aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_acl/acl_gen.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/librte_acl/acl_gen.c')
-rw-r--r--lib/librte_acl/acl_gen.c561
1 files changed, 561 insertions, 0 deletions
diff --git a/lib/librte_acl/acl_gen.c b/lib/librte_acl/acl_gen.c
new file mode 100644
index 00000000..ea557ab9
--- /dev/null
+++ b/lib/librte_acl/acl_gen.c
@@ -0,0 +1,561 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <rte_acl.h>
+#include "acl.h"
+
+#define QRANGE_MIN ((uint8_t)INT8_MIN)
+
+#define RTE_ACL_VERIFY(exp) do { \
+ if (!(exp)) \
+ rte_panic("line %d\tassert \"" #exp "\" failed\n", __LINE__); \
+} while (0)
+
+struct acl_node_counters {
+ int32_t match;
+ int32_t match_used;
+ int32_t single;
+ int32_t quad;
+ int32_t quad_vectors;
+ int32_t dfa;
+ int32_t dfa_gr64;
+};
+
+struct rte_acl_indices {
+ int32_t dfa_index;
+ int32_t quad_index;
+ int32_t single_index;
+ int32_t match_index;
+ int32_t match_start;
+};
+
+static void
+acl_gen_log_stats(const struct rte_acl_ctx *ctx,
+ const struct acl_node_counters *counts,
+ const struct rte_acl_indices *indices,
+ size_t max_size)
+{
+ RTE_LOG(DEBUG, ACL, "Gen phase for ACL \"%s\":\n"
+ "runtime memory footprint on socket %d:\n"
+ "single nodes/bytes used: %d/%zu\n"
+ "quad nodes/vectors/bytes used: %d/%d/%zu\n"
+ "DFA nodes/group64/bytes used: %d/%d/%zu\n"
+ "match nodes/bytes used: %d/%zu\n"
+ "total: %zu bytes\n"
+ "max limit: %zu bytes\n",
+ ctx->name, ctx->socket_id,
+ counts->single, counts->single * sizeof(uint64_t),
+ counts->quad, counts->quad_vectors,
+ (indices->quad_index - indices->dfa_index) * sizeof(uint64_t),
+ counts->dfa, counts->dfa_gr64,
+ indices->dfa_index * sizeof(uint64_t),
+ counts->match,
+ counts->match * sizeof(struct rte_acl_match_results),
+ ctx->mem_sz,
+ max_size);
+}
+
+static uint64_t
+acl_dfa_gen_idx(const struct rte_acl_node *node, uint32_t index)
+{
+ uint64_t idx;
+ uint32_t i;
+
+ idx = 0;
+ for (i = 0; i != RTE_DIM(node->dfa_gr64); i++) {
+ RTE_ACL_VERIFY(node->dfa_gr64[i] < RTE_ACL_DFA_GR64_NUM);
+ RTE_ACL_VERIFY(node->dfa_gr64[i] < node->fanout);
+ idx |= (i - node->dfa_gr64[i]) <<
+ (6 + RTE_ACL_DFA_GR64_BIT * i);
+ }
+
+ return idx << (CHAR_BIT * sizeof(index)) | index | node->node_type;
+}
+
+static void
+acl_dfa_fill_gr64(const struct rte_acl_node *node,
+ const uint64_t src[RTE_ACL_DFA_SIZE], uint64_t dst[RTE_ACL_DFA_SIZE])
+{
+ uint32_t i;
+
+ for (i = 0; i != RTE_DIM(node->dfa_gr64); i++) {
+ memcpy(dst + node->dfa_gr64[i] * RTE_ACL_DFA_GR64_SIZE,
+ src + i * RTE_ACL_DFA_GR64_SIZE,
+ RTE_ACL_DFA_GR64_SIZE * sizeof(dst[0]));
+ }
+}
+
+static uint32_t
+acl_dfa_count_gr64(const uint64_t array_ptr[RTE_ACL_DFA_SIZE],
+ uint8_t gr64[RTE_ACL_DFA_GR64_NUM])
+{
+ uint32_t i, j, k;
+
+ k = 0;
+ for (i = 0; i != RTE_ACL_DFA_GR64_NUM; i++) {
+ gr64[i] = i;
+ for (j = 0; j != i; j++) {
+ if (memcmp(array_ptr + i * RTE_ACL_DFA_GR64_SIZE,
+ array_ptr + j * RTE_ACL_DFA_GR64_SIZE,
+ RTE_ACL_DFA_GR64_SIZE *
+ sizeof(array_ptr[0])) == 0)
+ break;
+ }
+ gr64[i] = (j != i) ? gr64[j] : k++;
+ }
+
+ return k;
+}
+
+static uint32_t
+acl_node_fill_dfa(const struct rte_acl_node *node,
+ uint64_t dfa[RTE_ACL_DFA_SIZE], uint64_t no_match, int32_t resolved)
+{
+ uint32_t n, x;
+ uint32_t ranges, last_bit;
+ struct rte_acl_node *child;
+ struct rte_acl_bitset *bits;
+
+ ranges = 0;
+ last_bit = 0;
+
+ for (n = 0; n < RTE_ACL_DFA_SIZE; n++)
+ dfa[n] = no_match;
+
+ for (x = 0; x < node->num_ptrs; x++) {
+
+ child = node->ptrs[x].ptr;
+ if (child == NULL)
+ continue;
+
+ bits = &node->ptrs[x].values;
+ for (n = 0; n < RTE_ACL_DFA_SIZE; n++) {
+
+ if (bits->bits[n / (sizeof(bits_t) * CHAR_BIT)] &
+ (1 << (n % (sizeof(bits_t) * CHAR_BIT)))) {
+
+ dfa[n] = resolved ? child->node_index : x;
+ ranges += (last_bit == 0);
+ last_bit = 1;
+ } else {
+ last_bit = 0;
+ }
+ }
+ }
+
+ return ranges;
+}
+
+/*
+* Counts the number of groups of sequential bits that are
+* either 0 or 1, as specified by the zero_one parameter. This is used to
+* calculate the number of ranges in a node to see if it fits in a quad range
+* node.
+*/
+static int
+acl_count_sequential_groups(struct rte_acl_bitset *bits, int zero_one)
+{
+ int n, ranges, last_bit;
+
+ ranges = 0;
+ last_bit = zero_one ^ 1;
+
+ for (n = QRANGE_MIN; n < UINT8_MAX + 1; n++) {
+ if (bits->bits[n / (sizeof(bits_t) * 8)] &
+ (1 << (n % (sizeof(bits_t) * 8)))) {
+ if (zero_one == 1 && last_bit != 1)
+ ranges++;
+ last_bit = 1;
+ } else {
+ if (zero_one == 0 && last_bit != 0)
+ ranges++;
+ last_bit = 0;
+ }
+ }
+ for (n = 0; n < QRANGE_MIN; n++) {
+ if (bits->bits[n / (sizeof(bits_t) * 8)] &
+ (1 << (n % (sizeof(bits_t) * 8)))) {
+ if (zero_one == 1 && last_bit != 1)
+ ranges++;
+ last_bit = 1;
+ } else {
+ if (zero_one == 0 && last_bit != 0)
+ ranges++;
+ last_bit = 0;
+ }
+ }
+
+ return ranges;
+}
+
+/*
+ * Count number of ranges spanned by the node's pointers
+ */
+static int
+acl_count_fanout(struct rte_acl_node *node)
+{
+ uint32_t n;
+ int ranges;
+
+ if (node->fanout != 0)
+ return node->fanout;
+
+ ranges = acl_count_sequential_groups(&node->values, 0);
+
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL)
+ ranges += acl_count_sequential_groups(
+ &node->ptrs[n].values, 1);
+ }
+
+ node->fanout = ranges;
+ return node->fanout;
+}
+
+/*
+ * Determine the type of nodes and count each type
+ */
+static void
+acl_count_trie_types(struct acl_node_counters *counts,
+ struct rte_acl_node *node, uint64_t no_match, int force_dfa)
+{
+ uint32_t n;
+ int num_ptrs;
+ uint64_t dfa[RTE_ACL_DFA_SIZE];
+
+ /* skip if this node has been counted */
+ if (node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED)
+ return;
+
+ if (node->match_flag != 0 || node->num_ptrs == 0) {
+ counts->match++;
+ node->node_type = RTE_ACL_NODE_MATCH;
+ return;
+ }
+
+ num_ptrs = acl_count_fanout(node);
+
+ /* Force type to dfa */
+ if (force_dfa)
+ num_ptrs = RTE_ACL_DFA_SIZE;
+
+ /* determine node type based on number of ranges */
+ if (num_ptrs == 1) {
+ counts->single++;
+ node->node_type = RTE_ACL_NODE_SINGLE;
+ } else if (num_ptrs <= RTE_ACL_QUAD_MAX) {
+ counts->quad++;
+ counts->quad_vectors += node->fanout;
+ node->node_type = RTE_ACL_NODE_QRANGE;
+ } else {
+ counts->dfa++;
+ node->node_type = RTE_ACL_NODE_DFA;
+ if (force_dfa != 0) {
+ /* always expand to a max number of nodes. */
+ for (n = 0; n != RTE_DIM(node->dfa_gr64); n++)
+ node->dfa_gr64[n] = n;
+ node->fanout = n;
+ } else {
+ acl_node_fill_dfa(node, dfa, no_match, 0);
+ node->fanout = acl_dfa_count_gr64(dfa, node->dfa_gr64);
+ }
+ counts->dfa_gr64 += node->fanout;
+ }
+
+ /*
+ * recursively count the types of all children
+ */
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL)
+ acl_count_trie_types(counts, node->ptrs[n].ptr,
+ no_match, 0);
+ }
+}
+
+static void
+acl_add_ptrs(struct rte_acl_node *node, uint64_t *node_array, uint64_t no_match,
+ int resolved)
+{
+ uint32_t x;
+ int32_t m;
+ uint64_t *node_a, index, dfa[RTE_ACL_DFA_SIZE];
+
+ acl_node_fill_dfa(node, dfa, no_match, resolved);
+
+ /*
+ * Rather than going from 0 to 256, the range count and
+ * the layout are from 80-ff then 0-7f due to signed compare
+ * for SSE (cmpgt).
+ */
+ if (node->node_type == RTE_ACL_NODE_QRANGE) {
+
+ m = 0;
+ node_a = node_array;
+ index = dfa[QRANGE_MIN];
+ *node_a++ = index;
+
+ for (x = QRANGE_MIN + 1; x < UINT8_MAX + 1; x++) {
+ if (dfa[x] != index) {
+ index = dfa[x];
+ *node_a++ = index;
+ node->transitions[m++] = (uint8_t)(x - 1);
+ }
+ }
+
+ for (x = 0; x < INT8_MAX + 1; x++) {
+ if (dfa[x] != index) {
+ index = dfa[x];
+ *node_a++ = index;
+ node->transitions[m++] = (uint8_t)(x - 1);
+ }
+ }
+
+ /* fill unused locations with max value - nothing is greater */
+ for (; m < RTE_ACL_QUAD_SIZE; m++)
+ node->transitions[m] = INT8_MAX;
+
+ RTE_ACL_VERIFY(m <= RTE_ACL_QUAD_SIZE);
+
+ } else if (node->node_type == RTE_ACL_NODE_DFA && resolved) {
+ acl_dfa_fill_gr64(node, dfa, node_array);
+ }
+}
+
+/*
+ * Routine that allocates space for this node and recursively calls
+ * to allocate space for each child. Once all the children are allocated,
+ * then resolve all transitions for this node.
+ */
+static void
+acl_gen_node(struct rte_acl_node *node, uint64_t *node_array,
+ uint64_t no_match, struct rte_acl_indices *index, int num_categories)
+{
+ uint32_t n, sz, *qtrp;
+ uint64_t *array_ptr;
+ struct rte_acl_match_results *match;
+
+ if (node->node_index != RTE_ACL_NODE_UNDEFINED)
+ return;
+
+ array_ptr = NULL;
+
+ switch (node->node_type) {
+ case RTE_ACL_NODE_DFA:
+ array_ptr = &node_array[index->dfa_index];
+ node->node_index = acl_dfa_gen_idx(node, index->dfa_index);
+ sz = node->fanout * RTE_ACL_DFA_GR64_SIZE;
+ index->dfa_index += sz;
+ for (n = 0; n < sz; n++)
+ array_ptr[n] = no_match;
+ break;
+ case RTE_ACL_NODE_SINGLE:
+ node->node_index = RTE_ACL_QUAD_SINGLE | index->single_index |
+ node->node_type;
+ array_ptr = &node_array[index->single_index];
+ index->single_index += 1;
+ array_ptr[0] = no_match;
+ break;
+ case RTE_ACL_NODE_QRANGE:
+ array_ptr = &node_array[index->quad_index];
+ acl_add_ptrs(node, array_ptr, no_match, 0);
+ qtrp = (uint32_t *)node->transitions;
+ node->node_index = qtrp[0];
+ node->node_index <<= sizeof(index->quad_index) * CHAR_BIT;
+ node->node_index |= index->quad_index | node->node_type;
+ index->quad_index += node->fanout;
+ break;
+ case RTE_ACL_NODE_MATCH:
+ match = ((struct rte_acl_match_results *)
+ (node_array + index->match_start));
+ for (n = 0; n != RTE_DIM(match->results); n++)
+ RTE_ACL_VERIFY(match->results[0] == 0);
+ memcpy(match + index->match_index, node->mrt,
+ sizeof(*node->mrt));
+ node->node_index = index->match_index | node->node_type;
+ index->match_index += 1;
+ break;
+ case RTE_ACL_NODE_UNDEFINED:
+ RTE_ACL_VERIFY(node->node_type !=
+ (uint32_t)RTE_ACL_NODE_UNDEFINED);
+ break;
+ }
+
+ /* recursively allocate space for all children */
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL)
+ acl_gen_node(node->ptrs[n].ptr,
+ node_array,
+ no_match,
+ index,
+ num_categories);
+ }
+
+ /* All children are resolved, resolve this node's pointers */
+ switch (node->node_type) {
+ case RTE_ACL_NODE_DFA:
+ acl_add_ptrs(node, array_ptr, no_match, 1);
+ break;
+ case RTE_ACL_NODE_SINGLE:
+ for (n = 0; n < node->num_ptrs; n++) {
+ if (node->ptrs[n].ptr != NULL)
+ array_ptr[0] = node->ptrs[n].ptr->node_index;
+ }
+ break;
+ case RTE_ACL_NODE_QRANGE:
+ acl_add_ptrs(node, array_ptr, no_match, 1);
+ break;
+ case RTE_ACL_NODE_MATCH:
+ break;
+ case RTE_ACL_NODE_UNDEFINED:
+ RTE_ACL_VERIFY(node->node_type !=
+ (uint32_t)RTE_ACL_NODE_UNDEFINED);
+ break;
+ }
+}
+
+static void
+acl_calc_counts_indices(struct acl_node_counters *counts,
+ struct rte_acl_indices *indices,
+ struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
+ uint64_t no_match)
+{
+ uint32_t n;
+
+ memset(indices, 0, sizeof(*indices));
+ memset(counts, 0, sizeof(*counts));
+
+ /* Get stats on nodes */
+ for (n = 0; n < num_tries; n++) {
+ acl_count_trie_types(counts, node_bld_trie[n].trie,
+ no_match, 1);
+ }
+
+ indices->dfa_index = RTE_ACL_DFA_SIZE + 1;
+ indices->quad_index = indices->dfa_index +
+ counts->dfa_gr64 * RTE_ACL_DFA_GR64_SIZE;
+ indices->single_index = indices->quad_index + counts->quad_vectors;
+ indices->match_start = indices->single_index + counts->single + 1;
+ indices->match_start = RTE_ALIGN(indices->match_start,
+ (XMM_SIZE / sizeof(uint64_t)));
+ indices->match_index = 1;
+}
+
+/*
+ * Generate the runtime structure using build structure
+ */
+int
+rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie,
+ struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
+ uint32_t num_categories, uint32_t data_index_sz, size_t max_size)
+{
+ void *mem;
+ size_t total_size;
+ uint64_t *node_array, no_match;
+ uint32_t n, match_index;
+ struct rte_acl_match_results *match;
+ struct acl_node_counters counts;
+ struct rte_acl_indices indices;
+
+ no_match = RTE_ACL_NODE_MATCH;
+
+ /* Fill counts and indices arrays from the nodes. */
+ acl_calc_counts_indices(&counts, &indices,
+ node_bld_trie, num_tries, no_match);
+
+ /* Allocate runtime memory (align to cache boundary) */
+ total_size = RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE) +
+ indices.match_start * sizeof(uint64_t) +
+ (counts.match + 1) * sizeof(struct rte_acl_match_results) +
+ XMM_SIZE;
+
+ if (total_size > max_size) {
+ RTE_LOG(DEBUG, ACL,
+ "Gen phase for ACL ctx \"%s\" exceeds max_size limit, "
+ "bytes required: %zu, allowed: %zu\n",
+ ctx->name, total_size, max_size);
+ return -ERANGE;
+ }
+
+ mem = rte_zmalloc_socket(ctx->name, total_size, RTE_CACHE_LINE_SIZE,
+ ctx->socket_id);
+ if (mem == NULL) {
+ RTE_LOG(ERR, ACL,
+ "allocation of %zu bytes on socket %d for %s failed\n",
+ total_size, ctx->socket_id, ctx->name);
+ return -ENOMEM;
+ }
+
+ /* Fill the runtime structure */
+ match_index = indices.match_start;
+ node_array = (uint64_t *)((uintptr_t)mem +
+ RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE));
+
+ /*
+ * Setup the NOMATCH node (a SINGLE at the
+ * highest index, that points to itself)
+ */
+
+ node_array[RTE_ACL_DFA_SIZE] = RTE_ACL_DFA_SIZE | RTE_ACL_NODE_SINGLE;
+
+ for (n = 0; n < RTE_ACL_DFA_SIZE; n++)
+ node_array[n] = no_match;
+
+ /* NOMATCH result at index 0 */
+ match = ((struct rte_acl_match_results *)(node_array + match_index));
+ memset(match, 0, sizeof(*match));
+
+ for (n = 0; n < num_tries; n++) {
+
+ acl_gen_node(node_bld_trie[n].trie, node_array, no_match,
+ &indices, num_categories);
+
+ if (node_bld_trie[n].trie->node_index == no_match)
+ trie[n].root_index = 0;
+ else
+ trie[n].root_index = node_bld_trie[n].trie->node_index;
+ }
+
+ ctx->mem = mem;
+ ctx->mem_sz = total_size;
+ ctx->data_indexes = mem;
+ ctx->num_tries = num_tries;
+ ctx->num_categories = num_categories;
+ ctx->match_index = match_index;
+ ctx->no_match = no_match;
+ ctx->idle = node_array[RTE_ACL_DFA_SIZE];
+ ctx->trans_table = node_array;
+ memcpy(ctx->trie, trie, sizeof(ctx->trie));
+
+ acl_gen_log_stats(ctx, &counts, &indices, max_size);
+ return 0;
+}