num_sensors; + u8 sensor_index; + u8 sensor_location; + u8 i; + struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; + + DEBUGFUNC("e1000_get_thermal_sensor_data_generic"); + + if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) + return E1000_NOT_IMPLEMENTED; + + data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF); + + /* Return the internal sensor only if ETS is unsupported */ + e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); + if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) + return status; + + e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); + if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) + != NVM_ETS_TYPE_EMC) + return E1000_NOT_IMPLEMENTED; + + num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); + if (num_sensors > E1000_MAX_SENSORS) + num_sensors = E1000_MAX_SENSORS; + + for (i = 1; i < num_sensors; i++) { + e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); + sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> + NVM_ETS_DATA_INDEX_SHIFT); + sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> + NVM_ETS_DATA_LOC_SHIFT); + + if (sensor_location != 0) + hw->phy.ops.read_i2c_byte(hw, + e1000_emc_temp_data[sensor_index], + E1000_I2C_THERMAL_SENSOR_ADDR, + &data->sensor[i].temp); + } + return status; +} + +/** + * e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds + * @hw: pointer to hardware structure + * + * Sets the thermal sensor thresholds according to the NVM map + * and save off the threshold and location values into mac.thermal_sensor_data + **/ +s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u16 ets_offset; + u16 ets_cfg; + u16 ets_sensor; + u8 low_thresh_delta; + u8 num_sensors; + u8 sensor_index; + u8 sensor_location; + u8 therm_limit; + u8 i; + struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; + + DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic"); + + if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) + return E1000_NOT_IMPLEMENTED; + + memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); + + data->sensor[0].location = 0x1; + data->sensor[0].caution_thresh = + (E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF); + data->sensor[0].max_op_thresh = + (E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF); + + /* Return the internal sensor only if ETS is unsupported */ + e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); + if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) + return status; + + e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); + if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) + != NVM_ETS_TYPE_EMC) + return E1000_NOT_IMPLEMENTED; + + low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> + NVM_ETS_LTHRES_DELTA_SHIFT); + num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); + + for (i = 1; i <= num_sensors; i++) { + e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); + sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> + NVM_ETS_DATA_INDEX_SHIFT); + sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> + NVM_ETS_DATA_LOC_SHIFT); + therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; + + hw->phy.ops.write_i2c_byte(hw, + e1000_emc_therm_limit[sensor_index], + E1000_I2C_THERMAL_SENSOR_ADDR, + therm_limit); + + if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { + data->sensor[i].location = sensor_location; + data->sensor[i].caution_thresh = therm_limit; + data->sensor[i].max_op_thresh = therm_limit - + low_thresh_delta; + } + } + return status; +} |